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Edge and contrast preserving in total
variation image denoising

Liming Tang* and Zhuang Fang
Abstract

Total variation (TV) regularization can very well remove noise and simultaneously preserve the sharp edges. But
it has the drawback of the contrast loss in the restoration. In this paper, we first theoretically analyze the loss of
contrast in the original TV regularization model, and then propose a forward-backward diffusion model in the
framework of total variation, which can effectively preserve the edges and contrast in TV image denoising. A
backward diffusion term based on a nonconvex and monotony decrease potential function is introduced in the
TV energy, resulting in a forward-backward diffusion. In order to finely control the strength of the forward and
backward diffusion, and separately design the efficient algorithm to numerically implement the forward and
backward diffusion, we propose a two-step splitting method to iteratively solve the proposed model. We adopt
the efficient projection algorithm in the dual framework to solve the forward diffusion in the first step, and then use the
simple finite differences scheme to solve the backward diffusion to compensate the loss of contrast occurred in the
previous step. At last, we test the models on both synthetic and real images. Compared with the classical TV, forward
and backward diffusion (FBD), two-step methods (TSM), and TV-FF models, our model has the better performance in
terms of peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) indexes.
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1 Introduction
Image denoising plays an important role in various ap-
plied areas, such as pattern recognition, medical im-
aging, remote sensing, video processing, and so on. So
far, image denoising has seen many experienced vigorous
developments, and emerged in a number of important
theories and research results [1], e.g., spatial filtering
method [2–4]; transform domain filtering method [5–7];
and PDE-based method [8, 9].
In this paper, we focus on variational method that

achieves image denoising by functional regularization
and minimization [10, 11]. Since the total variation (TV)
minimization model was proposed by Rudin, Osher, and
Fatemi [12] in 1992, variational method has attracted
more and more research attention due to its sound the-
oretical basis and good experimental results, where the
TV of u TV (u) is defined as
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Definition 1 Let Ω ∈ R2 be an open subset with
Lipschitz boundary, and u(x) :Ω→ R. Then TV(u) is de-
fined as

TV uð Þ ¼
Z
Ω
∇uj jdx

¼ sup
Z
Ω
udiv φð Þdx;φ∈C1

C Ω;R2
� �

; φk k∞≤1
� �

where div represents divergence operator. Further, TV

uð Þ þ uk kL1 Ωð Þ is known as the bounded variation (BV)

of u, and TV(u) is so called BV-seminorm.
Using TV(u) to measure the restoration, Rudin et al.

[12] proposed the following constrained minimization
problem called TV model,

min
u

Z
Ω
∇uj jdx; subject to u−u0k k

2

L2 Ωð Þ
¼ σ2 ð1Þ

where σ is the standard deviation of noise which is as-
sumed to be known. In order to numerically solve the
constrained minimization problem (1), Rudin et al. [12]
transformed it to an unconstrained problem:
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min
u

α

Z
Ω
∇uj jdxþ u−u0k k2L2 Ωð Þ

� �
ð2Þ

and solved it by a simple finite difference scheme.
Chambolle and Lions [13] showed that problem (1) is
equivalent to problem (2) when α = 1/λ, where λ is the
Lagrange multiplier found in solving (1). TV model (2)
is convex and easy to solve in practice. In addition, the
solution u allows for discontinuities along curves; there-
fore, edges and contours can be preserved in the re-
stored image.
Later on, many scholars researched into the TV model

(2), and proposed lots of improved TV-based models (e.g.,
[14–17]). We note that many of the current TV-based
models have good performance in noise removing and
edge preserving. However, these models often cause “loss
of contrast” effects in the restoration u [18, 19]. Two ex-
amples of loss of contrast in restorations from TV model
(2) can be observed in Fig. 1 for the 1-d and 2-d cases.
There are some improved methods to preserve the con-

trast in TV regularization, which can be categorized into
three major classes: two-step methods, partial differential
equation (PDE)-based methods and variation methods.
Two-step methods (TSM) remove the noise and enhance

the contrast on two separate steps [20]. Some two-step
methods firstly remove the noise by TV regularization, and
then enhance the contrast in the restoration obtained
from the previous regularization step by some classical
(a) Noisy image         

