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Abstract

When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function
(AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost
tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to
unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Björck
constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in
their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the
context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that
this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on
an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements
resulting from the Björck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we
demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over
tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.

Introduction
When tracking multiple targets using radar sensors, weak
targets are often difficult to observe in the presence of
strong targets. This is because the ambiguity function
(AF) sidelobes of measurements from strong targets are
higher than the AFmainlobe of measurements originating
from weak targets. As a result, the joint tracking perfor-
mance of a multitarget tracker, expressed either in terms
of mean-squared error (MSE) or percentage of lost tracks,
is poor. The location and magnitude of the AF measure-
ment sidelobes in the delay-Doppler plane are directly
related to the location and magnitude of the AF sidelobes
of the transmitted waveform. The AF is in turn defined
by the type of transmitted signal and its parameters
[1-3]. Therefore, there is a need to design configurable
radar waveforms and develop an adaptive radar sensor
configuration technique to position sidelobes from strong
target returns away from the predicted locations of weak
targets.
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In [2,3], the processing of the return signal was per-
formed by partitioning the delay-Doppler plane into
resolution cells with fixed locations. These cells were con-
structed in such a way as to approximate a probability of
detection contour that depends on the signal type and its
parameters, which were assumed to be fixed. A detection
in a resolution cell was declared based on the thresholded
output of a matched filter placed on the centroid of the
cell. However, the shape of the probability of detection
contour is often not well approximated by a tessellating
shape, resulting in measurement errors. Instead of using a
fixed waveform, adaptive waveform techniques were used
to minimize either the tracking error or validation gate
volume in [4,5]. Moreover, in [6,7] waveform parameter
adaptation was used tominimize track loss in the presence
of clutter. In [8], the probability of track loss and a function
of estimation error covariance was minimized by select-
ing both waveform parameters and detection thresholds
for range and range rate tracking in clutter. In [9], the time
to detect new targets was minimized by posing the prob-
lem as a partially observed Markov decision problem. In
addition, in [10], the one step ahead expected information
from the target kinematic model was maximized using the
appropriate waveform selection.
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The methods mentioned above rely on linear obser-
vation models that do not accurately represent physical
systems with nonlinear characteristics. In [11,12], iter-
ative adaptive waveform techniques were developed for
nonlinear system models with a single target and using
frequency-modulated waveforms. These adaptive wave-
form techniques assume that the measurements are pro-
cessed using matched filters on a fixed grid.
In this study, we develop a tracker that selectively col-

lects measurements based on the predicted target state
(instead of a fixed grid for linear systems) to track a known
and fixed number of targets. We implement the tracker
using a new method that does not require the collection
of measurements exhaustively on a fixed grid in the AF
plane. The new independent partitions likelihood particle
filter (IP-LPF) tracker adaptively configures multicarrier
phase-coded (MCPC) waveforms [1] so that their AF side-
lobes can be positioned in such a way as to not mask weak
targets in the presence of strong targets. We also develop
an adaptive configuration strategy to select the MCPC
waveform parameters based on the relative positioning of
the targets in the delay-Doppler plane. In contrast to pre-
vious methods [11,12], the proposed adaptive waveform
selection method is not iterative; in contrast, waveform
parameters are directly selected based on the state infor-
mation on the weak target relative to the strong targets.
The new IP-LPF tracker uses a proposal distribution that
is based on the independent partitions algorithm [13,14]
and the likelihood particle filter [15]. The particle filtering
framework accommodates the propagation of resolution
cells to locations of interest in the delay-Doppler plane
based on prior information on the target state. It can also
use the exact shape of the probability of detection contour
as a resolution cell instead of the simplified tessellating
shape. With this approach, we do not need to exhaustively
collect measurements on all points of a fixed grid. Instead,
the matched filter is matched to locations that are likely,
given the belief about the target state; these locations are
represented by each of the particles of the particle filter.
We employ MCPC waveforms in our work as their AFs

can exhibit both wide regions with zero magnitude as well
as non-zero sidelobes that can appropriately be positioned
based on how the waveform parameter values are cho-
sen. In order to construct these MCPC waveforms, we use
multicarrier modulation and equal-length Björck constant
amplitude zero-autocorrelation code (CAZAC) sequences
[16-18] that are cyclic-shifted versions of one another.
A Björck CAZAC sequence provides higher-resolution
measurements than a linearly frequency-modulated chirp
[2,3] due to its highly concentrated AF. The high con-
centration in the AF plane results in improved tracking
performance as we demonstrated in [19] for the single
target case. For the multitarget case, measurements from
single-carrier phase-coded (SCPC) CAZAC sequences

exhibit sidelobes that are spread in the delay-Doppler
plane and could mask weak targets. Our proposed use
of configurable MCPC CAZACs, on the other hand, can
adaptively position the waveform sidelobes to not mask
weak targets.
We configure the MCPC CAZAC parameters at each

time step of the tracking scenario to minimize the pre-
dicted tracking error. The waveform parameters selected
are the cyclic shift in frequency used to generate the
waveform, the number of CAZAC sequences used, and
the length of the CAZAC sequences. We present a com-
putationally feasible method of selecting parameters to
position sidelobes that accounts for the predicted relative
positioning of the targets. Furthermore, our simulations
demonstrate that the minimization of the predicted track-
ing error, achieved by selecting the MCPC waveform
parameters, can be achieved by positioning the AF side-
lobes such that a weak target is not masked in the presence
of strong targets.
The rest of the article is organized as follows. In the

following section, we present the MCPC CAZAC wave-
forms and investigate the properties of their AFs. In
Section “IP-LPF algorithm”, we provide a detailed descrip-
tion of the IP-LPF algorithm and its application in mini-
mizing the predicted tracking error. In Section “Adaptive
waveform selection”, we integrate the IP-LPF with a wave-
form configuration algorithm and demonstrate its perfor-
mance in tracking multiple targets in Section “Simulation
results”.

MCPC CAZAC sequences
Björck CAZAC sequences
A CAZAC sequence ξ(m) with finite length M, has con-
stant magnitude, |ξ(m)| = 1, m = 0, . . . ,M − 1, and
zero-autocorrelation, (1/M)

∑M−1
m=0 ξ(n + m), ξ∗(m) = 0,

for n �= 0, where the addition is modulo M [17,20]. An
example of a CAZAC sequence with quadratic phase is
the Björck CAZAC sequence. For prime length M = 1,
mod 4, it is given by [16,17]

ξ(m) = ej2π arccos (1/(1+√
M)) [(m/M)] m = 0, . . . ,M − 1,

(1)

where m, modM (or m modulo M) is the remainder of
the division m/M, and [(m/M)] is the Legendre symbol
that is given by

[ (m/M)]=
⎧⎨
⎩
1, if m(M−1)/2 = 1 modM
−1, if m(M−1)/2 = −1 modM
1, if m = 0 modM

.

Björck CAZAC sequences are an attractive choice for
target tracking with radar [17] as their constant amplitude
allows for continuous transmission of peak power and can
thus lead to increases in signal-to-noise ratio (SNR). They
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also exhibit very tight localization in the delay-Doppler
plane that can enhance the range resolution and range-
rate resolution of the measurements. The discrete AF of a
Björck CAZAC sequence is given by [21]

AFξ (n, ν) = 1
M

M−1∑
m=0

ξ(m − n) ej2πm ν/M ξ∗(m), (2)

where n and ν are the discrete delay and Doppler parame-
ters, respectively. Specifically, the AF exhibits a large spike
at the origin (n, ν) = (0, 0) of the discrete delay-Doppler
plane, with very small sidelobes. An example of the AF of a
Björck CAZAC of lengthM = 1, 741 is shown in Figure 1.

