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The performance of orthogonal frequency-division multiplexing (OFDM) system with multiple-symbol differential detection
(MSDD) is analyzed over both time- and frequency-selective Rayleigh fading channels. The optimal decision metrics of time-
domain MSDD (TD-MSDD) and frequency-domain MSDD (FD-MSDD) are derived by calculating the exact covariance matrix
under the assumption that the guard time is longer than the delay spread, thus causing no effective intersymbol interference (ISI).
Since the complexity of calculating the exact covariance matrix turns out to be substantial for FD-MSDD, we also develop a sub-
optimal metric based on the simplified covariance matrix. The comparative analysis between TD-MSDD and FD-MSDD suggests
that the most significant improvement is achieved by the FD-MSDD with the optimal metric and a large symbol observation
interval, since the time selectiveness of the channel has a dominant effect on the bit error rate of the OFDM system.
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selective channels, Rayleigh fading.

1. INTRODUCTION

In mobile communications systems, there has been a grow-
ing demand for high data rate services such as video phone,
high-quality digital distribution of music, and digital televi-
sion terrestrial broadcasting (DTTB) [1]. In such systems,
the delay spread of the channel becomes a major impair-
ment to cope with, since it may cause a severe intersym-
bol interference (ISI). It is well known that the orthogo-
nal frequency-division multiplexing (OFDM), which trans-
mits the information symbols in parallel over a number of
spectrally overlapping but temporally orthogonal subchan-
nels [2], is an effective technique to combat the ISI. With
a guard interval longer than the maximum delay spread of

the channel, OFDM can effectively avoid the ISI with high
spectral efficiency and reasonable complexity. However, the
time-selective nature of the channel due to the Doppler shift
also results in the loss of orthogonality among subcarriers,
causing a considerable interchannel interference (ICI) [3].

When the time selectiveness of the channel becomes se-
vere, that is, both amplitude and phase of the received signal
vary fast, the reliable estimation of the channel state infor-
mation (CSI) becomes challenging. In such cases, the differ-
ential detection (DD) in combination with OFDM may lead
to a simple receiver structure, eliminating the need for com-
plex channel estimation. In general, however, the DD suffers
from a performance penalty, compared to coherent detec-
tion with perfect CSI over an additive white Gaussian noise
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(AWGN) channel. In order to reduce this gap between the co-
herent detection and conventional DD, the multiple-symbol
differential detection (MSDD) has been introduced for M-
ary phase-shift keying (MPSK) signals over the AWGN chan-
nel in [4]. Making a joint decision on a block of NM consec-
utive information symbols based on NM + 1 received sam-
ples as opposed to conventional symbol-by-symbol detec-
tion, MSDD can asymptotically achieve the performance of
the coherent detector. Since the conventional DD or MSDD
relies on the time-invariant nature of the channel impulse
response over adjacent symbols, its performance will be con-
siderably degraded when the channel is time selective, which
results in an irreducible error floor. To cope with this time
variance, MSDD has been modified in [5, 6]. Its decision
metric utilizes the covariance matrix conditioned on the
transmitted information symbol sequence.

For OFDM, the DD can be applied over time domain,
frequency domain, or both. Because of the long symbol du-
ration, the performance of the time-domain DD (TD-DD)
may be mostly affected by the time-selective fading. On the
other hand, the performance of the frequency-domain DD
(FD-DD) may also depend on the frequency-selectiveness of
the channel associated with delay spread [7, 8]. In [8, 9, 10],
the bit error rate (BER) performance of TD-DD and FD-DD
has been theoretically analyzed over time- and frequency-
selective Rayleigh fading channels, including the effects of the
ISI caused by the delay spread longer than the guard time.
In [11], the performance of MSDD with coded modulation
has been studied in terms of channel capacity over quasistatic
Rayleigh fading channels with OFDM scenario and ideal in-
terleaving.

In this paper, the performance of MSDD combined
with OFDM is analyzed over time- and frequency-selective
Rayleigh fading channels. Assuming the guard time is longer
than the delay spread, we derive the optimal decision met-
rics. Furthermore, we study the theoretical BER performance
of the MSDD for OFDM by extending the result of [6]. Our
approach is based on the truncated union bound, which
counts only dominant terms of the pairwise error proba-
bility (PEP) in the union bound. Based on these analyti-
cal results, we compare TD-MSDD and FD-MSDD in terms
of irreducible BER behavior for high signal-to-noise ratio
(SNR).

The paper is organized as follows. After the description
of the system model considered throughout the paper in
Section 2, we describe the proposed metrics of TD-MSDD
and FD-MSDD in Section 3. The bit error probability based
on these metrics is studied in Section 4. Section 5 is devoted
to a comparative study on the theoretical and simulation re-
sults of the MSDD with the various decision metrics devel-
oped in the paper. Finally, concluding remarks are given in
Section 6.

