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Abstract

In this article, we consider the design of broadband beamformers with low complexity. In fact, the design problem
is multi-objective in nature, trading off between speech distortion and noise suppression. Finding a balance
between these two objectives is important in order to achieve a desired sound quality. These measures are
introduced as the objectives here. The design can then be obtained via a bi-objective integer programming
problem, where the coefficients of the filters are expressed as sums of signed powers-of-two terms. We study two
different integer spaces and penalty functions for solving the problem. Then, an algorithm based on a discrete
filled function is developed for finding the optimal design. In order to illustrate the effectiveness of the algorithm,
real data is used and two broadband beamformers are demonstrated.

1 Introduction
The increased popularity of wireless cellular telephones
and their uses in a variety of occasions has motivated the
development of handsfree communication devices. In
this particular acoustic environment, the microphone
array is required to suppress the car noise as well as the
interference from the handsfree loudspeaker, while keep-
ing the distortion of the speech low. Since the mathema-
tical model of this problem is very difficult to construct,
sequences of calibration signals are used instead for the
design of beamformers [1].
Under this signal model, the least-squares technique

(LS) and the signal-to-noise plus interference ratio (SNIR)
are often used [2,3] to optimize the performance of the
beamformer. However, evaluation results [3] have shown
that beamformers designed by LS have very good distor-
tion controls, while the ones designed by SNIR have better
suppression levels of both noise and interference when
compared to LS. Both approaches cannot control directly
the individual level of speech distortion, noise suppression
and interference suppression. This problem is partially
overcome in [4], where it was proposed to use nonlinear
programming to design beamformers with multi-criteria
and demonstrated the set of Pareto optimal. Indeed, trade-
offs between different performance indicators in different

beamforming systems are important and have been
studied in the literature [5-10]. However, after achieving
the required performances, coefficients of the designed
beamformers are of very high precision and hence require
significant efforts in order to preserve the performance
and trade off the computational efficiency. Indeed, in
many designs, the truncation method is still widely
employed and quantization errors play a significant role in
the dynamic range of filter gain and increase with filter
order [11,12]. Furthermore, an efficient implementation of
the beamformers in fixed-point arithmetic hardware (such
as FPGA) is essential [13] in the production stage. How-
ever, there is very little result for finding the finite preci-
sion beamformers subject to achieving a certain speech
quality.
One way to achieve low complexity is to express the

coefficients of the filters as sums of signed powers-of-two
(SPT) terms, and minimize the number of SPT terms
required. This problem has received a great attention.
For the design of high-pass or low-pass finite impulse
response (FIR) filters, the use of SPT terms via the least
squares criterion or the minimax criterion have been
widely studied in the literature. Several optimization
methods, such as branch and bound [14], simulated
annealing [15], and searching techniques [16,17] have
been proposed to tackle this class of problems. For the
design of the filter bank, several algorithms have been
proposed, such as the genetic algorithm [18], and the tree
search algorithm [19]. However, these approaches have

* Correspondence: macyiu@polyu.edu.hk
1Department of Applied Mathematics, The Hong Kong Polytechnic
University, Kowloon, Hong Kong, PR China
Full list of author information is available at the end of the article

Feng et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:62
http://asp.eurasipjournals.com/content/2012/1/62

© 2012 Feng et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:macyiu@polyu.edu.hk
http://creativecommons.org/licenses/by/2.0


not been applied for broadband beamformer designs yet,
especially when we consider the model of optimizing sig-
nal distortion and noise suppression directly. Effective
algorithms are required to tackle this new constrained
optimization problem.
The problem of designing FIR filters with low com-

plexity is always formulated as a constrained optimiza-
tion problem, where the variables take values in -1, 0,
and 1. However, the number of variables for this formu-
lation is very large and the proposed methods, such as
branch and bound and the tree search algorithm, are
very expensive. The heuristic methods such as the
genetic algorithm and simulated annealing are not only
expensive but also unpredictable. To reduce the number
of variables, it is necessary to find a fast conversion
between an integer and its minimum combination of
signed power of two terms. In [20], a method is pro-
posed to allocate the number of SPT terms to each coef-
ficient value, but the optimum assignment scheme is not
guaranteed. In this article, a fast and optimal conversion
based on a recursive function is introduced and the pro-
blem is transformed into an integer programming pro-
blem with the number of variables greatly reduced. For
this problem, the optimal solution should be close to
the infinite precision solution, which can easily be
obtained by gradient-based methods. Hence, the trunca-
tion of the infinite precision solution can be set as a
good initial point and we are required to search the
neighborhood of the initial point in the integer space. A
suitable technique is the filled function method, which
was first introduced in [21] for global optimization with
continuous variables employed in a hybrid setting simi-
lar to [22]. It searches for a better minimizer among
local minimizers by means of a function, which is called
a filled function. A discrete filled function method was
later developed in [23] for solving discrete global opti-
mization problems. In this article, a novel method is
proposed for the finite precision beamformer design
using a discrete filled function. We formulate the design
problem and transform it into an unconstrained integer
programming problem. By incorporating a procedure for
choosing initial points and using a discrete filled func-
tion, we develop an efficient algorithm to tackle the
problem.
The rest of the article is organized as follows. In Sec-

tion 2, with the calibration signal, we present the signal
model and formulate the beamformer design problem.
In Section 3, we transform the original problem into an
unconstrained integer programming problem. An algo-
rithm is then developed in Section 4, which is then
applied for the off-line design of beamformers. Two
examples are given in Section 5 and the numerical
results obtained are compared with other methods.