MCPC Björck CAZAC sequences
As the AF of a Björck CAZAC sequence is very highly
localized, we want to exploit its properties to position AF
sidelobes for multiple target tracking. In particular, we use
the fact that a cyclic frequency-shifted CAZAC is also
a CAZAC [20] and also that a sum of cyclic frequency-
shifted sequences has an AF surface whose sidelobe loca-
tions depend on the difference in cyclic frequency shift,
number of sequences, and sequence length. Note that,
although cyclic permutations of CAZACs are possible in
both time and frequency, we restrict our attention to fre-
quency shifts as they result in wide zero regions in the AF
plane and can better facilitate the adaptive positioning of
the AF sidelobes.
The MCPC scheme combines multiple waveforms that

are modulated by orthogonal carriers; the carriers are sep-
arated in frequency using orthogonal frequency division

multiplexing [1]. The phase coding is required to reduce
the bandwidth of the CAZAC sequence so that it meets
transmission requirements. We use this scheme to form
the MCPC CAZAC waveform by combining Q cyclically
permuted Björck CAZAC sequences. Specifically, if we
cyclic frequency shift ξ(m) in (1) using the frequency
shift ζq (assumed mod M) to obtain the qth SCPC cyclic
frequency-shifted CAZAC waveform

ξq(m) = ξ(m) ej2π m ζq/M , q = 0, . . . ,Q − 1, (3)

then the MCPC CAZAC waveform, modulated with car-
rier frequency ζc, is given by

s�(m) =
Q−1∑
q=0

ξq(�m/Q�) e−j2π mq/Q ej2π m ζc/(QM), (4)

wherem = 0, . . . ,MQ−1, and �·� denotes rounding down
to the nearest integer. Note that we restrict ζq = q ζ (mod
M) in (3) as this selection of cyclic frequency shift causes
the positioning of the sidelobes of the AF to depend on
ζ , thus facilitating adaptive waveform configuration in our
proposed algorithm. Thus, � = (Q,M, ζ ) in (4) defines
the three parameters of the MCPC CAZAC waveform.
When processing the SCPC CAZAC waveform in (3)

using the AF in (2), the narrowband assumption is used
that states that the transmitted waveform does not expe-
rience any time scale changes due to target motion. This
assumption is valid since the time-bandwidth product of
the waveform can be shown to be much less than c/(2ṙ)
as the speed of propagation in the air c is large, where
ṙ is the target range rate ([22], p. 241). As we restrict

Figure 1 AF surface plot of a Björck CAZAC of lengthM = 1,741.
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the time-bandwidth product of an SCPC sequence and an
MCPC sequence to be the same, the narrowband assump-
tion also holds for MCPC CAZACs. Note also that we
double the number of possible AFs by taking the Fourier
transform (FT) of each of the MCPC CAZAC waveforms
that we construct. The AF of the transformed wave-
form is equal to the AF of the original waveform with
the delay and Doppler variables interchanged. This offers
a convenient method of producing additional sidelobe
positioning options with little effort.

AF surface of MCPC CAZAC waveforms
The AF surface of the unmodulatedMCPC CAZACwave-
form in (4) is given by As�(n, ν) = |AFs�(n, ν)|2. Using
(2), (3), and (4), the AF is given by

AFs�(n, ν) = 1
Es

MQ−1∑
m=0

s�(m − n) ej2π m ν/(MQ) s∗�(m)

= 1
Es

MQ−1∑
m=0

ξ(�(m−n)/Q�) ej2π m ν/(MQ) ξ∗(�m/Q�)

·
Q−1∑
q=0

ej2π (�(m−n)/Q�) q ζ/M e−j2π q (m−n)/Q

Q−1∑
q̃=0

e−j2π (�m/Q�) q̃ ζ/M ej2π q̃ m/Q (5)

where Es = (1/MQ)
∑MQ−1

m=0 s�(m) s∗�(m) is the energy of
s�(m) that is normalized to have the same energy as ξ(m).
Next, we consider two separate cases of cyclic frequency
shifts: ζ = 0 and ζ > 0.

Zero cyclic frequency-shift
When ζ = 0, two of the exponential terms in
(5) cancel out. We can also simplify the summations∑Q−1

q̃=0 ej2π q̃ m/Q = Q δ(m − m̃Q) and
∑Q−1

q=0 ej2πq n/Q =
Q δ(n − ñQ) where m̃ and ñ are integers (see [23] for
the derivation details). The resulting AF of the MCPC
CAZAC with � = (Q,M, 0) becomes

AFs�(ñQ, ν) = 1
Es

Q2
M−1∑
m̃=0

ξ(m̃ − ñ) ej2πm̃ν/M ξ∗(m̃). (6)

We can see that the AF in (6) is non-zero only if n = ñQ
is a multiple ofQ, thus resulting in zero AF surface regions
of width Q. Although these regions can be used to reveal
weak targets at selected areas in the AF plane, we also
need to reduce the sidelobes near the origin of the AF.
The area in the delay-Doppler measurement plane near
the AF origin is the area that is most commonly interro-
gated by the IP-LPF tracker when accurately tracking a
target, as we will see in Section “IP-LPF algorithm”. Since
we already have zero AF surface regions in the interval
n = 1, . . . ,Q − 1, we need to investigate the shape of the

AF surface along theDoppler axis ν at n = 0. Setting ñ = 0
in (6), we obtain the AF surface as

As�(0, ν) =
∣∣∣∣∣ 1Es Q2

M−1∑
m=0

ξ(m) ej2πmν/M ξ∗(m)

∣∣∣∣∣
2

.

Since |ξ(m)| = 1 for allm, we conclude that the AF sur-
face is non-zero only when ν is an integer multiple of M.
Therefore, the location of the sidelobes when n = 0 can
also be chosen by adjusting the value of M. An example
of this is shown in Figure 2 that depicts the AF surface of
an MCPC CAZAC waveform with � = (130, 13, 0); all
non-zero sidelobes exist when n is an integer multiple of
Q = 130.

Positive cyclic frequency-shift
When ζ > 0, we obtain higher diversity in the loca-
tions of the AF sidelobes. Specifically, when ζ �= 0 in
(5), we observe that the terms ej2π(�(m−n)/Q)�)q ζ/M and
e−j2π(�m/Q�)q̃ ζ/M repeat multiple times in the summation
in Equation (5). This is due to the summation of these

Figure 2 AF surface of an MCPC Björck CAZAC with parameters:
(a)� = (Q,M, ζ ) = (130,13,0) and (b)� = (130,13,1).
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terms over q = 1, . . . ,Q−1 and the moduloM/ζ effect of
the two exponential functions which is due to M/ζ < Q.
Therefore, we can factor the repeating terms and rewrite
(5) as

AFs�(n, ν) = 1
Es

MQ−1∑
m=0

ξ(�(m − n)/Q�)ej2πmν/(QM)ξ∗(�m/Q)�)

β−1∑
α=0

ej2π(�(m−n)/Q�)ζα/M

·
�Q/β�−1∑

q=0
e−j2π(βq+α)(m−n)/Q

β−1∑
α̃=0

e−j2π(�m/Q�)ζ α̃/M

�Q/β�−1∑
q̃=0

ej2π(βq̃+α̃)m/Q. (7)

Note that q and q̃ now vary from 0 to �Q/β� − 1. We
choose Q, M and ζ such that β = �(M − 1)/ζ� + 1 is
approximately a multiple of Q for most choices of ζ =
1, . . . ,M − 1. This eliminates the summation terms for q
and q̃ that fall between the values of (β(�Q/β� − 1) +
β − 1) and Q − 1. These terms were omitted in (7), which
explains the use of the approximation symbol, as they only
cause a negligible variation of sidelobes in the AF surface
compared to the exact expression. The accuracy of the
above approximation can be verified using a numerical-
based analysis, i.e., the generation of the AF surface using
the Matlab code used in this work which is available to
the reader upon request. The summation with respect
to q̃ can be simplified using

∑�Q/β�−1
q̃=0 ej2π q̃m/(Q/β) =

(Q/β) δ(m − m̃(Q/β)), where m̃ = 0, . . . , (βM − (β/Q))

is an integer. We then let m = m̂Q + m̌(Q/β), where
m̂ = 0, . . . ,M − 1 and m̌ = 0, . . . ,β − 1. Also,∑�Q/β�−1

q=0 ej2πqn/(Q/β) = (Q/β) δ(n − ñ(Q/β)), where ñ is
an integer. We let n = n̂Q+ ň(Q/β) with n̂ an integer and
ň = 0, . . . ,β − 1. This simplifies Equation (7) to

