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Abstract

In this article, we propose a weighted ℓ2,1 minimization algorithm for jointly-sparse signal recovery problem. The
proposed algorithm exploits the relationship between the noise subspace and the overcomplete basis matrix for
designing weights, i.e., large weights are appointed to the entries, whose indices are more likely to be outside of
the row support of the jointly sparse signals, so that their indices are expelled from the row support in the
solution, and small weights are appointed to the entries, whose indices correspond to the row support of the
jointly sparse signals, so that the solution prefers to reserve their indices. Compared with the regular ℓ2,1
minimization, the proposed algorithm can not only further enhance the sparseness of the solution but also reduce
the requirements on both the number of snapshots and the signal-to-noise ratio (SNR) for stable recovery. Both
simulations and experiments on real data demonstrate that the proposed algorithm outperforms the ℓ1-SVD
algorithm, which exploits straightforwardly ℓ2,1 minimization, for both deterministic basis matrix and random basis
matrix.

Keywords: sparse signal recovery, weighted ℓ2,1 minimization, multiple measurement vectors (MMV), direction-of-
arrival estimation

1 Introduction
In recent years, sparse signal recovery has attracted a
great deal of attention from the signal processing society
[1-16]. Using an overcomplete basis A Î ℂM×K (M ≪ K)
and the sparsity prior on signal x, the sparse representa-
tion problem of the noiseless measurements with single
measurement vector (SMV) y = Ax can be solved by a
combinatorial ℓ0 problem

min ‖x‖0 s.t. y = Ax, (1)

where the sparse signal x has only P nonzero compo-
nents and || x ||0 = P represents the number of nonzero
components of x. Unfortunately, the minimization pro-
blem (1) is NP-hard. A practicable way of solving the
sparse representation problem is to employ the follow-
ing convex optimization

min ‖x‖1 s.t. y = Ax, (2)

where ‖x‖1 =
∑K

i=1 |xi|. As a surrogate of the ℓ0 norm,
the regular ℓ1 norm is tractable, but it depends on sig-
nal’s coefficient values and attenuates the nature of lit-
eral ℓ0 sparsity count, which may cause performance
degrading in some situations. To avoid the disadvantage
of the dependence on magnitude of the regular ℓ1 mini-
mization, Candès et al. designed an iterative reweighted
formulation of ℓ1 minimization to more democratically
penalize nonzero coefficients, namely, large weights will
discourage to reserve those entries who are more likely
to be zero in recovered signal, whereas small weights
will encourage to reserve larger entries [12]. In other
words, the essence of the iterative reweighted ℓ1 minimi-
zation lies in that large weights are appointed to those
elements of x, whose indices are more likely to be out-
side of the support [14,16], which expels their indices
from the support in the sparse solution and further con-
solidates the sparsity-encouraging nature of regular ℓ1

minimization [12-16]. The support of x is defined as
Supp(x) = {k|xk ≠ 0}. Incidentally, it was proved that the
iterative reweighted ℓ1 minimization can indeed improve
both the recoverable sparsity thresholds and the recov-
ery accuracy upon the regular ℓ1 minimization [13-15].
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It is worth noting that the iterative reweighted ℓ1

minimization was designed for the SMV problem [12].
In fact, the multiple measurement vectors (MMV) pro-
blem is encountered in many applications of sparse sig-
nal representation such as array processing [1,6-11],
magne-toencephalography [1], nonparametric spectrum
analysis of time series [17], equalization of sparse com-
munication channels [18] and so on. In the MMV case
the ℓ1-SVD method [7-9] replaces the ℓ1 norm minimi-
zation with the mixed norm ℓ2,1 norm minimization.
Similar to the regular ℓ1 norm minimization, the ℓ2,1