2 Problem formulation
Unlike the single-channel case, multi-channel beam-
forming techniques exploit the properties of spatial and
temporal distributions of both the speech and noise
sources to enhance the performance. The structure of a
linear FIR beamformer with several channels is shown
in Figure 1.
We assume that there are M elements in the micro-

phone array. In general, the signals received by the ith
microphone element can be represented as

xi(n) = xis(n) + xiN(n) + xiI(n), i = 1, 2, . . . ,M, (2:1)

where xis(n), x
i
N(n), and xiI(n) are the source signal,

the noise signal and the interference signal, respectively,
and n is the discrete time index. Assume that known
calibration sequence observations are used for each of
these signals. The output of the beamformer is given by

y(n) =
M∑
i=1

L−1∑
j=0

wi(j)xi(n − j), (2:2)

where L is the length of the filters and w = ((w1)⊺,...,
(wM)⊺)⊺, where

wi = (wi(0),wi(1), . . . ,wi(L − 1))ᵀ, i = 1, . . . ,M,

are the weight vectors. The coefficients wi(j), i = 1,...,
M, j = 0,..., L - 1, are expressed by

wi(j) =
b∑

k=1

sk,i,j2−k, i = 1, . . . ,M, j = 0, . . . , L − 1,(2:3)

where b is the wordlength and sk,i,jÎ {-1, 0,1}. To
reduce the hardware complexity in real applications, the
coefficients need to satisfy the constraints

b∑
k=1

M∑
i=1

L−1∑
j=0

∣∣sk,i,j∣∣ ≤ N1, (2:4)

where N1 is the total allowable number of the SPT
terms used, and

b∑
k=1

∣∣sk,i,j∣∣ ≤ N2, i = 1, . . . ,M, j = 0, . . . , L − 1, (2:5)

where N2 is the allowable number of SPT terms for
each coefficient wi(j). Let W denote the set of all those
w such that the constraints (2.4) and (2.5) are satisfied.
Basically, the LS formulation and the SNIR formulation

are two different kinds of methods for determining the
weight matrix. In both approaches, there is no direct con-
trol over the level of distortion and the level of noise and
interference suppression. In particular, LS is very good at
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the distortion level, but poor in the suppression level. On
the other hand, SNIR is always very good at the suppres-
sion level but left a consistently high level of distortion.
For beamformers, it is desired to maximize the noise

and interference suppression, while keeping the distor-
tion caused by the beamforming filters at the minimum.
In order to measure various quantities, calibration sig-
nals are used. Define P̂xrsxrs (ω) as the power spectrum
estimate of the source signal without filtering, where the
rth microphone is chosen as reference, and P̂ysys(ω) is
the power spectrum estimate of the beamformer output
with filtering when the source signal is active alone. The
normalized distortion measure can be defined as:

Dr(w) =
1
2π

π∫
−π

∣∣∣CdP̂ysys(ω) − P̂xrsxrs (ω)
∣∣∣dω = ε

{∣∣∣CdP̂ysys(ω) − P̂xrsxrs (ω)
∣∣∣} , (2:6)

where ε{•} denotes the mean value and ω is the fre-
quency. The constant Cd is defined as:

Cd =

∫ π

−π
P̂
xrsxrs

(ω)dω∫ π

−π
P̂
ysys

(ω)dω
=

ε{P̂
xrs x

r
s
}

ε{P̂ysys}
, (2:7)

Similarly, the normalized noise suppression measure
and interference suppression measure are, respectively,
given by

SN(w) = Cs

∫ π

−π
P̂xrNxrN(ω)dω∫ π

−π
P̂yNyN(ω)dω

= Cs
ε{P̂xrNxrN}
ε{P̂yNyN} ,

(2:8)

and

SI(w) = Cs

∫ π

−π
P̂xrIxrI (ω)dω∫ π

−π
P̂
yIyI

(ω)dω
= Cs

E{P̂xrIxrI }
E{P̂yIyI}

, (2:9)

where Cs =
1
Cd

. Note that in (2.8), P̂yNyN(ω) and

P̂xrNxrN(ω) are power spectrum estimates of the beamfor-
mer output with and without filtering, when the sur-
rounding noise is active alone. In the same manner,