AFs�(n, ν) = 1
Es

Q2

β2

M−1∑
m̂=0

β−1∑
m̌=0

ξ(m̂ − n̂

+�(m̌ − ň)/β�) ej2π(m̂β+m̌)ν/(βM) ξ∗(m̂)

·
β−1∑
α=0

ej2π(m̂−n̂+�(m̌−ň)/β�)ζα)/M e−j2π(m̌−ň)α/β

β−1∑
α̃=0

e−j2πm̂ζ α̃/M ej2πm̌α̃/β . (8)

This expression shows that non-zero values of the AF
exist for n̂ integer and ň = 0, . . . ,β − 1, i.e., n = ñQ/β for
integer ñ. This provides for controlled size valleys in the
AF surface.
We also examine what happens along the Doppler axis

ν at zero delay and ζ > 0. If we set n = 0 or n̂ = ň = 0
in (8), then the term ej2π(m̂β+m̌)ν/(βM) reveals that the AF
surface As�(0, k) has sidelobes that periodically repeat

with period βM. Evaluating the above expression at the
in-between intervals, we can obtain the AF surface side-
lobe values. We then choose to use only waveforms with
parameters Q,M, and ζ with relatively low sidelobe levels
in their AF surface with n = 0.
When ζ = 1, β = M, larger valleys appear in the AF

surface. Specifically, the AF in (8) becomes:

AFs�(n, ν) = 1
Es

Q2

β2

β−1∑
m̂=0

β−1∑
m̌=0

ξ(m̂ − n̂

+�(m̌ − ň)/β�) ej2π(m̂β+m̌)ν/β2
ξ∗(m̂)

·
β−1∑
α=0

ej2π(m̂−m̌−(n̂−ň)+�(m̌−ň)/β�)α/β

β−1∑
α̃=0

e−j2π(m̂−m̌)α̃/β .

Using
∑β−1

α̃=0 e
−j2π(m̂−m̌)α̃/β = βδ(m̂ − m̌) since 0 ≤

m̂ ≤ β − 1, 0 ≤ m̌ ≤ β − 1 and, therefore, having
m = m̂ = m̌ above expression becomes

AFs�(n, ν) = 1
Es

Q2

β2

β−1∑
m=0

ξ(m − n̂

+�(m − ň)/β�) ej2π(mβ+m)ν/β2
ξ∗(m)

·
β−1∑
α=0

ej2π(−(n̂−ň)+�(m−ň)/β�)α/β .

Then we note that the factor �(m − ň)/β� can only take
the values of 0 ifm = ň and −1 ifm < ň since bothm and
ň take values less than β . This implies that non-zero values
of the AF surface As�(n, ν) only exist at delay locations
such that n̂− ň or n̂− ň+ 1 are multiples of β . For �(m−
ň)/β� = −1 which restricts n̂ − ň + 1 to be a multiple of
β with m < ň, and since ň < M << MQ, M < Q then
indices of the waveform in the AF expression summation
are very limited compared to the waveforms’ length MQ
(i.e., m < M). Therefore, the case where �(m − ň)/β� =
−1 in the AF expression appears in a very small number
of additive terms and is omitted in the following analysis.
Letting �(m− ň)/β� = 0, and using

∑β−1
α=0 e−j2π(n̂−ň)α/β =

β δ(n̂ − ň), we obtain (for details, see [23])

As�(n, ν) = ∣∣AFs�(n, ν)
∣∣2

≈
∣∣∣∣∣ 1Es Q2

M−1∑
m=0

ξ(m − n̂) ej2π(mβ+m)ν/β2

× ξ∗(m) δ(n̂ − ň)

∣∣∣∣
2
.

Since this implies that n̂ = ň, thus n = n̂Q + ň(Q/β)

with β = M, it follows that non-zero sidelobes of the AF
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surface appear at intervals ofQ+ (Q/M) in the delay. This
is demonstrated in the AF surface of the MCPC CAZAC
waveform with � = (130, 13, 1), as shown in Figure 2b.
In summary, the possibility of choosing the parameters

� = (Q,M, ζ ) of an MCPC CAZAC waveform, and also
rotating the entire AF surface by choosing to take the
FT of the waveform, enables us to position sidelobes in
order to minimize the predicted MSE, as we will show in
Section “Adaptive waveform selection ’’.

IP-LPF algorithm
Tracking model
We consider L targets moving in a two-dimensional (2D)
plane, where the number of targets is fixed and known.
The target dynamics are modeled by a linear, constant
velocity model [24] given by

xl,k = Fxl,k−1 + vl,k , l = 1, . . . , L, k = 1, . . . ,K , (9)

where xl,k = [
xl,k ẋl,k yl,k ẏl,k

]T is the state vector for
the lth target at time k, T denotes vector transpose, xl,k ,
yl,k and ẋl,k , ẏl,k are the position and velocity in Carte-
sian coordinates, respectively, the matrix F is given by
F =[ 1 
t 0 0; 0 1 0 0; 0 0 1 
t; 0 0 0 1] (with
each row in square brackets), 
t is the time difference
between observations, and vl,k is a zero-mean, additive
white Gaussian process with diagonal covariance matrix
Q = diag

([
σ 2
x , σ 2

y , σ 2
ẋ , σ

2
ẏ

])
that models target devia-

tions from constant velocity. The model in (9) can be used
to determine the kinematic prior probability distribution
function p

(
xl,k|xl,k−1

)
for the lth target. The multitar-

get state vector is expressed in terms of the state vectors

of each target as Xk =
[
xT1,k x

T
2,k . . . xTL,k

]T
. Following

[13], we refer to each component xl,k of Xk as a partition.
Since we assume that the targets move independently,
the multitarget kinematic prior distribution is given by
p

(
Xk|Xk−1

) = ∏L
l=1 p

(
xl,k|xl,k−1

)
.

A radar sensor collects information on the range and
range rate of the targets in the scene relative to the sen-
sor by transmitting pulses and processing the returns
after they are reflected by the targets. The return wave-
form provides range information, in the form of time
delays, and range rate information, in the form of fre-
quency shifts of the return waveforms relative to the
transmitted waveform. Assuming point targets, the range
and range rate for partition l at time step k, relative to
the uth sensor, u = 1, . . . ,U are given, respectively, by
[11] rl,u,k =

√(
χu − xl,k

)2 + (
ψu − yl,k

)2 and ṙl,u,k =(
ẋl,k

(
xl,k − χu

) + ẏl,k
(
yl,k − ψu

))
/rl,k , where (χu,ψu) are

the Cartesian coordinates of the location of the uth sen-
sor, and theU sensors are assumed to transmit and receive
waveforms independently. The discrete time shift value
and discrete Doppler shift value at the u sensor, due to the

lth target, are given by [11] nl,u,k = round
(
2 rl,u,k/ (c Ts)

)
and νl,u,k = round

(−2 fc ṙl,u,k Ts/(cM)
)
, respectively,

where round (·) transforms the real number to the nearest
integer, c is the velocity of propagation in the medium, fc
is the carrier frequency, Ts is the sampling period, and M
is the total number of waveform samples.

Matched filter statistic
At every time step k, a signal s(m), m = 0, . . . ,M − 1, is
simultaneously transmitted from each sensor in different
frequency bands to avoid interference. The received signal
at the uth sensor after demodulation is a linear combina-
tion of the reflections from all L targets, and it is given by

du,k(m) =
L∑

l=1
Al,k s

(
m − nl,u,k

)
ej2πm νl,u,k/M e−j2π nl,u,kζc/M

+vu,k(m).