minimization also meets the disadvantage of the depen-
dence on magnitude. Therefore, in the MMV case how
to design an appropriate weighting vector to cope with
the disadvantage of the dependence on magnitude of
the regular ℓ2,1 minimization is an interesting issue. In
this article, we focus on the noisy MMV case and pro-
pose an algorithm of the jointly-sparse signal recovery
based on the relationship between the noise subspace
and the overcomplete basis for weighting the jointly
sparse signals, which extends the essence of the iterative
reweighted ℓ1 minimization in [12] from SMV to MMV.
The measurements with MMV can be written as

y (t) = Ax (t) + n (t) , t = 1, . . . ,T, (3)

where the vector n(t) denotes an additive noise vector
with zero-mean and variance s2, the vector x(t) is the
jointly-sparse signals and the support is independent of
the snapshot t [1]. Without loss of generality, the additive
noise n(t) is assumed to be uncorrelated with the jointly-
spares signals x(t). The row support of the jointly sparse
signals X (X denotes the matrix form of x(t)) plays a key
role in the sparse signal recovery with MMV, and it can

be defined as Supprow(X) = {k|X(�2)
k �= 0} � �[6], where

X(�2)
k

denotes the kth entry of X(�2), and X(�2) is a column

vector whose kth elements denotes the ℓ2 norm of kth
row of X. It is obvious that the index set Λ ⊆ {1, ..., K}
and its cardinality |Λ|= P. Considering the relationship
between the indices of the columns of A and the row
support Λ, the overcomplete basis A can be divided into
two submatrix, i.e., A = [A� A�c ], where the indices of the
columns of the submatrix AΛ constitute the row support
Λ, and the indices of the columns of the submatrix A�c

constitute the complement of Λ, i.e., Λ∪Λc = {1, ..., K}
and Λ∩Λc = ∅. On the other hand, the subspace decom-
position on {y(t), t = 1, ..., T} provides the signal subspace
and the noise subspace. It is noted that the noise sub-
space is orthogonal to the column space of AΛ [19-21]
but not to the submatrix A�c.
From this observation, this article designs a subspace

weighted (SW) ℓ2,1 minimization algorithm in the MMV
case, in which small and large weights are generated by
using the orthogonality between noise subspace and AΛ

and the isomorphism between noise subspace and A�c.
We will show that the designed weights can force the
entries whose indices are more likely to be outside of
the row support to be close to zero in the solution, and,
therefore further promotes the sparseness of the solu-
tion and improves the recovery accuracy.
Although our proposed algorithm also exploits the sin-

gular value decomposition (SVD), compared with the ℓ1-
SVD algorithm [7-9], the key difference is that we not
only use the SVD to reduce the computation complexity
but also employ it to obtain the signal subspace and the
noise subspace and, accordingly, to design the weights.
Thus, we call the proposed algorithm as the SW ℓ2,1-SVD
algorithm. The experiments prove that the SW ℓ2,1-SVD
algorithm can achieve better estimation performance
than ℓ1-SVD algorithm that exploits straightforwardly
ℓ2,1 minimization. In addition, simulations and experi-
ments on real data also demonstrate that the SW ℓ2,1-
SVD algorithm can be applied to the DOA estimation,
high resolution radar imaging, and other sparse recovery
related problems with the random basis matrix.
The remainder of this article is organized as follows.

In the following section, we describe the sparse signal
representation framework in the MMV case. In Section
3, we formulate the SW ℓ2,1-SVD algorithm. In Section
4, the performance of the proposed method is explored
with some examples. The summary is given in Section 5.

2 The ℓ1-SVD algorithm
For recovering the jointly-sparse signals X, a feasible
way is that the row support of the jointly sparse signals
is first determined and then the signals can be recovered
by solving a least square (LS) problem [1]. In addition,
in some applications the problem of interest is to deter-
mine the row support rather than recover X oneself.
Therefore, in this article we consider the problem of
determining the row support of the jointly sparse
signals.
The Equation (3) can be expressed with matrix form:

Y = AX +N. (4)

The truncated SVD can be exploited to hold the prin-
cipal components on the measurements Y [7-9]:

YSV = U�DP = YVDP, (5)

where Y = UΣVH, the superscript H denotes the con-
jugate transpose, the non-zero entries of Σ are equal to
the singular values of Y and they are sorted in descend-
ing order on the diagonal; the columns of U and V are,
respectively, left singular vectors and right singular vec-
tors for corresponding singular values; DP = [IP ; 0],
where IP is a P × P identity matrix and 0 is a (T − P ) ×
P matrix of zeros. Moreover, let
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XSV = XVDP, (6)

and

NSV = NVDP. (7)

Obviously, XSV and X have the same row support.
The ℓ1-SVD algorithm can be described as [7-9]:

min ‖XSV‖2,1 s.t. ‖Y − AXSV‖2F ≤ β2, (8)

where β2 ≥ ||NSV||2F is a regularization parameter,
the mixed norm ℓ2,1 norm is defined as

|| · ||2,1 �
∑

i
(
∑

j

∣∣∣[·]i,j∣∣∣2)1/2 [22], and ||·||F denotes

Frobenius norm, respectively. In practice, we select the
set of the indices of the P peaks in the solution as the
estimate of the row support set �̂.

3 Subspace weighted ℓ2,1-SVD algorithm
Here, given the MMV case we exploit the relationship
between the noise subspace and the overcomplete basis
to construct a weighting vector that can improve the per-
formance of the ℓ1-SVD method. Incidentally, we already
presented the SW method in [23], where we used an
extra eigendecomposition of sample correlation matrix to
obtain the noise subspace. However it is not necessary to
employ the extra eigendecomposition, because the SVD
of measurements Y has revealed how to obtain subspace
decomposition [17]. In addition, we address some inter-
esting issues and extend the application of the SW
method.
Retracing the SVD mentioned as (5), we have

U = [Us Un] , (9)

where Us = [u1, ..., uP] and Un = [uP+1 , ..., uM], which
correspond to the signal subspace and noise subspace,
respectively, [17].
In [19,20], it is proved that

AH
�Un = B, (10)

where B =[bi,j] and bi,j ® 0 as the number of snap-
shots T ® ∞. As a result, we have

AHUn =

[
AH

�Un

AH
�cUn

]
=

[
B

C

]
=

[
W�

W�c

]
= W, (11)

where C = AH
�cUn. We can express the weighted vector as

W(�2) =

[
W(�2)

�

W(�2)
�c

]
, (12)

where W(�2)
�,i → 0 and W(�2)

�c ,i → C(�2)
i > 0 as T ® ∞

[19]W(�2)
�,i ,W

(�2)
�c,i, and C(�2)

i
denote the ith entry of

C(�2), and C(�2), respectively. This is consistent with the
methodology of the iterative reweighted ℓ1 minimiza-
tion, i.e., large weights are assigned to the entries whose
indices are more likely to be outside of the row support,
whereas small weights are assigned to the entries whose
indices are inside of the row support [12,14,16]. When
the limited snapshots are used in actual application, it is

also guaranteed that the entries of W(�2)
�

are much smal-

ler than those of W(�2)
�c [19-21].

We define

w = W(�2). (13)

The sparse solution can be found bya

min ‖XSV‖w;2,1 s.t. ‖Y − AXSV‖2F ≤ β2, (14)

where ‖ · ‖w;2,1 �
∑

i
wi(

∑
j
|[·]i,j2)|

1/2
, wi denotes the

ith entry of w.
Some related issues are discussed as follows.
Discussion 1 : An interesting issue raised by the Equation

(12) is how many snapshots are enough for the SW
method to work. The weighted process can be seen as a
preprocessing that obtains the rough information about
the row support and the weighted values. The SW method
employs the methodology of the MUSIC method [19] to
achieve the preprocessing. Therefore, the SW method is
consistent with the MUSIC method on the requirement of
the number of snapshots. The theoretical limitation of the
requirement of the number of snapshots T ≥ P is showed
in [24,25] for the MUSIC method. In other words, the SW
method is able to work with very small number of
snapshots.
Discussion 2 : The prior information about the number

of sources plays a key role in partitioning the noise sub-
space and the signal subspace. The right partition of the
noise subspace and the signal subspace is beneficial to
accomplish the optimal weights for the SW method. In
practice, the number of sources can be determined by
exploiting the information theoretic criterion such as the
Akaike’s information criterion (AIC) [26] and the mini-
mum description length (MDL) criterion [27]. These
methods require the eigenvalue of the sample correlation
matrix R̂, where R̂ = 1