P̂yIyI(ω) and P̂xrIxrI (ω) are power spectrum estimates when
the interference signals are active alone. Both the noise
and the interference suppression measures are normal-
ized in accordance with the amplification/attenuation
caused by the beamformer to the reference observation

speaker�
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Figure 1 A finite impulse response beamformer. The structure of a finite impulse response beamformer.
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when the source signal is active alone, i.e., when the
beamformer attenuates the source signal by a specific
amount, the noise and interference suppression quanti-
ties are reduced by the same amount.
In order to control the suppression and the distortion

simultaneously, the filter design problem is formulated
as a nonlinear programming problem given below.
Problem 1. Find a w ∈ Wsuch that

F1(w) ≡ −10 ∗ (log10SN(w) + log10SI(w)) (2:10)

is minimized, subject to

G1(w) ≡ 10 ∗ log10Dr(w) − c1 ≤ 0, (2:11)

where c1 is a pre-defined distortion level in dB scale.
Similar to Problem 1, we can also formulate the con-

strained nonlinear programming problem as:
Problem 2. Find a w ∈ Wsuch that

F2(w) ≡ 10 ∗ log10Dr(w), (2:12)

is minimized, subject to

G2(w) ≡ −10 ∗ (log10SN(w) + log10SI(w)) + c2 ≤ 0,(2:13)

where c2 is a pre-defined suppression level in dB scale.
Remark 1. In some situations, the influence of interfer-

ence noise can be ignored. In such cases, the term SI in
both Problems 1 and 2 can be removed.

3 Infinite precision solution
Both Problems 1 and 2 are discrete optimization pro-
blems. There is a lack of gradient information and hence
they are much more difficult to be solved than continu-
ous optimization problems. Here, we will first solve the
infinite precision solution of the continuous version of
the optimization problem, and use it as an initial guess to
search for a finite precision solution in the second stage.

3.1 Equivalent form

Basically, the computation of P̂ysys , P̂yNyN and P̂yIyI are
very expensive if we calculate them by using the filtered
signals ys,yN, and yI for every w [4]. To simplify the
computation, we take the discrete time Fourier trans-
form of both sides of (2.2) yielding

Y(ω) =
M∑
k=1

Wk(ωXk(ω), (3:1)

where Wk(ω), Xk(ω), and Y(ω) are the Fourier trans-
forms of wk, xk, and y, respectively. Denote ¯ as the con-
jugate symbol, we have

P̂yy(ω) =
∣∣Y(ω)∣∣2 = (

M∑
k=1

Wk(ω)Xk(ω))(
M∑
j=1

W̄j(ω)X̄j(ω))

=
M∑
k=1

M∑
j=1

Wk(ω)W̄j(ω)Xk(ω)X̄j(ω) =
M∑
k=1

M∑
j=1

Wk(ω)W̄j(ω)
¯̂Pxkxj(ω),

(3:2)

where P̂xkxj(ω) is the cross power spectrum of xk and
xj. Since for each k, Wk(ω) can be expressed as

Wk(ω) =
L−1∑
j=0

wk(j)e−ijω = (wk)ᵀξ(ω),

where ξ(ω) = (1, e-iω..., e-i(L-1)ω)⊺, it is clear that

Wk(ω)W̄j(ω) = (wk)ᵀξ(ω)(ξ̄(ω))ᵀ(w)j, (3:3)

where ξ(ω)(ξ̄(ω))ᵀ can be computed directly as a
Toeplitz matrix function:

ξ(ω)(ξ̄(ω))ᵀ =

⎛
⎜⎜⎜⎝

1 eiω . . . ei(L−1)ω

e−iω 1 . . . ei(L−2)ω

...
...

. . .
...

e−i(L−1)ω e−i(L−2) . . . 1

⎞
⎟⎟⎟⎠ . (3:4)

Let Rξ(ω) and Iξ(ω) be, respectively, the real part and
imaginary part of ξ(ω)(ξ̄(ω))ᵀ given by

Rξ (ω) =

⎛
⎜⎜⎜⎝

1 cosω . . . cos(L − 1)ω
cosω 1 . . . cos(L − 2)ω
...

...
. . .

...
cos(L − 1)ω cos(L − 2)ω . . . 1

⎞
⎟⎟⎟⎠ ,(3:5)

Iξ (ω) =

⎛
⎜⎜⎜⎝

0 sinω . . . sin(L − 1)ω
− sinω 0 . . . sin(L − 2)ω

...
...

. . .
...