2. SYSTEMMODEL

2.1. OFDMwith differential encoding

The discrete-time baseband equivalent model of the sys-
tem under consideration is described in Figure 1. Informa-

MDPSK
modulation
in TD or FD

Ns-point
IFFT

Add
guard interval

Time- and frequency-
selective channel

+White Gaussian
noise

Remove
guard interval

Ns-point
FFT

Multiple-symbol
differential detector

in TD or FD

Figure 1: The discrete-time baseband equivalent model of OFDM
with MSDD.

tion bits are Gray mapped onto MPSK and let ci(n) =
exp( jθi(n)), where θi(n) ∈ {(2πm)/M, m = 0, 1, . . . ,M −
1}, denote the information symbol prior to the differential
encoding, which will be assigned on the nth subcarrier of the
ith OFDM symbol with Ns subcarriers. Information symbols
are assumed to be independent and identically distributed
(i.i.d.). For TD-(MS)DD, information symbols are differ-
entially encoded over the consecutive OFDM symbols with
the same subcarrier index n. For FD-(MS)DD, on the other
hand, information symbols are differentially encoded over
the adjacent subcarriers within the same OFDM symbol in-
dex i. The differentially encoded symbol si(n) in each domain
can be thus expressed as

si(n) =


ci(n)si−1(n), in TD,

ci(n)si(n− 1), in FD,
(1)

where si(n) ∈ {exp( j2πm/M), m = 0, 1, . . . ,M − 1}. The
symbol transmitted on the nth subcarrier of the ith OFDM
symbol is given by

ai(n) =
√
Essi(n), n = 0, 1, . . . ,Ns − 1, (2)

where Es denotes the signal energy per subcarrier symbol.
The complex sequence ai(n), n = 0, 1, . . . ,Ns−1, is mod-

ulated by the Ns-point inverse discrete Fourier transform
(IDFT) to yield Ns time-domain samples corresponding to
the ith OFDM symbol. Let Ts denote the Nyquist interval be-
tween the output samples. Thus, the OFDM symbol length
without guard interval is given byNsTs. After the insertion of
the guard interval, the transmitted baseband sequence of the
ith OFDM symbol can be expressed as

x
g
i (k) =

1√
Ns

Ns−1∑
n=0

ai(n)e j(2πnk/Ns) for −G ≤ k ≤ Ns−1, (3)

where the initial G samples of x
g
i (k), k = −G,−G+1, . . . ,−1,

constitute the guard interval. Assuming that x
g
i (k) is zero for

k < −G and k ≥ Ns, the total transmitted baseband sequence
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is written as

x(k) =
∞∑

i=−∞
x
g
i

(
k − i

(
Ns +G

))
. (4)

2.2. Channel model and received baseband sequence

We assume that the channel is subject to a wide-sense station-
ary uncorrelated scattering (WSSUS) Rayleigh fading [12]
and is modeled as a time-variant tapped delay line with fixed
tap spacing Ts, each tap having Jakes power spectrum [13].
Provided that the maximum delay of the channel impulse re-
sponse Tm does not exceedMpTs for some integerMp, the re-
ceived baseband sequence assuming perfect synchronization
can be expressed as

r(k) =
∞∑

i=−∞

Mp−1∑
m=0

hm(k)x
g
i

(
k −m− i

(
Ns +G

))
+ n(k), (5)

where n(k) is the sample of an AWGN process. Then, the ith
received OFDM symbol can be given by ri(k) = r(i(Ns+G)+
k) for −G ≤ k ≤ Ns − 1. Assuming that Tm does not exceed
GTs, the ri(k) after eliminating the initial G guard samples
can be expressed as

ri(k) =
Mp−1∑
m=0

hm,i(k)x
g
i (k −m) + ni(k) for 0 ≤ k ≤ Ns − 1,

(6)
where hm,i(k) = hm(i(Ns+G)+k). The demodulator performs
DFT on {ri(k), 0 ≤ k ≤ Ns − 1}, producing the output [14]

Ri(l) = 1
Ns


 Ns−1∑

k=0

Mp−1∑
m=0

hm,i(k)e− j(2πlm/Ns)


ai(l)

+
1
Ns

∑
n�=l

ai(n)
Ns−1∑
k=0

Mp−1∑
m=0

hm,i(k)e− j(2πnm/Ns)e j(2πk(n−l)/Ns)

+
1√
Ns

Ns−1∑
k=0

ni(k)e− j(2πkl/Ns)

= Hi(l)ai(l) + Ci(l) +Wi(l), for 0 ≤ l ≤ Ns − 1.
(7)

Here, Ri(l) denotes the received symbol on the lth subcarrier
of the ith OFDM symbol. In (7), Hi(l), Ci(l), and Wi(l) are
the multiplicative distortion, the ICI, and the AWGN, respec-
tively, on the lth subcarrier of the ith OFDM symbol. Based
on Ri(l), a multiple-symbol differential detector in each do-
main makes a decision on the estimated information sym-
bols, which is described in the next section.