TYY
H is a Hermitian matrix. We can

use the SVD of Y to obtain the eigenvalue because the
eigenvalue decomposition (EVD) of a Hermitian matrix is
a special case of the SVD of a general matrix [17]. As a
result, we have �e= 1

T��H, where the elements on the
diagonal of Σe are the eigenvalue of R̂. Therefore, the num-
ber of sources can be determined by combining the SVD
of Y with the information theoretic criterion. However, in
some situations, for example, when the signal-to-noise
ratio (SNR) is very low or the number of snapshots is very
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small, the classical AIC and MDL rules are likely to over-
estimate or underestimate the number of sources. Thus,
another interesting issue is the robustness of the proposed
SW ℓ2,1-SVD algorithm to the estimate of the number of
sources. Here we give a brief explanation about the
robustness of SW ℓ2,1-SVD to the estimate of the number
of sources and leave a detailed discussion to future work.
For one thing, both the proposed SW ℓ2,1-SVD algorithm
and the original ℓ1-SVD algorithm [8] use information
about the number of sources to reduce the computational
complexity, in which the incorrect determination of the
number of sources does not incur catastrophic conse-
quences [8]. For another, the weighted ℓ2,1 minimization
processing is not very sensitive to the determination of the
number of sources. Considering two cases, i.e., the esti-
mate of the number of sources P̂ = 0 (the extreme under-
estimation case) and P < P̂ ≤ M − 1 (the overestimation
case), where the real value of the number of sources is
assumed as 0 <P <M − 1. For the former the estimate of
the noise subspace Ûn is equal to U, and then all weights
are identical because the matrix U is a unitary matrix, i.e.,

||aHi Ûn||2 = ||aHj Ûn||2 for i ≠ j. As a result, SW ℓ2,1-SVD

becomes ℓ1-SVD in the extreme underestimation case. For
the latter Ûn = [uP̂+1, . . . ,uM] and the subspace that its
columns span is a true subset of the noise subspace.
Therefore, the orthogonality between Ûn and AΛ still
exists and it only incurs gradual degradation of perfor-
mance because the shrunk subspace dimension will
weaken the multiple averaging effect [28]. Obviously, SW
ℓ2,1-SVD can cope with the overestimation case. We illus-
trate this conclusion in Section 4.

4 Examples
In this section, we present some examples to demonstrate
the performance of the proposed SW ℓ2,1-SVD algorithm.
We first address source localization with a uniform linear
array (ULA) and a nonuniform linear array (NULA). Then
we consider sparse signal recovery problem with the ran-
dom basis matrix in the presence of noise. Lastly, we
employ the real data to illustrate the performance of the
proposed method. Here we use the CVX package for sol-
ving the convex optimization problem [29].

4.1 Source localization with ULA
We consider the ULA composed of M = 10 sensors
separated by half a wavelength for the source localiza-
tion problem. The grid is uniformly sampled with 0.1°
from −90° to 90° (unless specifically stated). The over-
complete basis matrix A =[a(j1), ..., a (jK)] is a determi-
nistic basis matrix under this condition, where the
vector a(jk) denotes the array steering vector and jk is
the kth sampling grid.