− sin(L − 1)ω − sin(L − 2)ω . . . 0

⎞
⎟⎟⎟⎠ ,(3:6)

and let Rxkxj(ω) and Ixkxj(ω) be the real part and ima-

ginary part of ¯̂Pxkxj(ω), respectively. Then, (3.2) can be

rewritten as

P̂yy(ω) = Re

⎧⎨
⎩

M∑
k=1

M∑
j=1

Wk(ω)W̄j(ω)
¯̂Pxkxj(ω)

⎫⎬
⎭

=
M∑
k=1

M∑
j=1

Re
{
(wk)

ᵀ [
Rξ (ω) + iIξ (ω)

]
wj [Rxkxj(ω) + iIxkxj(ω)

]}

=
M∑
k=1

M∑
j=1

(wk)
ᵀ [

Rxkxj(ω)Rξ (ω) − Ixkxj(ω)Iξ (ω)
]
wj.

(3:7)

Let Ξ(ω) be a ℝML×MLmatrix function given by

�xx(ω) =

⎛
⎜⎜⎜⎝

�x1x1 (ω) �x1x2(ω) . . . �x1xM(ω)
�x2x1 (ω) �x2x2(ω) . . . �x2xM(ω)

...
...

. . .
...

�xMx1 (ω) �xMx2(ω) . . . �xMxM(ω)

⎞
⎟⎟⎟⎠ , (3:8)

where

�xkxj(ω) = Rxkxj(ω)Rξ (ω) − Ixkxj(ω)Iξ (ω). (3:9)

Then, by (3.7)-(3.9), the constant Cd defined in (2.7)
can be simplified as
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Cd =
ε
{
P̂xrsxrs

}
ε
{
wᵀ�xsxsw

} . (3:10)

The normalized distortion measure defined in (2.6)
can then be rewritten as

Dr(w) = ε

{∣∣∣∣∣ ε{P̂xrs xrs }
ε{wᵀ�xsxsw} P̂ysys(ω) − P̂xrsxrs (ω)

∣∣∣∣∣
}

=
ε
{∣∣∣wᵀ

(
ε{P̂xrsxrs }�xsxs − P̂xrs xrsε{�xsxs}

)
w

∣∣∣}
ε{wᵀ�xsxsw} ,

(3:11)

and the normalized noise suppression measure and
interference suppression measure defined in (2.8) and
(2.9) can be, respectively, simplified as

SN(w) =
ε
{
P̂xrNxrN

}
ε{P̂xrs xrs }

• wᵀε
{
�xsxs

}
w

wᵀε
{
�xNxN

}
w
, (3:12)

SI(w) =
ε
{
P̂xrIxrI

}
ε
{
P̂xrsxrs

} • wᵀε
{
�xsxs

}
w

wᵀε
{
�xIxI

}
w
. (3:13)

With (2.6), (2.8), and (2.9) replaced by (3.11)-(3.13),
the computation of distortion and suppression values
has been greatly simplified.

3.2 Properties
From (3.11)-(3.13), we have the following lemma.
Lemma 1. For any w and any l ≠ 0,it holds that

Dr(λw) = Dr(w), SN(λw) = SN(w), SI(λw) = sI(w).

By Lemma 1, we can restrict each coefficient wi(j) in a
bounded open interval (-1,1). Let W = (−1, 1)ML, the
respective infinite precision solutions of Problems 1 and
2 can be solved with the coefficients w confined in W .
For the suppression given by (3.12) (respectively,

(3.13)), if the constraint of distortion level is ignored, we
obtain the optimal solution of (3.12) (respectively,
(3.13)). Denote

w̃ =
(
ε
{
�xNxN

})1/2
w, R̃ =

(
ε
{
�xNxN

})−1/2
ε
{
�xsxs

} (
ε
{
�xNxN

})−1/2
.

Then, maximizing (3.12) is equivalent to maximizing

S̃N(w̃) =
w̃ᵀR̃w̃∥∥w̃∥∥2 . (3:14)

Considering (3.14), the optimal value is given by the
maximal eigenvalue of R̃ and the optimal solution w̃∗ is
given by the respective eigenvector. Then, the optimal
solution w* maximizing (3.12) is given by

w∗ =
(
ε
{
�xNxN

})−1/2
w̃∗.

We obtain the optimal solution w* by maximizing
(3.13) using the same principle.
The continuous versions of the optimization problems

of Problems 1 and 2 are nonlinear programming pro-
blems. One well-known method for solving this type of
problems is the sequential quadratic programming
(SQP) which will be employed here. An overview of
SQP can be found in [24].

4 Finite precision solution
For the coefficients of beamformers, it is advantageous
to express each one as the sum of signed power-of-two
terms. In general, we hope to use less wordlength and
less SPT terms to obtain a satisfying performance when
compared with the infinite precision solution. However,
if the wordlength is not long enough, the truncated
finite precision solution will produce very poor perfor-
mance. As a result, we need to develop a method to
find a satisfying finite precision solution by using a rela-
tively small number of SPT terms.