Here, ζc = fc Ts is the discrete carrier frequency of
the transmitted waveform. The sum of random complex
returns, Al,k , from many different target scatterers on
target l are zero-mean, complex Gaussian with known
variance 2 σ 2

A,l and follow the Swerling I model [25].
Each target is assumed to have a different radar cross
section (RCS) [26] and thus its return signal has a differ-
ent strength that is represented by the variance of Al,k . It
is also assumed that the return signal strength depends
only on the target RCS and not on the distance between
the sensor and the target; the distance is compensated for
by amplifying returns that arrive later in time. The noise
terms vu,k(m), u = 1, . . . ,U , are assumed to be zero-mean
complex Gaussian with variance 2N0 and independent
for each sensor. The SNR is given by SNR = σ 2

A,lwEs/N0
[2], where lw is the index of the weakest target and Es is
the energy of the transmitted waveform from each sensor.
When no target is present, du,k(m) = vu,k(m).
At the receiver, the return signal is matched filtered with

a signal representing returns from � targets, at different
time shifts ñλ,u,k and different frequency shifts ν̃λ,u,k , λ =
1, . . . ,�. These time-frequency shifts are derived from the
belief in target state using a particle filtering approach.
The matched filter output is thus given by

ỹu,k =
Md−1∑
m=0

du,k(m)

�∑
λ=1

s∗
(
m − ñλ,u,k

)
e−j2π m ν̃λ,u,k/M

=
L∑

l=1

�∑
λ=1

Al,k Es AFs
(
ñλ,u,k − nl,u,k , νl,u,k

−ν̃λ,u,k
)
e−j2π nl,u,k ζc/M

+
Md−1∑
m=0

vu,k(m)

�∑
λ=1

s∗
(
m − ñλ,u,k

)
e−j2π m ν̃λ,u,k/M,

(10)
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where Md > M should be large enough to accommodate
a maximum delay in the signal due to a reflection from the
target. Moreover, � in (10) equals 1 when independently
proposing one partition and � = L if particles of L par-
titions are proposed. The matched filter statistic that we
will use for estimation is yu,k = ∣∣ỹu,k∣∣2, and it is written in
terms of the AF of s(m) in Equation (2).

Measurement likelihood
The statistical properties of the matched filter statistic yu,k
depend on the fact that Al,k and vu,k(m) are independent,
zero-mean, and complex Gaussian. It can be shown that
ỹu,k in (10) is also complex Gaussian with zero mean and
yu,k is exponentially distributed both under hypothesisH0
(not target is assumed present) and under hypothesis H1
(L targets are assumed present). The two hypothesis for-
mulation for the measurement likelihood is thus given
by

H0 : p0
(
yu,k |xk

) = 1
2 σ 2

0
e−yu,k/

(
2 σ 2

0
)
, if no target is present

H1 : p1
(
yu,k |xk

) = 1
2 σ 2

1
e−yu,k/

(
2 σ 2

1
)
, if L targets are present

(11)

where (see [23] for derivation)

σ 2
0 = 2N0 Es

�∑
λ=1

�∑
ρ=1

AFs
(
ñλ,u,k − ñρ,u,k , ν̃ρ,u,k − ν̃λ,u,k

)

σ 2
1 = 2E2s

L∑
l=1

σ 2
A,l

�∑
λ=1

�∑
ρ=1

AFs
(
ñλ,u,k−nl,u,k , νl,u,k

−ν̃λ,u,k
)
AF∗

s
(
ñρ,u,k − nl,u,k , νl,u,k − ν̃ρ,u,k

)

+2N0 Es
�∑

λ=1

�∑
ρ=1

AFs
(
ñλ,u,k − ñρ,u,k , ν̃ρ,u,k − ν̃λ,u,k

)
.

(12)

When using the MCPC CAZAC waveforms to com-
pute the measurement likelihoods in (11), we can reduce
the computational complexity by approximating the above
variance expressions. In particular, since the AF sidelobes
of MCPC CAZAC waveforms are zero at the locations
where, according to the belief in target state, the targets
are expected to be we can set AFs(n, ν) to be 0 for n �= 0
and ν �= 0 in the above expressions. In addition, for the
SCPC waveforms the above holds only approximately due
to their non-zero, however, very low AF surface sidelobes.
Also, using the fact that AFs(0, 0) = 1, we can let σ 2

A,l = σ 2
A

for all l (where σ 2
A is a nominal value that we choose, since

we assume the target strength to be unknown). Based on

this, we can then set σ 2
0 = 2N0 Es L and σ 2

1 = 2E2s L σ 2
A +

2N0 Es L in (12).

Likelihood partition sampling
The highly concentrated AF of a Björck CAZAC sequence
provides a highly concentrated likelihood proposal distri-
bution and a high measurement accuracy. However, the
proposal process needs to be modified to sample parti-
cles from the likelihood instead of the kinematic prior
since the former is muchmore localized than the latter. To
achieve this, we use a likelihood particle filter [15], where
the importance density depends on the measurements
rather than the kinematic prior.
We propose to integrate the use of the likelihood pro-

posal with the independent partition (IP) particle filtering
[13,14] concept to efficiently propose particles. In the IP,
we propose individual partitions of the multitarget state
vector, each representing the state of a single target. We
then combine the more accurate partition proposals into
particles. The IP algorithm is an approximation to the
joint multitarget probability density particle filter [14]; the
approximation is accurate when the targets are well sepa-
rated in the observation space. When targets are close in
measurement space, their partitions cannot be indepen-
dently proposed as described above. Due to our use of the
Björck CAZAC sequences that have sharply peaked AFs,
the measurements can be well approximated as indepen-
dent [27]. Our resulting algorithm, the IP-LPF, belongs
to the class of sequential partition algorithms [28]. Algo-
rithms of this class propose partitions sequentially and
then combine them into particles.
Specifically, we first independently evaluate likelihood

values at discrete delay-Doppler bins for each partition.
Using these values, we create histograms and sample par-
tition states. Note that we narrow our bin selection to
a region of probability of almost one in the kinematic
prior partition sample. This is necessary to ensure a mini-
mum number of bins to build the histogram and to ensure
that the sample from the measurements is consistent with
the kinematic prior. We then evaluate partition weights
by combining measurements from the different sensors
using the kinematic prior. Using the normalized partition
weights, we independently sample values for each parti-
tion. We combine the sampled partitions into particles,
compute the weights of the particles, and estimate and
resample the particles.
Note that range information from two sensors, com-

bined with kinematic prior knowledge, can provide ade-
quate information to estimate the position of a single
target [19]. Specifically, geometry is used to find the inter-
section between two circles whose radii (in Cartesian
coordinates) are the ranges of the sensors. The two inter-
sections of these circles provide two coordinate locations,
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one of which can be selected that agrees with the kine-
matic prior information. For multiple targets, there are
multiple of these circles for each sensor and each target,
and multiple intersection points that do not correspond
to true coordinate locations. Therefore, the use of three
sensors can help clear the ambiguity by providing fewer
intersections of three circles. In order to avoid compli-
cated geometry, we first process the returns of two sensors
and sample Cartesian coordinate target locations using
the likelihood. We then weight the sampled locations with
measurements from the third sensor. Our method is for a
general number of sensors equal or greater than three; in
this work, we kept the number of sensors to a minimum
of three.
The partitions sampling based on the likelihood is per-

formed in two stages. In Stage 1, we utilize information
from only two of the sensors in order to propose a prelim-
inary set of partitions. This avoids the complex geometry
required to sample Cartesian locations from range and
range rate information obtained from three or more sen-
sors. In Stage 2, we refine our partitions selection by
sampling from the preliminary set of partitions created in
the first stage using information from all the sensors.

Stage 1: partitions sampling
We start by propagating each state partition without
noise. We let λ denote the proposed partition at time k
and l denote the partition that represents the true state of
the lth target. Assuming that we use a sequential impor-
tance resampling particle filter [15], the ith state particle,

i = 1, . . . ,N , is given by x̌(i)
λ,k =

[
x̌(i)
λ,k , y̌

(i)
λ,k , ˇ̇x(i)

λ,k , ˇ̇y(i)
λ,k

]T =
Fx(i)

λ,k−1. Using x̌
(i)
λ,k , we obtain

ř(i)
λ,u,k =

((
χu − x̌(i)

λ,k

)2 +
(
ψu − y̌(i)

λ,k

)2)1/2
.

We want to determine a region of delay-Doppler bins
that could contain observations if the true state is x̌(i)

λ,k .
This region is obtained from the spread of the kinematic
prior that determines the possible states of partition λ.
If we assume for simplicity that the variances σ 2

x and σ 2
y

of the kinematic prior in the 2D (x, y) dimensions are
equal, then with probability of almost one, the proposed
particle will fall within 3σx from x̌(i)

λ,k and within 3σy from
y̌(i)
λ,k . The maximum and minimum possible sampled x
and y coordinates will then yield the maximum and min-
imum range. That is, if we assume that the target is at
angle π/2 with the sensor, then

[
r(i)min,λ,u,k , r

(i)
max,λ,u,k

]
=[

ř(i)
λ,u,k − 3

√
2 σx, ř(i)λ,u,k + 3

√
2 σx

]
. The range would

then increase/decrease by the amount 3
√
2 σx =

(
(3σx)2 + (3σx)2

)1/2. The delay would also assume
minimum and maximum index values given by[

n(i)
min,λ,u,k , n

(i)
max,λ,u,k

]
=

[
�2r(i)min,λ,u,k/ (c Ts)�,
	2r(i)max,λ,u,k/ (c Ts)


]
.