4.1.1 Localization accuracy
In the first experiment we suppose that there are three
signals impinging on the array from θ1 = 12°, θ2 = 43°,
and θ3 = 67°. The number of snapshots is T = 200. We
compare the RMSE of the DOA estimates yielded by
SW ℓ2,1-SVD with those of ℓ1-SVD, Root-MUSIC [30],
and CRB [20]. In Figure 1a, three sources are assumed
to be uncorrelated; and in Figure 1b, the sources at θ1 =
12° and θ2 = 43° are coherent, whereas the source at θ3
= 67° is uncorrelated to the first two sources. The spa-
tial smoothing technique with a 4-element smoothing
subarray is employed for Root MUSIC to decorrelate
the coherent signals. As can be seen from Figure 1, the
Root-MUSIC algorithm that can be seen as the typical
representative of the subspace-like algorithm can pro-
vide good accuracy in uncorrelated sources case,
whereas it need use the spatial smoothing technique to
obtain competitive performance in coherent sources
case. As for the ℓ1-SVD algorithm that employs the reg-
ular ℓ2,1 minimization, it can yield acceptable DOA esti-
mates in coherent sources case but does not compete
with the subspace-like algorithm in uncorrelated sources
case. Since the weighted ℓ2,1 minimization further con-
solidates the sparsity-encouraging nature of regular ℓ2,1
minimization, the SW ℓ2,1-SVD can improve the recov-
ery accuracy. As a result, the presented SW ℓ2,1-SVD
algorithm gives competitive DOA estimates that are clo-
ser to the CRB for both uncorrelated and coherent
sources.
4.1.2 DOA tracking for mobile sources
An advantage of sparse signal representation methodol-
ogy is that it has robustness to limited number of snap-
shots for DOA estimation [8]. Then, we design a
scenario to validate the ability of the presented SW ℓ2,1-
SVD, which there are two uncorrelated moving sources
in the array’s viewing field and we need estimate their
DOAs using a few snapshots.b We consider two moving
sources in this simulation. A source moves linearly from
30° to 21°; the other one moves first from 0° to 3°, and
then from 3° to 0°, and last from 0° to 3°. It is assumed
that the moving step is 0.03° per snapshot over a course
of 300 data snapshots. We use the most recent three
snapshots to estimate DOAs for SNR = 12 dB. As can
be seen from Figure 2, the Root-MUSIC algorithm has
some strong outliers; especially some strong outliers
confuse two sources over some periods. Although it is
also demonstrated that the ℓ1-SVD algorithm can work
with a few snapshots, there are some outliers, which
causes degradation in the performance of the trajec-
tories. The presented SW ℓ2,1-SVD has a few slight out-
liers, which do not affect DOA tracking for mobile
sources. This shows that the weighted ℓ2,1 minimization
outperforms the regular ℓ2,1 minimization in the sense
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that a few snapshots are employed to obtain exact
sparse recovery.

4.2 Source localization with NULA
In this section, we consider the NULA composed of M
= 10 sensors that are randomly selected from a ULA

with 20 sensors for the source localization problem.
Here we only consider the coherent sources case. Again,
the sources at θ1 = 12° and θ2 = 43° are coherent, and
the source at θ3 = 67° is uncorrelated to other sources.
In Figure 3, we show the spatial spectrum obtained with
MUSIC, ℓ1-SVD, and SW ℓ2,1-SVD in 100 Monte Carlo
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Figure 1 RMSE of angle estimation. (a) Uncorrelated sources. (b) Coherent sources. The number of snapshots is T = 200. Each point is average
of 500 Monte-Carlo trials. Asterisk-solid curve: ℓ1-SVD; Square-dash curve: SW ℓ2,1-SVD; Circle-solid curve: Root-MUSIC; Dash curve: CRLB.
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runs. In this experiment SNR is 10 dB, the number of
snapshots is 200. The spatial smoothing technique is
valid for an ULA, but not for NULA [17]. Therefore, as
it is shown in Figure 3a, MUSIC has only one significant
peak because spatial smoothing does not work for
NULA. However, both ℓ1-SVD and SW ℓ2,1-SVD still
provide good estimates. In addition, it also is noted that
the proposed SW ℓ2,1-SVD algorithm has smaller var-
iance than that of the ℓ1-SVD algorithm, which is con-
sistent with the conclusion of the Section 4.1.1, i.e., the
SW ℓ2,1-SVD algorithm has better localization accuracy
than that of the ℓ1-SVD algorithm.