4.1 Problem transformation
Let us first construct a transformation to convert Pro-
blem 1 to an equivalent integer programming problem.
Ignoring the constraints (2.4) and (2.5), it is easy to

see that the set of all wi(j) is {2-bk, k = 1-2b,...,2b-1}. That
is, for any w̃ ∈ {

2−bk, k = 1 − 2b, . . . , 2b − 1
}
, there exists

a vector s̄ = (s̄k) , s̄k ∈ {−1, 0, 1}, such that

w̄ =
b∑

k=1

s̄k2−k. (4:1)

Then, when the wordlength is taken as b-bit, the
minimal number of SPT terms for w̄ is defined as:

Pw(w̄, b) = min
s̄

b∑
k=1

|s̄k|

s.t. w̄ =
b∑

k=1

s̄k2−k.

(4:2)

We now introduce an integer vector z = ((z1)⊺ ..., (zM)
⊺)⊺, where

zi =
(
zi(0), zi(1), . . . , zi(L − 1)

)ᵀ
, i = 1, . . . ,M,

such that

zi(j) = 2bwi(j), i = 1, . . . ,M, j = 0, . . . , L − 1.

Then, for each i and j, zi (j) Î {1 - 2b,..., 2b - 1}. Thus,
when the wordlength is taken as b-bit, the minimal
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number of SPT terms for some integer z̄ can be defined
by

Pz(z̄, b) = Pw(2−bz̄, b). (4:3)

Remark 2. The computation of Pz(z̄, b)and the conver-
sion from an integer to signed digit code can be imple-
mented by recursive functions. These are given in the
Appendix.
Clearly, the constraints (2.4) and (2.5) are equivalent to

M∑
i=1

L−1∑
j=0

Pz(zi(j), b) ≤ N1 (4:4)

Pz(zi(j), b) ≤ N2, ∀i, j. (4:5)

The cost functions (2.10) and (2.12) are equivalent to

F̄1(z) = −10 ∗ (log10SN(2
−bz) + log10SI(2

−bz)), (4:6)

and

F̄2(z) = 10 ∗ log10D(2−bz). (4:7)

To deal with the constraints, we use the penalty func-
tion method. Let Q1, Q2, Q3, Q4 and Q5 denote five suf-
ficiently large positive real numbers. The constraints
(4.4), (4.5), (2.11), and (2.13) are replaced with

g1(z) = max

⎧⎨
⎩0,Q1

⎛
⎝ M∑

i=1

L−1∑
j=0

Pz(zi(j), b) − N1

⎞
⎠

⎫⎬
⎭ ,(4:8)

g2,i,j(z) = max{0,Q2(Pz(zi(j), b) − N2)}, i = 1, . . . ,M, j = 0, . . . , L − 1, (4:9)

g3(z) =
{
Q3G1(2−bz) +Q5 if G1(2−bz) > 0
0 if G1(2−bz) ≤ 0

, (4:10)

and

g4(z) =
{
Q4G2(2−bz) +Q5 if G2(2−bz) > 0
0 if G2(2−bz) ≤ 0

, (4:11)

respectively. Then, by adding the penalized terms, the
objective functions (4.6) and (4.7) become

E1(z) = F̄1(z) + g1(z) +
M∑
i=1

L−1∑
j=0

g2,i,j(z) + g3(z), (4:12)

and

E2(z) = F̄2(z) + g1(z) +
M∑
i=1

L−1∑
j=0

g2,i,j(z) + g4(z), (4:13)

respectively. Let Z = {1 − 2b, . . . , 2b − 1}ML denote the
space of all possible z. Thus, Problem 1 is transformed into:

Problem 3. Find a z ∈ Zsuch that E1(z), which is
defined by (4.12), is minimized.
Similarly, Problem 2 is transformed into:
Problem 4. Find a z ∈ Zsuch that E2(z), which is

defined by (4.13), is minimized.
Problems 3 and 4 are unconstrained integer program-

ming problems. To solve Problems 3 and 4, we will
develop a three-step algorithm. The first step is the
selection of an initial point, the second step is a local
search, while the third step is a global approach.

4.2 Initial point
We will develop an efficient computational method to
search for the optimal solutions of Problems 3 and 4. But
first, we need to find a good initial point.
In general, it is much more difficult to solve the discrete

optimization problem than to solve the continuous version
of the optimization problem. In order to select good initial
points for Problems 3 and 4, we first find the solutions
(infinite precision solutions) of the continuous version of
Problems 1 and 2 and then round them to the nearest dis-
crete solutions.
Then, after the optimal solution ŵ of the continuous

version of Problem 1 or 2 is obtained, we denote

ẑ = 2bŵ and select the initial point z0 as the nearest
point in Z to ẑ, that is,

zi0(j) = T(ẑi(j)), i = 1, . . . ,M, j = 0, . . . , L − 1, (4:14)

where T is a function defined by

T(z̄) =

⎧⎨
⎩

[z̄ + 0.5] , if |z̄| ≤ 2b − 1,
2b − 1, if z̄ > 2b − 1,
1 − 2b, if z̄ < 1 − 2b,

(4:15)

in which [z̄] denotes the largest integer less than or
equal to z̄.