3. OPTIMAL AND SUBOPTIMALMETRICS

3.1. Multiple-symbol differential detection

Following the basis on the MSDD system in [4, 5, 6], we
rewrite the transmitted complex sequence in (2) as

ai+d(l) =
√
Essi(l)zd,i(l), in TD,

ai(l + d) =
√
Essi(l)zd,i(l), in FD,

(8)

where

zd,i(l) =



1, for d = 0,
d∏
j=1

ci+ j(l), for 1 ≤ d ≤ NM ,
in TD,

zd,i(l) =



1, for d = 0,
d∏
j=1

ci(l + j), for 1 ≤ d ≤ NM ,
in FD,

(9)

and NM denotes the observation interval of the information
symbols. Note that with this definition of NM , the conven-
tional DD corresponds to the case with NM = 1. Also, appar-
ently, we have zd,i(l) ∈ {exp( j2πm/M), m = 0, 1, . . . ,M−1}.

The received symbols in (7) are divided into a detection
block that consists of (NM + 1) symbols as

Ri(l) =


(
Ri(l),Ri+1(l), . . . ,Ri+NM (l)

)t
, in TD,(

Ri(l),Ri(l + 1), . . . ,Ri
(
l +NM

))t
, in FD,

(10)

where, throughout the paper, the notations (·)t and (·)†
are used to denote the transpose and the Hermitian trans-
pose, respectively. The column vector Ri(l) is input to a
multiple-symbol differential detector implemented based
on maximum-likelihood sequence estimation (MLSE). The
MLSE detects the most likely estimated information symbol
sequence

ĉi(l) =


(
ĉi+1(l), . . . , ĉi+NM (l)

)
, in TD,(

ĉi(l + 1), . . . , ĉi
(
l +NM

))
, in FD,

(11)

from allMNM possibleNM-length sequences. As shown in [6],
this is accomplished by selecting the sequence ĉi(l) of which
the metric

M
(
ĉi(l)

) = Ri(l)†Φ̂
−1
Ri(l)Ri(l) (12)

is the smallest, where Φ̂Ri(l) is a covariance matrix of Ri(l)
conditioned on ĉi(l). It should be noted that the complexity
of MSDD increases exponentially with MNM . In the follow-
ing, we derive the covariance matrix for each case.

3.2. Covariancematrix in time-domainMSDD

The covariance of Ri(l) in (7) can be written as

E
[
Ri(l)R∗i+α(l)

] = E
[
ai(l)Hi(l)H∗

i+α(l)a
∗
i+α(l)

+ ai(l)Hi(l)C∗i+α(l) + a∗i+α(l)H
∗
i+α(l)Ci(l)

+ Ci(l)C∗i+α(l) +Wi(l)W∗
i+α(l)

]
,

(13)

where the notation E[·] and ·∗ are used to denote the expec-
tation and complex conjugate, respectively. For uncorrelated
and isotropic scattering, the correlation of the tap coefficients
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is expressed, by definition, as

E
[
hm,i(k)h∗m′,i+α(k

′)
]

= σ2mJ0
(
2π fDTs

(
k − k′ − α

(
Ns +G

)))
δm,m′ ,

(14)

where σ2m is the average power of the mth channel tap, J0(·)
is the zeroth-order Bessel function of the first kind, fD is
the maximumDoppler frequency, and δm,m′ is the Kronecker
delta function. By normalizing the average power of each

path such that
∑Mp−1

m=0 σ2m = 1, the correlation of the multi-
plicative distortion is expressed as

φt(α) ≡ E
[
Hi(l)H∗

i+α(l)
]

= 1
N2

s

Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs

(
k − k′ − α

(
Ns +G

)))
.
(15)

Due to the assumption of the statistical independence of
the information symbols, we have E

[
ai(l)a∗i′ (l′)

] = Esδi,i′δl,l′ ,
which yields

E
[
ai(l)Hi(l)C∗i+α(l)

] = E
[
a∗i+α(l)H

∗
i+α(l)Ci(l)

] = 0. (16)

As shown in [3], for sufficiently largeNs, the central limit
theorem can be invoked and the ICI can be modeled as a
complex Gaussian random process with zero mean. Then the
correlation of the ICI can be obtained as

E
[
Ci(l)C∗i+α(l)

]

=
(
Es − Es

N2
s

(
Ns + 2

Ns−1∑
k=1

(
Ns − k

)
J0
(
2π fDTsk

)))
δ0,α

≡ σ2ICIδ0,α,
(17)

where σ2ICI is the variance of the ICI.
The correlation of the AWGN is given by

E
[
Ni(l)N∗

i+α(l)
] = N0δ0,α, (18)

where N0 is the one-sided power spectral density of the
AWGN process.