Similarly, the minimum and maximum values can be
obtained for the range rate and thus the Doppler[

ν
(i)
min,λ,u,k , ν

(i)
max,λ,u,k

]
=

[
�−2fcṙ(i)min,λ,u,kTs/(cM)�,
	−2fcṙ(i)max,λ,u,kTs/(cM)


]
,

where ṙ(i)min,λ,u,k = ˇ̇r(i)
λ,u,k − 3

√
2σẋ and ṙ(i)max,λ,u,k = ˇ̇r(i)

λ,u,k +
3
√
2σẋ.

We form all combinations of indices for delay and
Doppler that lie within the minimum and maximum delay
and Doppler values using

n(i)
jn,λ,u,k = n(i)

min,λ,u,k + jn, jn = 0, . . . , J(i)n (13)

ν
(i)
jν ,λ,u,k = ν

(i)
min,λ,u,k + jν , jν = 0, . . . , J(i)ν , (14)

where J(i)n = n(i)
max,λ,u,k − n(i)

min,λ,u,k and J(i)ν = ν
(i)
max,λ,u,k −

ν
(i)
min,λ,u,k . Then, we evaluate the matched filter output at
each of these values and for sensor u,

y(i)
jn,jν ,λ,u,k =

∣∣∣∣∣∣
Md−1∑
m=0

du,k(m)s∗
(
m−n(i)

jn ,λ,u,k

)
e−j2πmν

(i)
jν ,λ,u,k/M

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

L∑
l=1

Al,k Es AFs
(
n(i)
jn,λ,u,k − nl,u,k , νl,u,k

− ν
(i)
jν ,λ,u,k

)
e−j2πnλ,u,k ζc/M

+
Md−1∑
m=0

vu,k(m) s∗
(
m − n(i)

jn,λ,u,k

)

× e−j2πmν
(i)
jν ,λ,u,k/M

∣∣∣∣∣∣
2

. (15)

Note that we have used only one delay-Doppler pair(
n(i)
jn,λ,u,k , ν

(i)
jν ,λ,u,k

)
in the template signal representing a

single partition λ. The single partition likelihood for this
delay-Doppler bin is given by:

p(i)
1

(
y(i)
jn,nν ,λ,u,k|n

(i)
jn ,λ,u,k , ν

(i)
jν ,λ,u,k

)
= 1

2σ 2
λ,1

e−y(i)
jn ,jν ,λ,u,k/

(
2 σ 2

λ,1

)
,

if target λ present

p(i)
0

(
y(i)
jn,jν ,λ,u,k|n

(i)
jn ,λ,u,k , ν

(i)
jν ,λ,u,k

)
= 1

2 σ 2
λ,0

e−y(i)
jn ,jν ,λ,u,k/

(
2 σ 2

λ,0

)
,

if target λ present (16)
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We evaluate the likelihood ratio for each delay-Doppler
bin as

β̌
(i)
jn,jν ,λ,u,k =

p(i)
1

(
y(i)
jn,jν ,λ,u,k|n

(i)
jn,λ,u,k , ν

(i)
jν ,λ,u,k

)
p(i)
0

(
y(i)
jn,jν ,λ,u,k|n

(i)
jn,λ,u,k , ν

(i)
jν ,λ,u,k

) . (17)

We then obtain

B̌(i)
λ,u,k =

J(i)n∑
jn=0

J(i)ν∑
jν=0

β̌
(i)
jn,jν ,λ,u,k (18)

and the normalized distribution

b̌(i)
jn,jν ,λ,u,k = β̌

(i)
jn,jν ,λ,u,k/B̌

(i)
λ,u,k , (19)

from which we sample κ
(i)
jn,u,k , κ

(i)
jν ,u,k ∼ b̌(i)

jn,jν ,λ,u,k , jn =
0, . . . , J(i)n , jν = 0, . . . , J(i)ν , for each particle i and
each sensor u = 1, 2. The resulting sampled
range and range rate and the bias are, respectively,
r(i)j′n,j′ν ,λ,u,k = c n(i)

κjn ,λ,u,k
Ts/2, ṙ(i)j′n,j′ν ,λ,u,k = −cMν

(i)
κjν ,λ,u,k

/

(2 fc Ts), b(i)
j′n,j′ν ,λ,u,k

= b̌(i)
κjn ,κjν ,λ,u,k

. The values of r(i)j′n,j′ν ,λ,u,k
and ṙ(i)j′n,j′ν ,λ,u,k , in turn, yield proposed state values x̃(i)

λ,k .
This is accomplished by taking the intersection of two
circles in the 2D Cartesian plane and choosing the inter-
section point that mostly agrees with the kinematic prior
information. This process is illustrated in Figure 3. We
note that the sampled partitions x̃(i)

λ,k from Stage 1 are
based on information provided from only two sensors.
Therefore, some of these partitions may be incorrect, as
previously explained. However, the value of x̃(i)

λ,k can be
used in Stage 2 to evaluate likelihoods for three sensors
in order to sample proposal partitions and help remove
partitions that have incorrectly been sampled.

Stage 2: partitions sampling
During Stage 1, we propose partitions x̃(i)

λ,k , i = 1, . . . ,N ,
from delay-Doppler bins associated with sensors
u = 1, 2. In Stage 2, we utilize the return signals
transmitted by U ≥ 3 sensors to refine our choice
of partitions and to more accurately represent the
target state. We first describe the complexity in
calculating the partition weights and the approxi-
mation we use to make the computation tractable
before we provide the details on the sampling
process.
After matched filtering, and using the locations in

the delay-Doppler plane derived from the proposed
partitions, the measurements from sensors u = 1, . . . ,U
are given by

y(i)
λ,u,k =

∣∣∣∣∣∣
Md−1∑
m=0

du,k(m)s∗
(
m − ñ(i)

λ,u,k

)
e−j2πmν̃

(i)
λ,u,k/M

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

L∑
l=1

Al,k Es AFs
(
ñ(i)

λ,u,k − nl,u,k , νl,u,k

−ν̃
(i)
λ,u,k

)
e−j2πnl,u,kζc/M

+
Md−1∑
m=0

vu,k(m) s∗
(
m − ñ(i)

λ,u,k

)
e−j2πmν̃

(i)
λ,u,k/M

∣∣∣∣∣∣
2

,

(20)

where
(
ñ(i)

λ,u,k , ν̃
(i)
λ,u,k

)
is the delay-Doppler pair that cor-

responds to the state x̃(i)
λ,k and the uth sensor, and(

nl,u,k , νl,u,k
)

is the true target state xl,k . Therefore,
the single partition likelihood function for each pro-
posed partition λ of particle ī = 1, . . . ,N is given by∏U

u=1 p
( ī)
λ

({
y(i)
λ,u,k

}N
i=1

|x̃1
λ,k , . . . , x̃

( ī)
λ,k , . . . , x̃

N
λ,k

)
. Here, the

hypothesis of particle ī and partition λ is that the par-

tition state equals x̃
( ī)
λ,k and not x̃(i)

λ,k for i �= ī , while
y(i)
λ,u,k , i = 1, . . . ,N , u = 1, . . . ,U are the measurements
obtained from matched filters at the delay-Doppler loca-
tion defined by the particle proposed target state vectors
x̃(i)

λ,k , i = 1, . . . ,N . However, each likelihood for sensor u
is a multivariate exponential distribution [29] that grows
in dimensionality as the number of particles N increases.
We approximate the likelihood for each partition to be∏U

u=1 p
( ī)
1

(
y
( ī)
λ,u,k|x̃

( ī)
λ,k

) ∏N
i=1,i�= ī p

(i)
0

(
y(i)
λ,u,k|x̃(i)