4.3 Local search
With an initial point, we can start to search for a local
minimizer. The steepest descent algorithm is applied here
to find a local minimizer by selecting the point which pro-
duces the largest reduction in the value of the objective
function over the current point’s neighborhood. The defi-
nition of neighborhood is given in
Definition 1. For any z ∈ Z, the neighborhood of z is

defined by

N (z) = {z, z ± ei : i = 1, . . . ,M L} ∩ Z , (4:16)

where ei is the ith unit vector (the ℝML vector with the
ith component equal to one and all other components
equal to zero).
If we have found a point which minimizes the objec-

tive function over its neighborhood, then the local
search stops and the point obtained is called a local
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minimizer. The precise definition of local minimizers is
given as follows:
Definition 2. A point z* is called a local minimizer of

Ei over Zif Ei(z∗) ≤ Ei(z), ∀z ∈ N (z∗).
Based on the two definitions given above, we present a

discrete steepest descent algorithm, which will be used
as a subroutine, to search for a local minimizer of the
cost function Ei in the following algorithm.
Algorithm 1. (Subroutine)

1. Start from an initial minimum z* and an initial
point z’ = z0. Compute the objective function value
Ei.
2. For each point z ∈ N (z′)\{z′}, compute the corre-
sponding objective function value Ei(z). Suppose z’ is
such that Ei(z’) is the minimum. If Ei(z’) ≥ Ei(z*),
then z* is a local minimizer of Ei and stop, else goto
Step 3.
3. Set z* = z’. Goto Step 2.

4.4 Global approach
With Algorithm 1, we can find a local minimizer from
any initial point. For this problem, there exist many
local minimizers, and not all of them are useful in prac-
tice. Thus, we shall derive a discrete filled function
method to search for the best local minimizer.
We introduce the following function based on the one

constructed in [23].

Fμ,ρ(z; z∗) = μ
[
Ei(z) − Ei(z∗)

]2 − ρ
∥∥z − z∗∥∥2, if Ei(z) ≥ Ei(z∗), (4:17)

where ║ ⋅ ║ denotes the usual Euclidean norm. When
r > 0, 0 <μ <r/K (K is a sufficiently large real number),
(4.17) is called a discrete filled function.
It is not necessary to define the function Fμ,pwhen Ei

(z) < Ei(z*). In this case, we can use the discrete steepest
descent method directly with z as the initial point and
will obtain a local minimizer, which is better than z*
with reference to the objective function.
The search according to this discrete filled function

(4.17) takes place as follows. With the starting point z*,
the μ[Ei(z) - Ei(z*)]

2 term favors a solution with lower
objective function value while the -r║z - z*║2 term
favors a solution far away from z*. Combining the
effects, the discrete filled function favors a solution
whose objective function value is not too much greater
than that of z* and at a considerable distance away from
z*. The idea is to direct its search towards the direction
with the least increase in the objective function value.
To address the situation when we fail to find a point z

such that Ei(z) <Ei(z*) using the discrete filled function
(4.17) as the objective function, we choose a positive
integer number ns. When the number of searching steps

is greater than ns, we stop and return the current local
minimizer. This is because for the problem considered
in this article, the optimal solution should be in the
neighborhood of the continuous solution. Therefore,
when the number of searching steps is greater than ns,
we can consider that the best local minimizer has been
obtained and it is not necessary to continue searching.
Then, with the current local minimizer z* of Ei, we

present a discrete steepest descent algorithm to search
for a point better than z* in the following algorithm.
Algorithm 2. (Subroutine)

1. Set the current local minimizer z* as the initial
point z0. Set l = 0 be the number of searching steps.
2. For each point z ∈ N (zl)\{zl}, compute the corre-
sponding objective function value Fμ,p(z; z*). Choose
z’ such that Fμ,p(z’; z*) is the minimum. Go to Step 3.
3. If Ei(z’) <Ei(z*), then stop and return z’ which is
better than z*, else set l = l + 1 and goto Step 4.
4. If l <ns, go to Step 2, else stop and return z’ = z*,
which means there is no point better than z*.

4.5 Algorithm
The proposed algorithm solving Problem 3 (or Problem
4) is summarized in the following:
Algorithm 3. (Main program)

1. Calculate the infinite precision solution ŵof Pro-
blem 1 (or Problem 2) by using the SQP method.
Compute the initial point z0.
2. Apply Algorithm 1 to obtain a local minimizer of
the objective function Ei with the initial point z0. Let
the local minimizer be denoted as z*.
3. Apply Algorithm 2 to find a point z’ better than z*.
If z’ ≠ z*, set z0 = z’ and go to Step 2, else stop search
and obtain the solution z*, go to Step 4.
4. If the best value Ei(z*) is sufficiently large, it means
some constraints are not satisfied and the solution is
infeasible, else return the solution z* and its value Ei
(z*). Stop.