Recognizing that the covariance matrix of arbitrary Ri(l)
denoted by ΦRi(l) is irrelevant to the index l, and using (13),
(14), (15), (16), (17), and (18), one can easily show that

ΦRi = AiΦtA
†
i +

(
N0 + σ2ICI

)
I, (19)

where Ai = diag(ai, ai+1, . . . , ai+NM ) is a diagonal matrix, Φt

is the covariance matrix of the multiplicative distortion of
which the (β, γ)th element can be expressed as φt(γ − β) de-
fined in (15), and I is the identity matrix of sizeNM +1. With

AiA
†
i = EsI and (8), (19) can be rewritten as

ΦRi = Zi
(
EsΦt +

(
N0 + σ2ICI

)
I
)
Z†i , (20)

where Zi = diag(1, z1,i, . . . , zNM ,i). Then, since Zi is a unitary
matrix, it follows that

Φ−1
Ri
= Zi

(
EsΦt +

(
N0 + σ2ICI

)
I
)−1

Z†i . (21)

Therefore, Φ̂
−1
Ri

can be obtained by substituting estimated se-
quence Ẑi = diag(1, ẑ1,i, . . . , ẑNM ,i) for Zi in (21). When the
channel is stationary such that all the variables Es, N0, Φt ,

and σICI remain constant, Φ̂
−1
Ri

need not be calculated each
time.

3.3. Covariancematrix in frequency-domainMSDD

Likewise, for FD-MSDD, by noticing that the correlation of
interest is irrelevant to the OFDM symbol index i, the covari-
ance of R(l) in (7) can be expressed as

E
[
R(l)R∗(l + α)

]
= E

[
a(l)H(l)H∗(l + α)a∗(l + α)

+ a(l)H(l)C∗(l + α)

+ a∗(l + α)H∗(l + α)C(l)

+ C(l)C∗(l + α) +W(l)W∗(l + α)
]
.

(22)

Given the transmitted symbols a(l), (22) can be decomposed
as

E
[
R(l)R∗(l + α)

]
= a(l)E

[
H(l)H∗(l + α)

]
a∗(l + α)

+ E
[
a(l)H(l)C∗(l + α)

]
+ E
[
a∗(l + α)H∗(l + α)C(l)

]
+ E
[
C(l)C∗(l + α)

]
+ E
[
W(l)W∗(l + α)

]
.

(23)

The first term in (23) requires the correlation of the multi-
plicative distortion, which is given by

φf (α) ≡ E
[
H(l)H∗(l+α)

]

= 1
N2

s

(
Ns+2

Ns−1∑
k=1

(
Ns−k

)
J0
(
2π fDTsk

))Mp−1∑
m=0

σ2me
j(2παm/Ns)

=
(
1− σ2ICI

Es

)Mp−1∑
m=0

σ2me
j(2παm/Ns).

(24)

Due to the wide-sense stationarity of the fading process, the
covariance matrix of H(l) can be given by Φ f in which the
(β, γ)th element has φf (γ − β) of (24).
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The second term in (23) requires the calculation of the
following term:

κl(β, γ)

≡ E
[
a(l + β)H(l + β)C∗(l + γ)

]

= 1
N2

s
a(l + β)

l+NM∑
n=l,n�=l+γ

a∗(n)
Mp−1∑
m=0

σ2me
j(2π(n−(l+β))m/Ns)

·
Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs(k − k′)

)
e− j(2πk′(n−(l+γ))/Ns)

= Es
N2

s
zβ(l)

l+NM∑
n=l,n�=l+γ

z∗n−l(l)
Mp−1∑
m=0

σ2me
j(2π(n−(l+β))m/Ns)

·
Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs(k − k′)

)
e− j(2πk′(n−(l+γ))/Ns),

(25)

where we have applied (8). Using the Taylor series expansion
of the Bessel function J0(2πx) ≈ 1 − (πx)2, which becomes
valid for |x| 
 1 [15], κl(β, γ) in (25) can be approximated
as

κl(β, γ)

≈ Es
(
π fDTs

)2
Ns

zβ(l)

·
l+NM∑

n=l,n�=l+γ
z∗n−l(l)

Mp−1∑
m=0

σ2me
j(2π(n−(l+β))m/Ns)p

(
n−(l+γ)),

(26)

where

p(α) =
Ns−1∑
k′=0

((
Ns − 1

)
k′ − k′2

)
e− j(2πk′α/Ns). (27)

Likewise, the third term in (23) requires the following:

ξl(β, γ)

≡ E
[
a∗(l + γ)H∗(l + γ)C(l + β)

]

= Es
N2

s
z∗γ (l)

l+NM∑
n=l,n�=l+β

zn−l(l)
Mp−1∑
m=0

σ2me
− j(2π(n−(l+γ))m/Ns)

·
Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs(k′ − k)

)
e− j(2πk′(−n+l+β)/Ns)

≈ Es
(
π fDTs

)2
Ns

z∗γ (l)

·
l+NM∑

n=l,n�=l+β
zn−l(l)

Mp−1∑
m=0

σ2me
− j(2π(n−(l+γ))m/Ns)p(−n + l+β).