4.3 Sparse recovery for random basis matrix
A related problem is that the presented SW ℓ2,1-SVD
can be extended to other instances with a random basis
matrix that accord with the model (3) in the sparse
representation framework. Here, we give some examples
to demonstrate the validity of the extension. We assume
a MMV sparse matrix X Î ℝK×T with P non-zero rows
that their indices are chosen randomly, and their ampli-
tudes is chosen randomly from a standard normal distri-
bution. The overcomplete basis matrix A Î ℂM×K is a
random matrix with i.i.d. Gaussian entries or i.i.d sym-
metric Bernoulli ±1 entries, and its columns are normal-
ized. Our object is to estimate the row support of the
sparse signal X with the measurements Y = AX + N,
where N is an additive Gaussian white noise matrix and
its variance s2 is determined from a specified SNR level

as σ 2 = ‖X‖2F
T×P × 10−SNR/10. In the experiment parameter

settings are as follows: M = 12, K = 30, and P = 6. The
set of the indices corresponding to P peaks in the

estimate X̂
(�2)
SV

are regarded as the estimate of the row

support of the jointly sparse signals. The estimate of the
row support �̂ is considered to be correct if and only if
it is fully consistent with the true row support Λ. As
demonstrated in Figures 4 and 5, the SW ℓ2,1-SVD algo-
rithm improves the recovery performance, especially
reducing both the SNR requirement and the required
number of snapshots for stable recovery. In addition, for
exploring robustness to the number of sources, we
employ the assumed number of sources (ANS) to per-
turb the SW ℓ2,1-SVD algorithm. It is shown in Figures
4 and 5 that the SW ℓ2,1-SVD algorithm accomplishes
the optimal performance when ANS is equal to the
number of sources P (i.e., ANS = P = 6). Furthermore,
they also demonstrate that the SW ℓ2,1-SVD algorithm
can cope with both the overestimation case and the
underestimation case and it still excels the ℓ1-SVD algo-
rithm in these cases.

4.4 High resolution radar imaging via sparse recovery
Here we attempt to obtain high range resolution in data
collected by a real stepped frequency radar. The radar is
Ka band and the frequency step size Δf is 8 MHz, and
the pule repeat interval (PRI) is 0.15 ms. In the observed
scene two Corner Reflectors separated by 0.4 m are
fixed on a straight road and they are collinear with
radar. The width of the transmitted pulses is 1 μs and
64 pulses data are collected. The data model can be

written as y(n) =
∑P

i=1
βiri(n) + w(n),where bi is the

complex scattering intensity of the ith target,
ri(n) = exp[j 4π

νc
(f0 + n	f )Ri], vcis the speed of light, Ri is
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Figure 3 Spatial spectrum for coherent sources. (a) MUSIC; (b) ℓ1-SVD; (c) SW ℓ2,1-SVD. Three sources at 12°, 43°, and 67°, and each power is
10 dB. Green circles denote the DOAs and power of sources in each plot. 100 Monte-Carlo trials are shown.

Zheng et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:98
http://asp.eurasipjournals.com/content/2012/1/98

Page 6 of 11



the distance between the ith target and radar, f0 is the
initial frequency, w(n) denotes the noise. Without loss

of generality, in the recovery the item 2
vc
(f0 + n	f )Ri is

normalized (it is called as the normalized frequency in
the context) and the interval [0 1] is uniformly sampled
with 1024 grids.