λ,k

)
, where

p(i)
1

(
y(i)
λ,u,k|x̃(i)

λ,k

)
denotes the likelihood that a target exists

at x̃(i)
λ,k and p(i)

0

(
y(i)
λ,u,k|x̃(i)

λ,k

)
denotes the likelihood that a

target does not exist at x̃(i)
λ,k . In [27], we show that the

covariance between measurements y
( ī)
λ,u,k and y(i)

λ,u,k , ī �= i,

depends on the filter proximity (i.e., the closeness of ñ
( ī)
λ,u,k ,

ν̃
( ī)
λ,u,k and ñ(i)

λ,u,k , ν̃
(i)
λ,u,k) relative to the AF spread. There-

fore, the measurement independence approximation for
the Björck CAZAC is reasonable due to its concentrated
AF. Using this approximation, the weights for partition λ

of particle ī = 1, . . . ,N are

β̃
( ī)
λ,k ∝

∏U
u=1 p

( ī)
1

(
y
( ī)
λ,u,k |x̃

( ī)
λ,k

) ∏N
i=1,i�= ī p

(i)
0

(
y(i)
λ,u,k |x̃(i)

λ,k

)
∏2

u′=1 b
( ī)
j′n ,j′ν ,λ,u′ ,k

×p
(
x̃

( ī)
λ,k |x̃

( ī)
λ,k−1

)
. (21)
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If we divide the right-hand side by the constant∏U
u=1

∏N
i=1 p

(i)
0

(
y(i)
λ,u,k|x̃(i)

λ,k

)
, and we use (17)–(19), we

obtain

β̃
( ī)
λ,k ∝

2∏
u=1

B̌
( ī)
λ,u,k

p
( ī)
1

(
y
( ī)
λ,3,k|x̃

( ī)
λ,k

)

p(i)
0

(
y
( ī)
λ,3,k|x̃

( ī)
λ,k

)p
(
x̃

( ī)
λ,k|x̃

( ī)
λ,k−1

)
,

where the likelihood probability functions are given in (11)
for a single target. This is then normalized

b̃
( ī)
λ,k = β̃

( ī)
λ,k/B̃λ,k , (22)

where

B̃λ,k =
N∑
ī=1

β̃
( ī)
λ,k . (23)

We finally perform partition resampling, where we sam-

ple a partition index κ ī ∼ b̃
( ī)
λ,k , ī = 1, . . . ,N , from

the distribution of b̃
( ī)
λ,k with replacement. The resulting

selected partition has value x(i)
λ,k = x̃

(κ ī )
λ,k and selection

probability b(i)
λ,k = b̃

(κ ī )
λ,k .

Particle weighting
After partition resampling, we assemble particles from the

sampled partitions as X(i)
k =

[
x(i)
1,k

T
. . . x(i)

L,k
T]T

. We weigh
these particles with weights that incorporate prior and
measurement information. To find the weight equation,
we start by defining a measurement matrix Yk that is
composed of measurements from X(i)

k and contains mea-
surements from each of the U sensors. Specifically,

Yk =
[
y(i)
u,k

]
, i = 1, . . . ,N , u = 1, . . . ,U ,

where

y(i)
u,k =

∣∣∣∣∣∣
Md∑
m=0

du,k(m)

�∑
λ=1

s∗
(
m − n(i)

λ,u,k

)
e−j2πmν

(i)
λ,u,k/M

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

L∑
l=1

�∑
λ=1

Al,k Es AFs
(
n(i)

λ,u,k − nl,u,k , νl,u,k

− ν
(i)
λ,u,k

)
e−j2πnl,u,kζc/M

+
Md∑
m=0

vu,k(m)

�∑
λ=1

s∗
(
m − τ

(i)
λ,u,k

)
e−j2πmν

(i)
λ,u,k/M

∣∣∣∣∣∣
2

.

(24)

Figure 3 Schematic of the likelihood proposal process. Each particle x̌(i)
λ,k = x̌n

λ,k is deterministically propagated forward (left top figure, arrows
1, 2), the observation points for sensors 1 and 2 are defined (right top and right bottom), one point is sampled from each observation set of each
sensor (arrows 3, 4), and one of the two states x̃(i)

λ,k = x̃n
λ,k formed by the sampled ranges in the Cartesian coordinates that agrees more with the

prior is selected (left bottom).



Kyriakides et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:180 Page 11 of 17
http://asp.eurasipjournals.com/content/2012/1/180

The likelihood function (for a single partition case)
for each proposed particle ī = 1, . . . ,N is given by

p( ī)
(
y(i)
u,k|X1

k , . . . ,X
( ī)
k , . . . ,XN

k

)
, i = 1, . . . ,N , u =

1, . . . ,U . Here, the hypothesis of particle ī is that the state

equals X
( ī)
k , while y(i)

u,k are the measurements obtained
frommatched filters at the delay-Doppler location defined
by the particle proposed target state vectors X(i)

k . Note
that this likelihood is a multivariate exponential distri-
bution [29]. Using similar arguments as for the single
partition case, we approximate the likelihood for each par-

ticle to be
∏U

u=1 p
( ī)
1

(
y
( ī)
u,k|X

( ī)
k

) ∏N
i=1,i�= ī p

(i)
0

(
y(i)
u,k|X(i)

k

)
,

where p(i)
1

(
y(i)
u,k|X(i)

k

)
is the likelihood given that the target

state equals X(i)
k and p(i)

0

(
y(i)
k |X(i)

k

)
is the likelihood given

that no targets exist having state X(i)
k .

The weight of particle ī [15] using the aforementioned
assumptions is given by

w
( ī)
k = w

( ī)
k−1

∏U
u=1 p

( ī)
1

(
y
( ī)
u,k|X

( ī)
k

) ∏N
i=1,i�= ī p

(i)
0

(
y(i)
u,k|X(i)

k

)
∏�

λ=1 b
( ī)
λ,k

×p
(
X

( ī)
k |X( ī)

k−1

)
.

Dividing by the constant
∏U

u=1
∏N

i=1 p
(i)
0

(
y(i)
u,k|X(i)

k

)
, using

the likelihood in (11), and normalizing the weights by

Wk = ∑N
ī=1 w

ī
k , we obtain the normalized weighs

�
( ī)
k = �

( ī)
k−1
Wk

∏U
u=1 p

( ī)
1

(
y
( ī)
u,k|X

( ī)
k

)
p

(
X

( ī)
k |X( ī)

k−1

)
∏U

u=1 p
( ī)
0

(
y
( ī)
u,k|X

( ī)
k

) ∏�
λ=1 b

( ī)
λ,k

. (25)

The state estimate is thus given by X̂k = ∑N
ī=1 �

( ī)
k X

( ī)
k .

The algorithm is outlined next.

IP-LPF algorithm
For each partition λ = 1, . . . ,� and for each particle
i = 1, . . . ,N

Stage 1: Likelihood Partition Sampling
✶ Let x̌(i)

λ,k = Fx(i)
λ,k−1

✶ For each sensor u = 1, . . . ,U
∗ For jn = 0, . . . , J(i)n and for jν = 0, . . . , J(i)ν

♦ Form n(i)
jn,λ,u,k using (13) and ν

(i)
jν ,λ,u,k using (14)

♦ Evaluate y(i)
jn,jν ,λ,u,k using (15) and b̌(i)

jn,jν ,λ,u,k using (19)
♦ Sample κ

(i)
jn,u,k , κ

(i)
jν ,u,k ∼ b̌(i)

jn ,jν ,λ,u,k

♦ Let r(i)j′n,j′ν ,λ,u,k = c n(i)
κjn ,λ,u,k

Ts/2

♦ Let ṙ(i)j′n,j′ν ,λ,u,k = −
(
c ν

(i)
κjν ,λ,u,k

M
)

/
(
2fcTs

)
and

b(i)
j′n,j′ν ,λ,u,k

= b̌(i)
κjn ,κjν ,λ,u,k

✶ Calculate x̃(i)
λ,k from r̃(i)j′n,j′ν ,λ,u,k and

˜̇r(i)j′n,j′ν ,λ,u,k
Stage 2: Likelihood Partition Sampling
✶ For each particle ī = 1, . . . ,N