(28)

The fourth term in (23) corresponds to the ICI, which is

given by

φC,l(β, γ)

≡ E
[
C(l + β)C∗(l + γ)

]

= Es
N2

s

Ns−1∑
n=0,n�=l,...,l+NM

Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs(k − k′)

)

· e j(2πk(n−(l+β))/Ns)e− j(2πk′(n−(l+γ))/Ns)

+
Es
N2

s

l+NM∑
n=l,n�=l+β

zn−l(l)
l+NM∑

n′=l,n′ �=l+γ
z∗n′−l(l)

·
Mp−1∑
m=0

σ2me
j(2π(n′−n)m/Ns)

·
Ns−1∑
k=0

Ns−1∑
k′=0

J0
(
2π fDTs(k − k′)

)

· e j(2πk(n−(l+β))/Ns)e j(2πk
′(−n′+(l+γ))/Ns)

≈ 2Es
(
π fDTs

)2
N2

s




Ns−1∑
n=0,n�=l,...,l+NM

q
(
n−(l+β))q(− n+(l + γ)

)

+
l+NM∑

n=l,n�=l+β
zn−l(l)

·
l+NM∑

n′=l,n′ �=l+γ
z∗n′−l(l)

Mp−1∑
m=0

σ2me
j(2π(n′−n)m/Ns)

· q(n− (l + β)
)
q
(− n′ + (l + γ)

),
(29)

where

q(α) =
Ns−1∑
k=0

ke j(2πkα/Ns). (30)

Finally, for the AWGN term, we have

E
[
W(l)W∗(l + α)

] = N0δ0,α. (31)

In the following, the notations Kl, Ξl, and ΦC,l repre-
sent the matrices with the (β, γ)th element given by κl(β, γ),
ξl(β, γ), and φC,l(β, γ), respectively. Then, using (23), (24),
(25), (26), (27), (28), (29), (30), and (31), it can be shown
that

ΦR(l) = Z(l)
(
EsΦ f +N0I

)
Z†(l) +Kl + Ξl +ΦC,l . (32)

The exact calculation of (32) requires the knowledge of both
delay profile and fD. Furthermore, it requires higher compu-
tational complexity resulting from (25), (26), (27), (28), and

(29) and calculations of inverse matrices Φ̂
−1
R(l) over all Ẑ(l).

To obviate the computation of these unwieldy terms, we also
introduce the following suboptimal alternative:

Φ̂R(l) = Ẑ(l)
(
EsΦ f +

(
N0 + σ2ICI

)
I
)
Ẑ†(l). (33)
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This approximate covariance matrix can be obtained by sim-
ply substituting the covariance matrix of the multiplicative
distortion Φ f in FD for Φt in (20). Since this approximate
covariance matrix has an analogous aspect to the covari-
ance matrix in TD, the required computation can be signif-
icantly reduced. The price for this simplification is its per-
formance degradation caused by the time selectiveness of
the channel, compared to FD-MSDD with the exact covari-
ance matrix. Note that without ICI, the matrices (32) and
(33) become identical. The BER performance of this subop-
timal FD-MSDD is examined over both time- and frequency-
selective Rayleigh fading channels in Section 5.

4. BIT ERROR PROBABILITY ANALYSIS

4.1. Pairwise error probability

The PEP of MSDD for OFDM can be derived simply by sub-
stituting the covariance matrix derived in Section 3 for that
of PEP given in [6]. It can be shown that

P
(
ci(l) −→ ĉi(l)

) = Prob(D ≤ 0)

= −
∑

Residue
[
ΦD(s)

s

]
RPpoles

,
(34)

where

D =M
(
ĉi(l)

)−M
(
ci(l)

)
= R†i (l)

(
Φ̂
−1
Ri(l) −Φ−1

Ri(l)

)
Ri(l),

(35)

ΦD(s) is the characteristic function of D, and the summation
is taken over all the residues calculated at the poles ofΦD(s)/s
located on the right-hand plane. Following [6], onemay have

ΦD(s) =
NM+1∏
k=1

1
2λks + 1

, (36)

where λk is the kth eigenvalue of the matrix

G = ΦRi(l)
(
Φ̂
−1
Ri(l) −Φ−1

Ri(l)

)
. (37)

This expression is the exact PEP of TD-MSDD and FD-
MSDD. The PEP of the suboptimal FD-MSDD can be ob-
tained simply by replacing the covariance matrix Φ̂Ri(l) in
(37) with the corresponding covariance matrix in (33). The
covariance matrix ΦRi(l) in (37) remains unchanged and it
corresponds to the exact covariance matrix associated with
the actual received symbols.