In Figure 6, the normalized frequency spectrum
obtained from MUSIC, ℓ1-SVD, and SW ℓ2,1-SVD are
displayed, where the data window size is 32, i.e., 33
snapshots can be obtained by sliding the window. In
this case the mentioned algorithms clearly discern the
two targets. Compared with the sparse recovery
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algorithm, however, the peak obtained from MUSIC is
obtuse. In addition, ℓ1-SVD has a stronger spurious
peak that may confuse the true target with spurious
peaks. The confidence interval exerts an influence on
how many spurious peaks exist in the solution.
Although increasing the confidence interval can

suppress spurious peaks to some extent, as it is shown
in Figure 7, we may adopt a pessimistic attitude for ℓ1-
SVD. It is worthwhile to note that SW ℓ2,1-SVD has a
very slight spurious peak so that we can ignore it, espe-
cially for a higher confidence interval. Furthermore,
the confidence interval determines the size of the
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Figure 6 The normalized frequency spectrum for real measurement data. The data window size is 32. Asterisk-solid curve: ℓ1-SVD; square-
dash curve: SW ℓ2,1-SVD; solid curve: MUSIC; triangle-up: true spacing.
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regularization parameter, i.e., the higher the confidence
interval, the larger the regularization parameter. Figures
6 and 7 show clearly SW ℓ2,1-SVD has a good perfor-
mance when the size of the regularization parameter
varies widely.
Next, we illustrate the robustness of the proposed SW

ℓ2,1-SVD algorithm to the estimate of the number of
sources. In Figure 8, we artificially adjust the number of
sources so that we can explore what extent underestimat-
ing or overestimating the number of sources affects the
performance of the SW ℓ2,1-SVD algorithm. The data win-
dow size is fixed at 32 and the assumed number of sources
(ANS) is exploited to determine the dimension of the
noise subspace and reduce the computational complexity
(unless specially stated). Note that ANS = 0 is used only
for determining the dimension of the noise subspace and
DP =[I2 ; 0] is utilized to reduce the computational com-
plexity in Figure 8a. It is illustrated in Figure 8, in the
extreme underestimation case, i.e., ANS = 0, the result of
SW ℓ2,1-SVD and ℓ1-SVD is identical, which corroborates
ℓ1-SVD is a special example of SW ℓ2,1-SVD. In addition,
we can observe the fact SW ℓ2,1-SVD can clearly discern
the two targets in both underestimation and overestima-
tion cases, whereas MUSIC is invalid in the underestima-
tion case. Therefore, this illustration shows that
underestimation and overestimation of the number of
sources do not incur catastrophic consequences for SW
ℓ2,1-SVD.

In Figure 9, we compare the estimation accuracy of the
distance between two Corner Reflector obtained from
MUSIC, ℓ1-SVD, and SW ℓ2,1-SVD as a function of the
data window size M (the number of snapshots T = 64−M
+1). When the data window size is too small or too large,
MUSIC does not provide reliable results. Therefore,
MUSIC need carefully select the data window size so as to
it can obtain reliable estimates. Although the performance
of the ℓ1-SVD algorithm is better than that of MUSIC for
large data window size (i.e., M ≥ 61), it not give reliable
results for small data window size (i.e., M ≤ 7). For the
same experiment context, as expected, SW ℓ2,1-SVD yields
competitive performance and it is robust to the data
window size.

5 Conclusion
In this article, we proposed an effective weighted ℓ2,1

minimization algorithm that exploits the relationship
between the noise subspace and the overcomplete basis
matrix to obtain the weights for the jointly-sparse signal
recovery problem. The proposed SW ℓ2,1-SVD algorithm
appoints the large weights to those, whose indices are
more likely to be outside of the support so that their
indices are banished from the support. This can further
promote the sparseness of the solution at right posi-
tions. We provided experimental results to testify that,
for both deterministic basis matrix and random basis
matrix, the proposed SW ℓ2,1-SVD algorithm can obtain
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better performance than that of the ℓ1-SVD algorithm
with fewer number of snapshots and lower SNR.

Endnotes
The material in this article was presented in part at the
2011 International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2011), May 2011, Pra-
gue, Czech Republic. aIn the context, we use the method
introduced in [8] to determine the regularization para-
meter b2, and the confidence interval that controls the
size of b2 is set to 99% (unless specially stated).
bAlthough the indices of non-zero rows of x(t) are
dependent of the snapshot t for the moving sources, x(t)
can still be seen as the jointly-sparse signals providing
the number of snapshots T is very small.
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