∗ Evaluate y
( ī)
λ,3,k using (20) and b̃

( ī)
λ,k using (22)

∗ Sample κ ī ∼ b̃
( ī)
λ,k

✶ Let x(i)
λ,k = x̃

(κ ī )
λ,k and b(i)

λ,k = b̃
(κ ī )
λ,k

Particle Weighting
For each particle i = 1, . . . ,N

✶ Assemble particles X(i)
k =

[
x(i)
1,k . . . x(i)

L,k

]
✶ Evaluate Yk =

{
y(i)
u,k

}U
u=1

using (24)
✶ For each particle ī = 1, . . . ,N
∗ Evaluate particle weights:

�
( ī)
k = �

( ī)
k−1
Wk

(∏U
u=1 p

( ī)
1

(
y
( ī)
u,k|X

( ī)
k

)
p
(
X

( ī)
k |X( ī)

k−1

))

· 1/
(∏U

u=1 p
( ī)
0

(
y
( ī)
u,k|X

( ī)
k

) ∏�
λ=1 b

( ī)
λ,k

)

Estimate X̂k = ∑N
ī=1 �

( ī)
k X

( ī)
k

Increment k by 1

Adaptive waveform selection
In order to further improve tracking performance, we
adaptively select the parameters of the MCPC CAZAC
transmit waveform at each time step k so that we can
minimize the predicted tracking root mean-squared error
(RMSE). The three MCPC CAZAC parameters we con-
sider are �k = (Qk ,Mk , ζk) in (4), whereQk is the number
of cyclically permuted Björck CAZAC sequences at time
k, Mk is the length of the sequences at time k, and ζk is a
parameter that controls the cyclic frequency shift at time
k. The expected RMSE is given by the cost function

J (�k) = EX̂k ,Xk ,Ak ,vk |X̂k−1,�k

[(
Xk − X̂k

)T
C

(
Xk − X̂k

)]
(26)

where the weighting matrix C makes the units of the
cost function consistent by compensating for the differing
units of the state vector. The subscript in the expecta-
tion operator E·[ ·] shows the dependance of the expected
RMSE on the random target strength vector Ak , the ran-
dom noise matrix vk , the unknown true target state Xk ,
and the estimate X̂k , given the multitarget state estimate
X̂k−1 at k − 1 and the choice of �k .
Next, we identify the set of values that the multitar-

get state estimate X̂k can take in terms of the delay-
Doppler locations associated with it. As described in
Section “IP-LPF algorithm”, in order to propose particles,
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we have considered a discrete finite set of delay-Doppler
locations for each partition and each particle. This set cor-
responds to Cartesian coordinate locations that are most
likely to occur according to the kinematic prior and the
set of particles X(i)

k−1, i = 1, . . . ,N generated at the pre-
vious time step k − 1. The set is given in (13) and (14)
as

(
n(i)
jn,λ,u,k , ν

(i)
jν ,λ,u,k

)
, jν = 0, . . . , J(i)ν and jn = 0, . . . , J(i)n ,

for λ = 1, . . . ,�, u = 1, . . . , 2 and i = 1, . . . ,N . We use
index j to denote a member of the set G, of cardinality
|G|, consisting of the N particles that could be sam-
pled by the IP-LPF proposal and subsequently weighted.
Therefore, G is a large set including all combinations of
possible delay-Doppler locations from two of the sensors
for each target and particle. The process of forming par-
titions from sampled delay-Doppler locations is explained
in Section “Stage 1: partitions sampling” and illustrated in
Figure 3. Subsequently, one possible outcome of the likeli-
hood sampling process and particle weighting isN weight-
particle pairs

{
�

(i)
j ,k ,X

(i)
j ,k

}
, n = 1, . . . ,N corresponding to

delay-Doppler locations
(
n(i)

j ,λ,u,k , ν
(i)
j ,λ,u,k

)
, λ = 1, . . . ,�,

u = 1, . . . ,U , i = 1, . . . ,N . Similarly, based on the target
motion model, we can identify a discrete finite set of pos-
sible true target states Xk . Each possible true target state
Xj ′,k with index j ′ is a member of the set G′, of cardi-
nality |G′|. Xj ′,k is related to corresponding delay-Doppler
locations

(
nj ′,l,u,k , νj ′,l,u,k

}
, l = 1, . . . , L, u = 1, . . . ,U .

From the above, wemay rewrite the cost function in (26)
as

J (�k) =
∫
Ak

∫
vk

|G′|∑
j ′=1

|G|∑
j=1

(
Xj ′,k −

N∑
i=1

�
(i)
j ,kX

(i)
j ,k

)T

×C
(
Xj ′,k −

N∑
i=1

�
(i)
j ,kX

(i)
j ,k

)

· p
({

�
(i)
j ,k ,X

(i)
j ,k

}N
i=1

|Xj ′,k ,Ak , vk , X̂k−1,�k

)

× p
(
Xj ′,k|X̂k−1

)
p (Ak) p (vk) dAk dvk ,

where the probability distributions p
(
Xj ′,k|X̂k−1

)
,

p (Ak), and p(vk) are defined in the context of the motion
and measurement models in Sections “Tracking model”
and “Matched filter statistic”.
In order to minimize the cost function,

we need to minimize the probability

p
({

�
(i)
j ,k ,X

(i)
j ,k

}N
i=1

|Xj ′,k ,Ak , vk , X̂k−1,�k

)
and the par-

ticle weights �
(i)
j ,k in (25) for particles (i) such that

Xj ′,k �= X(i)
j ,k . As the j th set of particles

{
X(i)

j ,k

}N
i=1

results
from sampling by the IP-LPF, we will follow the sam-
pling process of the IP-LPF and identify the selection

probability for each partition of particles
{
X(i)

j ,k

}N
i=1

.
According to Section “Stage 1: partitions sampling”, we
obtain values x̃(i)

λ,k for each partition λ = 1, . . . ,� and
each particle i = 1, . . . ,N by sampling delay-Doppler bins
from sensors u = 1, 2 with probability

∏2
u=1 b

(i)
j′n,j′ν ,λ,u,k

given by (19). The values x̃(i)
λ,k allow us to evaluate the

likelihoods for the U sensors in order to sample par-
titions. In Section “Stage 2: partitions sampling”, we
obtain partitions x(i)

λ,k with selection probability b(i)
λ,k

given by (22). These sampled partitions are combined
into particles into particles X(i)

k in Section “Particle
weighting”. From the sampling process of each particle
X(i)
k , we conclude that the probability of each particle

being selected is
∏�

λ=1 b
(i)
j ,λ,k

∏2
u=1 b

(i)
j ,j′n,j′ν ,λ,u,k

. Therefore,

any set of particles
{
X(i)

j ,k

}N
i=1

appears with probabil-

ity p
({

�
(i)
j ,k ,X

(i)
j ,k

}N
i=1

|Xk ,Ak , vk ,
{
X(i)
k−1

}N
i=1

,�k

)
=∏N

i=1
∏�

λ=1 b
(i)
j ,λ,k

∏2
u=1 b

(i)
j ,j′n,j′ν ,λ,u,k

. Furthermore, from
(21), (22), for b(i)

j ,λ,k and from (17), (19) for b(i)
j ,j′n,j′ν ,λ,u,k

we
observe that the above sampling probabilities depend on
the single partition likelihood ratio which using (16) is

proportional to exp
(

σ 2
λ,1−σ 2

λ,0
2σ 2

λ,1σ
2
λ,0

∑N
i=1

∑U
u=1 y

(i)
j ,λ,u,k

)
. Since

σ 2
λ,0 < σ 2

λ,1, the selection probability monotonically
increases with the matched filter statistic y(i)

j ,λ,u,k . There-
fore, in order to minimize the above selection probability
the matched filter statistic needs to be minimized for the
delay-Doppler values in (13) and (14) with the additional
constraint that n(i)

j ,λ,u,k �= nj ′,l,u,k , νj ′,l,u,k �= ν
(i)
j ,λ,u,k for all

partitions λ, particles i and sensors u. These sets of delay-
Doppler locations correspond to the belief on target state
as explained previously and only include delay-Doppler
locations that imply erroneous target states Xj ′,k �= X(i)

j ,k
(i.e., AF sidelobes). Since the matched filter statistic is
a random variable it is minimized by minimizing its
variance, given in (12) with � = 1, with respect to the
waveform parameters.
Next, we observe that the particle weights �

(i)
j ,k in (25)

contain the likelihood ratio both in the numerator and
denominator. This, together with the fact that the prior
has a wide spread compared to the likelihood, makes
the particle weights nearly constant. Therefore, particle
weights cannot be significantly reduced by adjusting the
waveform parameters.
Therefore, the focus is on minimizing the matched fil-

ter statistic variance in (12) with respect to the waveform
parameters specifically for the delay-Doppler values in
(13) and (14) and such that n(i)

j ,λ,u,k �= nj ′,l,u,k , νj ′,l,u,k �=
ν

(i)
j ,λ,u,k . Since the matched filter statistic variance depends
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on the AF of the waveform, and since the above-
mentioned set of delay-Doppler values refer to AF loca-
tions where the target is expected to be at time step k,
excluding the AF mainlobe, the problem of minimizing
the RMSE reduces to the problem of reducing AF side-
lobes in the area where the target is expected to exist. This
is a very well defined area in the delay-Doppler plane that
is given by the sequential tracking process of the particle
filter as explained in Section “IP-LPF algorithm”. Configur-
ing the waveform so that zero sidelobes appear in selected
areas of the AF surface was described in Section “AF sur-
face of MCPC CAZAC waveforms”. Therefore, at each
time step of the scenario, the parameters of the waveform
to be transmitted at the next time step are selected such
as to achieve low AF sidelobes in the areas where the weak
target is expected to be found, resulting to a minimization
of the expected RMSE. This is computationally efficient
compared to iterative methods of waveform parameter
selection [11,12]. However, the entire multitarget particle
filtering method proposed is still associated with a large
computational load which is not expected to reach real
time operation with state-of-the art hardware which also
limits the number of targets that can be tracked.
It is noted that this method works well only if the num-

ber of weak targets is low. The AF surface valleys created
by these waveforms are, as expected, of limited size since
the uncertainty cannot be entirely eliminated. Therefore,
if multiple weak targets happen to be relatively positioned
such that AF surface valleys cannot be configured to con-
tain them then these targets will be masked. The problem
of unmasking a larger number of weak targets is, therefore,
an open problem and a limitation of the proposedmethod.

Moreover, there is a prediction error associated with each
target location which is estimated based on the Bayesian
methodology employed. In this study, the prediction error
is minimized as targets are highly localized when using the
high resolution, high AF surface peaked CAZAC-based
waveforms. The AF surface valleys designed are then large
enough to contain this uncertainty and guarantee the
unmasking of a weak target.
Furthermore, it is noted that the weak targets need to

have a signal strength that is well above the noise level so
that they are observable. In this study, it is assumed that
what keeps weak targets masked are in fact the sidelobes
from stronger measurement returns and not the noise.
In order to initially detect weak targets, when no prior
tracking information on their state is available, a sequen-
tial selective positioning of the sidelobes over different
regions of the field of view is necessary. Once a weak tar-
get is detected and the tracking process begins then the
selective positioning of the sidelobes based on prior track-
ing information described in this study is possible to take
place.

Simulation results
We consider two simulation scenarios to demonstrate the
performance of tracking multiple targets. The first sce-
nario consists of one weak target and two strong targets;
the second scenario consists of three targets of equal
strength. Three different types of waveforms will be used:
(a) SCPC Björck CAZAC, (b) MCPC Björck CAZAC with
fixed parameters, and (c) MCPC Björck CAZAC with
adaptively configured parameters. Three targets move in
a 2D plane. The motion is completed in 199 time steps.
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Figure 4 Target trajectory and sensor location.
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Three sensors located at χ1 = −1000m, ψ1 = 500m,
χ2 = 2500m, ψ2 = 500m, and χ3 = 500m, ψ3 = 0m
collect range and range rate measurements. The trajec-
tory of the target and the location of the sensors are shown
in Figure 4. The target is assumed to move according to
a nearly constant velocity model with covariance matrix
Q = diag(225 64225 64).
In the first scenario, the weak target l = 2 has a

cross-sectional area such that, for SNR varying as 5, 10,

12, 15, 17, 20 dB, σ 2
A,2 =[ 3.16, 10, 15.85, 31.63, 50.12, 100].

The strong targets are characterized by σ 2
A,1 = σ 2

A,3 =
σ 2
A,2 + 1600. The noise variance is N0 = 1 and the

waveform energy is Es = 1. In the second scenario,
all three targets are observed with SNR that varies as
5, 10, 12, 15, 17, 20 dB. The SCPC Björck CAZAC wave-
form has length M = 1, 741. The choice of parameters of
the MCPC waveforms was limited to combinations of val-
ues {M,Q} = {7, 245}, {11, 154}, {13, 130}, and ζ = 0, 1
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Figure 5 (a) RMSE versus SNR with 95% confidence intervals and (b) percentage of lost tracks versus SNR for three waveforms when
tracking one weak and two strong targets.
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of equal strengths.
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in order to reduce computational expense in the adaptive
selection process. The FT of the waveform was also used
to introduce another degree of freedom by rotating the AF.
All waveforms are sampled at 8MHz and frequency mod-
ulated by fc = 40GHz. The speed of propagation of the
waveforms is c = 2.997925×108 m/s. For the simulations,
we used N = 300 particles, initialized by drawing from
a Gaussian distribution with mean the true initial tar-
get position and covariance Q0 = diag(10001001000100).
The results were averaged over 300 Monte Carlo runs.
The parameters for the adaptively configured MCPC
waveform are selected at each time step as described
in Section “Adaptive waveform selection ’’, while for the
fixedMCPC the parameters were selected randomly at the
beginning of the scenario.
For the first scenario, the RMSE tracking performance

is shown in Figure 5a for different values of SNR and for
all waveforms. The percentage of lost tracks is shown for
each waveform and SNR value in Figure 5b. A lost track
is declared if, for 6 consecutive steps, the tracking error
exceeded 300m. We observe that the MCPC waveform
with adaptive configuration (indicated as AMCPC in all
figures) clearly outperformed the SCPC Björck CAZAC
and fixed MCPC waveform when considering the num-
ber of lost tracks. In terms of the RMSE, the SCPC Björck
CAZAC appears to have similar performance as the adap-
tive MCPC case since both have the same measurement
resolution. Performing well in RMSE is, however, not
useful if it is accompanied with a high number of lost
tracks. The non-adaptive MCPC waveform case has the
lowest performance rating due to its high sidelobes that
are not avoided during measurement. When there are no
successful tracks, the RMSE value is shown as zero in
Figure 5a,b.
The corresponding results from the second scenario are

demonstrated in Figures 5a and 6a.We can observe that, if
the targets have equal strength, then the adaptive MCPC
and SCPC CAZAC perform similarly as their AF side-
lobes do not mask weak targets. The large sidelobes of the
non-adaptive MCPC, however, still result in large errors.
Another observation is that in the first scenario, in the
adaptive MCPC case, the results are improved compared
to the second scenario. This is because in the first sce-
nario, two of the targets have higher SNR values than in
the second scenario.

Conclusions
We developed the IP-LPF algorithm, a particle filtering
method based on the IPs approach and the likelihood
particle filter, to track a fixed and known number of tar-
gets. A particle filter selects measurements based on the
belief on the target state instead of collecting measure-
ments exhaustively on a fixed grid. Moreover, the likeli-
hood particle filter is capable of processing measurements

resulting from the use of waveforms with high-resolution
properties such as Björck CAZACs. In addition, we devel-
oped MCPC waveforms whose AF sidelobes can be
adaptively positioned. We outlined a configuration strat-
egy for selecting the parameter values of MCPC wave-
forms to position AF sidelobes such that weak targets
are unmasked by minimizing the predicted MSE. We
demonstrated with simulations that when tracking targets
with different strengths using single Björck CAZAC or
fixed parameter MCPC waveforms results in deteriorated
tracking performance. On the other hand, the use of adap-
tively configured MCPC waveforms enables the tracking
of weak targets in the presence of strong targets and offers
significant tracking performance improvements.
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