4.2. Approximate BER

The information symbol sequence ci(l) has NM log2M infor-
mation bits denoted by ui(l). Let ûi(l) also denote estimated
information bits associated with ĉi(l). The pairwise BER as-
sociated with transmitting a sequence ci(l) and detecting an
erroneous sequence ĉi(l) is given by

Pb
(
ci(l) −→ ĉi(l)

)
= 1

NM log2M
h
(
ui(l), ûi(l)

)
P
(
ci(l) −→ ĉi(l)

)
,

(38)

where h(ui(l), ûi(l)) denotes the Hamming distance between
ui(l) and ûi(l).

An upper bound on the BER can be obtained by the
union of all pairwise error events. The BER of TD-MSDD
is independent of the OFDM symbol index i, the subcarrier
index l, and information symbol sequence c in terms of the-
oretical BER associated with the corresponding covariance
matrix (20). As a result, c can be assumed as the all-zero-
phase sequence, that is, c = (1, . . . , 1). The union bound on
the BER of TD-MSDD can then be written as

Pb ≤
∑
ĉ �=c

Pb(c −→ ĉ)

= 1
NM log2M

∑
ĉ�=c

h(u, û)P(c −→ ĉ),
(39)

where the summation is taken over all the distinct sequences
ĉ which differ from the transmitted information symbol se-
quence c. On the other hand, the BER of both the optimal
and suboptimal FD-MSDD is dependent on the transmitted
sequence c. Since it is independent of the subcarrier index l,
l can be assumed to be 0. It must be averaged over all the se-
quences c. The union bound on the BER of FD-MSDD can
then be obtained as

Pb ≤ 1
MNM

∑
c

∑
ĉ�=c

Pb(c −→ ĉ)

= 1
MNMNM log2M

∑
c

∑
ĉ�=c

h(u, û)P(c −→ ĉ).
(40)

Direct application of (39) and (40), however, does not
yield a tight bound of the bit error performance for TD-
MSDD and FD-MSDD over time- and frequency-selective
Rayleigh fading channels. As shown in [6] for single-carrier
transmission over the time-selective channel, the BER can be
approximated by the summation of the PEP over the set of
most likely error events. These most likely error events are
determined by the set {ẑ1, . . . , ẑNM} which has the highest
correlation with the set {z1, . . . , zNM}, where the correlation
is defined as µ = |1 +∑NM

k=1 zkẑk|2. There are only a total of 2
for NM = 1 and 2NM + 2 for NM ≥ 2 such events over each
set {z1, . . . , zNM}. Since the difference of PEP between TD-
MSDD and MSDD for single-carrier transmission is only an
additive ICI, the BER of TD-MSDD can be approximated by
the same method. In the case of FD-MSDD, when the effects
of the ICI are relatively small, the covariance matrix of FD-
MSDD is similar to that of TD-MSDD. Hence, we conjec-
ture that the BER of FD-MSDD can be also approximated by
the same method. Consequently, by defining the set of these
most likely error events as χ, the approximate BER can be
expressed as

Pb ≈ 1
NM log2M

∑
ĉ �=c, ĉ∈χ

h(u, û)P(c −→ ĉ),

for TD-MSDD,

Pb ≈ 1
MNMNM log2M

∑
c

∑
ĉ �=c, ĉ∈χ

h(u, û)P(c −→ ĉ),

for FD-MSDD.

(41)
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Figure 2: BER performance of TD-MSDD with QDPSK over the
time- and frequency-selective Rayleigh fading channel with fD =
0.01, Tm ≤ 7/64, RG = 7/64. NM = 1 corresponds to conventional
DD.

It is shown in [8] that for TD-DD and FD-DD (i.e., NM = 1)
with QDPSK, inphase and quadrature components of the re-
ceived sequence are statistically independent. Thus, in the
case of TD-DD and FD-DD with QDPSK, most likely er-
ror events are statistically independent, and thus the BER ob-
tained by the above method results in a closed-form expres-
sion.