It can be seen that Algorithm 3 includes two searches:
the search of local minimizer and the search for switch-
ing to the better local minimizer. Both searches are
based on the discrete steepest descent algorithm.

5 Simulation results
The proposed method has been used to solve several
examples. The results obtained are consistently favorable
when compared with results obtained by the truncation
method. In this section, we illustrate the results for two
examples. The computation was performed in Matlab,
where the coefficients in this article are set as
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μ = 10−6, ρ = 1, ns = 10, Q1 = Q2 = Q5 = 100, Q3 = Q4 = 10.

In the first example, the measurements were per-
formed in a car environment. The calibration signals
were recorded with a sample rate of 12 kHz and with a
300-3400 Hz bandwidth. A linear microphone array
with four elements is considered. Noise calibration sig-
nals were used, which are emitted individually from the
artificial talker and the handsfree loudspeaker as the
source and the interference calibration signals, respec-
tively. Interference signals were recorded by emitting an
independent sequence of white noise, from the hands-
free loudspeaker alone, within the bandwidth. This
recording serves as the point source interference calibra-
tion signal. Recordings with real speech signals were
recorded both individually and while driving. In order to
gather background noise signals, the car was driving at a
speed of 110 km/h on a paved road. The duration of
these signals was 8 s [3].
We consider Problem 1 with the filter length given as

8. The total allowable number of SPT terms is con-
strained by N1 = 40 and the allowable number for each
coefficient is constrained by N2 = 3. To see how our
method studies, we take an example when the distortion
level is taken as c1 = -25 dB and the wordlength is
taken as b = 5. We use the function fmincon in Matlab
to solve the infinite precision solution, whose objective
value is -23.8079 dB. The truncation solution is
obtained, where the objective value is -20.7160 and the
number of SPT terms is 60. For the proposed method,
we first obtain a local minimizer by Algorithm 1, where
the objective value is -21.9350 dB. By the discrete filled
function, we apply Algorithm 1 to search for a solution
better than the current local minimizer. Then, setting
this solution as the initial point, we apply Algorithm 1
to obtain a better local minimizer whose objective value
is -22.1598 dB. Again, by applying the discrete filled
function four times, we obtain the local minimizer
whose objective value is -23.4359 dB. This is then the
best solution we found. Hence, we can see that from the
truncation method to the proposed method, the total
improvement of performance is 2.72 dB and the
improvement of the number of SPT terms is 20.
Furthermore, the improvement of performance from
local search to global search is 1.50 dB.
Next, by choosing N1 = 50, N2 = 3, and b = 6, we

apply the proposed method to solve the infinite preci-
sion solution with the distortion level taken as c1 = -20
dB, -22 dB, and -25 dB, respectively. The infinite and
finite precision solutions and their values are reported
in Table 1.
The power spectrum estimates of the unprocessed and

processed noise and interference signal using Welch’s
periodogram in the case of c1 = -20 dB are depicted in

Figures 2 and 3. In the suppression figure, if the line of
beamformer output is lower than that of the single sen-
sor observation, then the noise signal or interference
signal is suppressed. The much the dashed line is lower
than the real line, the much the signal is suppressed,
especially at some frequency when the intensity is strong
(dB value is high). It can be seen from Figures 2 and 3
that the noise or interference signal has been
suppressed.
In the second example, the calibration signals were

recorded with a two-element microphone arrays in an
anechoic environment. A sample rate of 6 kHz is used.
The duration of the signals was 5 s. We consider Problem
2 with the filter length given as 20. The total allowable
number of SPT terms is constrained by N1 = 50 and the
allowable number for each coefficient is constrained by
N2 = 3. The wordlength is taken as b = 6. We use the
function fmincon in Matlab to solve the infinite precision
solution with the suppression level taken as c2 = -20 dB,
-22 dB, and -25 dB, respectively. The infinite and finite
precision solutions and their values are reported in Table
2. The power spectrum estimates of the unprocessed and
processed noise and interference signal using Welch’s
periodogram in the case of c2 = -20 dB are shown in Fig-
ure 4. As the dashed line is lower than the real line for all
frequencies in Figure 4, the noise signal has been sup-
pressed remarkably.
We can see from Tables 1 and 2 that the sums of SPT

terms of the directly truncated solutions are always very
large, and neither their values are satisfactory when
compared with the infinite precision solutions, nor are
the constraints. For the solutions obtained by the dis-
crete filled function method, the sums of SPT terms are
reduced remarkably and their values are very close to
that of the infinite precision solutions.