5. NUMERICAL RESULTS

Numerical results presented in this section include Monte
Carlo simulation results and theoretical results based on the
approximate BER in (41). These results are investigated over
a two-ray equal-power profile. As a generalization of MSDD
to OFDM, we normalize the Doppler frequency and delay
spread by the OFDM symbol period, defined as fD = fDNsTs

and Tm =MpTs/(NsTs) =Mp/Ns, respectively. For this chan-
nel, the average power of the mth channel tap can be ex-
pressed as

σ2m =


1
2
, form = 0,Mp,

0, form �= 0,Mp.
(42)

5.1. Verification of analysis

Theoretical and simulation results for the BER performance
of TD-MSDD with QDPSK over the time- and frequency-
selective channel with fD = 0.01, Tm ≤ 7/64, guard inter-
val ratio RG = 7/64 (defined as RG = G/Ns), are shown in

Conventional DD (NM = 1)
Optimal FD-MSDD
Suboptimal FD-MSDD
Conventional DD (NM = 1, simulation)
Optimal FD-MSDD (NM = 4, simulation)
Suboptimal FD-MSDD (NM = 4, simulation)
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Figure 3: BER performance of FD-MSDD with QDPSK over the
time- and frequency-selective Rayleigh fading channel with fD =
0.01, Tm = 2/64, Ns = 64, G ≥ 2.

Figure 2. Note that the OFDM system with Ns = 64, a carrier
frequency of 5GHz, a bandwidth of 1MHz, and amobile sta-
tion velocity of 34 km/h may result in fD ≈ 0.01. In this case,
since the ISI does not occur, these results are independent
of the specific value of Tm(≤ 7/64). Although RG is relevant
to the correlation of the multiplicative distortion, its effect is
relatively small without ISI. It is observed from Figure 2 that
forNM = 4, the simulation results show close agreement with
the theoretical results at high SNR (above 25 dB). At lower
SNR, however, the approximation appears to be slightly pes-
simistic, due to the asymptotic tightness nature of the union
bound. The performance degradation of TD-DD is notice-
able over the time-selective channel. This is caused by both
decrease in the intersymbol correlation of the multiplicative
distortion and the irreducible ICI associated with the OFDM
transmission. Even though increasingNM in TD-MSDDmay
alleviate performance degradation due to decrease in the in-
tersymbol correlation, it is not capable of reducing the effect
of the ICI. Thus, the error floor appears for TD-MSDD even
with large NM .

Figure 3 compares theoretical and simulation results for
the BER performance of FD-MSDD with QDPSK over the
time- and frequency-selective channel with fD = 0.01, Tm =
2/64, Ns = 64, G ≥ 2. Note that the result is irrelevant
to the value of Ns. Similar to the case of TD-MSDD, good
agreement between the simulation and theoretical results is
observed at high SNR (above 20 dB). Even though the per-
formance degradation is noticeable for FD-DD, increasing
NM may improve the bit error performance of both the opti-
mal and suboptimal FD-MSDD. Furthermore, the significant
benefit of the optimal FD-MSDD over the suboptimal FD-
MSDD is apparent. This stems from the fact that the optimal
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Figure 4: BER performance of FD-MSDD with QDPSK over the
time-nonselective (i.e., fD = 0.0) frequency-selective Rayleigh fad-
ing channel with Tm = 2/64, G ≥Mp.

metric calculates the exact impact of ICI whereas the subop-
timal metric only utilizes the approximation.

5.2. Asymptotic performance of FD-MSDD

Figure 4 shows theoretical results for the BER performance
of FD-MSDD with QDPSK over the time-nonselective (i.e.,
fD = 0.0) frequency-selective channel with Tm = 2/64 and
G ≥ Mp. In this case, the behavior of optimal FD-MSDD
is equivalent to that of suboptimal FD-MSDD, since Kl, Ξl,
ΦC,l in (32) are all equal to zero matrices. It is observed
from Figure 4 that without ICI, the irreducible error floor
associated with a decrease in the inter-subcarrier correla-
tion of the multiplicative distortion for FD-DD can be effi-
ciently eliminated for FD-MSDD even with NM as small as
2. When NM = 10, the performance degradation from that
with frequency-nonselective channel is approximately 0.4 dB
at a BER of 10−6. Thus, in the limit as the observation in-
terval approaches infinity, the BER behavior of FD-MSDD
over frequency-selective channels without ICI approaches
that with the same observation interval over a static channel.

5.3. Comparison between TD-MSDD and FD-MSDD

Figure 5 shows theoretical results for the BER performance
of TD-DD and FD-DD with QDPSK employed in each di-
mension and RG = 7/64. For the sake of comparison of
the asymptotic bit error performance at error floor region,
Eb/N0 is fixed at 60 [dB]. Note that, given the system pa-
rameters by Ns = 64, 5GHz carrier frequency, and 1MHz
bandwidth, the range fD up to 0.05 corresponds to the mo-
bile station velocity up to approximately 170 km/h. It is ob-
served from Figure 5 that the performance degradation of
TD-DD is caused only by the time selectiveness and is ir-
relevant to the frequency selectiveness, as long as the ISI is
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Figure 5: BER performance of TD-DD and FD-DD with QDPSK
in each dimension, Eb/N0 = 60 (dB), RG = 7/64.
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Figure 6: BER performance of optimal FD-MSDD and subopti-
mal FD-MSDD with QDPSK in each dimension, Eb/N0 = 60 (dB),
NM = 2, Ns = 64, G = 7.

negligible. For FD-DD, the frequency selectiveness is the lim-
iting factor for the BER. These results suggest the importance
of appropriate selection of the DD technique matched to the
channel statistics.

Theoretical results for the BER performance of the op-
timal and suboptimal FD-MSDD with QDPSK in each di-
mension with Eb/N0 = 60 [dB], NM = 2, Ns = 64, G = 7 are
shown in Figure 6, where it is observed that for NM = 2, the
difference between the optimal and suboptimal FD-MSDD
is negligible. Thus, the optimal FD-MSDD with complicated
decision metric may not be necessarily rewarding in practice.
Unlike FD-DD, both the FD-MSDD approaches are robust
against the frequency selectiveness, and the ICI due to the
time selectiveness is the limiting factor.



1544 EURASIP Journal on Applied Signal Processing

TD-MSDD (NM = 2)
Optimal FD-MSDD (NM = 2)

0
0.01

0.02
0.03

0.04
0.05fD

0.1
0.08

0.06
0.04

0.02
0

Tm

10−6

10−5

10−4

10−3

10−2

B
E
R

Figure 7: BER performance of TD-MSDD and optimal FD-MSDD
with QDPSK in each dimension, Eb/N0 = 60 (dB), NM = 2, Ns =
64, G = 7.
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Figure 8: BER performance of TD-MSDD and optimal FD-MSDD
with QDPSK in each dimension, Eb/N0 = 60 (dB), NM = 4, Ns =
64, G = 7.

Theoretical results for the BER performance of TD-
MSDD and the optimal FD-MSDD with the same channel
and system parameters above are shown in Figure 7. It is ob-
served that for NM = 2, the behavior of FD-MSDD is analo-
gous to that of TD-MSDD, since both are able to mitigate the
performance degradation associated with the decrease in the
correlation of the multiplicative distortion. With NM = 2,
however, they do not alleviate the effect of ICI.

Figure 8 shows the performance of the system with the
same parameters as Figure 7 except now we set NM = 4. It is
observed that even though the optimal FD-MSDD requires
higher complexity, it outperforms TD-MSDD on almost all
channel statistics compared. This difference comes from the
fact that the optimal FD-MSDD can also mitigate the ICI.

Finally, theoretical results for the BER performance of
TD-MSDD and the suboptimal FD-MSDD with the same
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Figure 9: BER performance of TD-MSDD and suboptimal FD-
MSDD with QDPSK in each dimension, Eb/N0 = 60 (dB), NM = 4,
Ns = 64, G = 7.

conditions as Figure 8 are shown in Figure 9 , where it is
observed that the behavior of the suboptimal FD-MSDD is
analogous to that of TD-MSDD. Thus, forNM ≥ 2, the differ-
ence between the BER performance of TD-MSDD and that of
the suboptimal FD-MSDD may be negligible.

6. CONCLUSION

In this paper, we applied MSDD to OFDM over time- and
frequency-selective Rayleigh fading channels under the as-
sumption that the guard time is longer than the delay spread,
thus causing no effective ISI. Optimal decision metrics of
TD-MSDD and FD-MSDD have been derived based on the
exact covariance matrix conditioned on transmitted infor-
mation symbol sequence. The theoretical BER performance
of MSDD for OFDM has been analyzed, and based on these
analytical results, we have shown that when simple receiver
structure is preferable, both TD-MSDD and the suboptimal
FD-MSDD provide a good performance because of their
robustness against the time- and frequency-selective nature
of the channel. Thus, as opposed to need of careful selec-
tion between TD-DD and FD-DD according to the channel
statistics, the difference in BER performance between TD-
MSDD and the suboptimal FD-MSDD is negligible. Further-
more, it has been shown that if the enhancement of compu-
tational complexity at the receiver is acceptable, the optimal
FD-MSDD may be a very effective strategy due to its robust-
ness against the ICI over such channels.

In the limit as the observation interval approaches in-
finity, the BER performance of FD-MSDD over frequency-
varying channels without ICI may approach that with the
same observation interval over a static channel. However,
the high computational complexity is the main disadvan-
tage of MSDD, and it has been shown in [16, 17] that
decision-feedback differential detection (DF-DD) techniques
provide a good performance at a low computational com-
plexity. Since it has been shown that MSDD and DF-DD are
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equivalent and DF-DD can be derived fromMSDD by intro-
ducing decision-feedback symbols into the MSDD metrics,
the metrics proposed in this paper can be also applied to DF-
DD for OFDM for reduction of computational complexity.
Therefore, extension of the proposed metric to DF-DD with
OFDMmay be a topic for future study.
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