6 Conclusion
In this article, a novel design method is developed for
the finite precision beamformers. The design is based
on a bi-criteria formulation trading off speech distortion
against noise suppression, and the method is based on

Table 1 Results for Example 1

Solutions Distortion level Sum of SPT Constraint G1 F1(w*)

Infinite -20 dB – 0 -31.9979

Precision -22 dB – 0 -26.7198

Solutions -25 dB – 0 -23.8079

-20 dB 75 0.0052 -31.9196

Truncated -22 dB 79 0.0254 -26.5992

Solutions -25 dB 77 -0.1208 -21.9489

-20 dB 50 -0.0022 -31.8630

Proposed -22 dB 50 -0.0260 -26.6194

Method -25 dB 50 -0.0206 -23.6929
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Figure 2 Noise suppression in Example 1. Spectrum estimates using Welch’s pe-riodogram of an unprocessed single microphone observation
and the beamformer output signal, when the distortion level is -20 dB.
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Figure 3 Interference suppression in Example 1. Spectrum estimates using Welch’s periodogram of an unprocessed single microphone
observation and the beamformer output signal, when the distortion level is -20 dB.
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the concept of discrete filled functions, where filter coef-
ficients are expressed as sums of SPT terms. An algo-
rithm is derived using gradient descent techniques
together with a procedure. From our numerical studies,
the proposed method is highly effective, producing
superior performance and reasonable design complexity.

Appendix 1: computation of Pz(z̄, b)
When the wordlength is taken as b-bit, the minimal
number of SPT terms for z̄, which is defined as Pz(z̄, b)
in (4.3), is computed as a recursive function:

Recursive Function (Pz(z̄, b)).

1. If |z̄| ≥ 2b, then Pz(z̄, b) = +∞. Stop and return
Pz(z̄, b).
2. If z̄ = ±1, then Pz(z̄, b) = 1. Stop and return
Pz(z̄, b).
3. If |z̄| > 1and z̄is odd, then call the functions
Pz(z̄ + 1, b)and Pz(z̄ + 1, b)respectively. Then, let
Pz(z̄, b) = 1 + min{Pz(z̄ − 1, b),Pz(z̄ + 1, b)}. Stop and
return Pz(z̄, b).
4. If z̄is even, then call the function Pz(z̄/2, b − 1).
Then, Pz(z̄, b) = Pz(z̄/2, b − 1). Stop and return
Pz(z̄, b).

For this recursive function, the first two terms are the
terminal conditions and the last two terms are the
recursive rules. It is not difficult to see that the recursive
rules preserve the property that Pz(z̄, b) is the minimal
number of SPT terms for z̄. For example, in the third
term, if Pz(z̄ − 1, b) is the minimal number of SPT
terms for z̄ − 1 and Pz(z̄ + 1, b) is the minimal number
of SPT terms for z̄ + 1, then Pz(z̄, b) is the minimal

Table 2 Results for Example 2

Solutions Suppression level Sum of SPT Constraint G2 F2(w*)

Infinite -20 dB – 0 -26.7387

Precision -22 dB – 0 -26.2833

Solutions -25 dB – 0 -25.3942

-20 dB 67 0.3268 -26.7499

Truncated -22 dB 93 0.0981 -26.2938

Solutions -25 dB 73 0.3541 -25.4031

-20 dB 50 -0.0047 -26.7228

Proposed -22 dB 50 -0.0188 -26.2194

Method -25 dB 50 -0.0057 -25.3521
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Figure 4 Noise suppression in Example 2. Spectrum estimates using Welch’s pe-riodogram of an unprocessed single microphone observation
and the beamformer output signal, when the suppression level is -20 dB.
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number of SPT terms for z̄. Hence, we can compute
Pz(z̄, b) by applying this recursive function.

Appendix 2: converting an integer into signed
digit code
Let �(z̄, b) denotes the minimal number of signed
powers of two terms of z̄ when the wordlength is taken
as b-bit. Generally, �(z̄, b) is not unique.
Recursive Function (�(z̄, b)).

1. If |z̄| ≥ 2b, then �(z̄, b) = ∅. Stop.
2. If z̄ = 1, then �(z̄, b) = {20}. If z̄ = −1, then

�(z̄, b) = {−20}. Stop and return �(z̄, b).
3. If |z̄| > 1and z̄is odd, then call the functions
�(z̄ − 1, b), �(z̄ + 1, b)and �(z̄ − 1, b), �(z̄ + 1, b). if
Pz(z̄, b) = 1 + Pz(z̄ + 1, b)then let
�(z̄, b) = �(z̄ + 1, b) ∪ {−20}, else if
Pz(z̄, b) = 1 + Pz(z̄ − 1, b), then let
�(z̄, b) = �(z̄ − 1, b) ∪ {20}. Stop and return �(z̄, b).
4. If z̄is even, then call the function �(z̄/2, b − 1).
Suppose that �(z̄/2, b − 1) = {sik2ik , k = 1, . . .}, then
let �(z̄, b) = {sik2ik+1, k = 1, . . .}. Stop and return
�(z̄, b).
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