(c) Noisy signal              
Fig. 1 The two examples of “loss of contrast” in restorations from TV mode
enhancement methods, such as histogram equalization
or gray-scale transformation algorithms. These methods
have the drawbacks of losing weak edges. While, there
are also some methods that implement the restoration
and enhancement in the reverse order, i.e., first enhance-
ment and then regularization. These methods have the
drawbacks of poor denoising ability.
PDE-based methods enhance the contrast by evolving

a PDE or PDEs. Here, we would like to list some clas-
sical PDE-based models in contrast enhancement
which are the motivation of our present works. Osher
and Rudin [21] proposed a shock filter to enhance the
contrast.

ut ¼ −sign uηη
� �

∇uj j
u x; t ¼ 0ð Þ ¼ u0

uηη ¼
uxxu2x þ 2uxuyuxy þ uyyu2y

∇uj j2

8>><
>>:

9>>=
>>;

Alvarez and Mazorra [22] proposed a regularization
shock filter to enhance the contrast for noisy image.

ut ¼ −sign Gσ � uηη
� �

∇uj j
u x; t ¼ 0ð Þ ¼ u0

uηη ¼
uxxu2x þ 2uxuyuxy þ uyyu2y

∇uj j2

8>><
>>:

9>>=
>>;

Weickert [9] proposed a tensor diffusion (i.e., aniso-
tropic diffusion) model,
  (b) Denoised image 

        (d) Denoised signal
l
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ut ¼ div D∇uð Þ
u x; t ¼ 0ð Þ ¼ u0

�

where D is diffusion tensor. Guy Gilboa et al. [23] pro-
posed forward and backward diffusion (FBD) to simul-
taneously remove the noise and enhance the contrast.

ut ¼ div −g ∇uj jð Þ∇uð Þ
u x; t ¼ 0ð Þ ¼ u0

�

where g ∇uj jð Þ is a decreasing function of the gradient.
Actually, the above PDE-based methods all adapt the
backward diffusion to enhance the contrast. i.e., the
diffusion coefficients in these diffusion equations are
negative. In addition, there also have some methods that
implement the classical image enhancement methods by
PDE. For example, in [24], the authors proposed a PDE-
based approach to perform global histogram equalization.
In [25], the authors implemented the scale transformation
by PDE.
So far, variation methods achieve noise removing and

contrast preserving mainly by adapting the fidelity term
in TV regularization. For example, in [26], a stretching
function f is employed in fidelity term in TV regulation
to enhance the contrast (TV-FF), where the new fidelity

term is defined as g uð Þ−u0k k2L2 Ωð Þ with g¼f −1 . In [27],

the authors proposed a fidelity term based on image

gradient, which is defined as ∇uj j−k ∇u0j jk k2L2 Ωð Þ where

k is a constant and satisfies k ≥1. In [28], the authors
proposed a common formulation using the image gra-

dient, ∇uj j−kT ε ∇Gσ � u0j jð Þk k2L2 Ωð Þ where Tε is a piece-

wise stretching function and Gσ is a Gaussian kernel
with the standard deviation σ.
In this paper, based on variation method and back-

ward diffusion, we propose a forward-backward diffu-
sion model in the framework of TV (called TV-FBD).
Compared to the tradition forward-backward diffusion
models, our model has the following characteristics and
advantages.

(1)Tradition forward-backward diffusion models are
PDE based, while our diffusion model is based on
variation. So, our model has the better extensibility
than the tradition PDE based models. Some image
information (such as gradient, direction of edges,
textures, and so on) can easily be incorporated into
the energy to improve the restoration quality, while
it is hard to do that in PDE based models.

(2)Tradition forward-backward diffusion models are
often implemented by finite difference scheme or
multi-grid technique whose computing efficiency
is always low in practice. While our variation model
can be solved by some faster modern convex
optimization algorithms that have higher efficiency.
The rest of this paper is organized as follows. In Sec-
tion 2, we theoretically analyze the loss of contrast in
TV regularization for piecewise constant functions. In
Section 3, we present our forward-backward diffusion
model in the framework of TV (i.e., TV-FBD model). In
Section 4, we introduce a two-step splitting method for
the proposed model. The numerical results showing the
performance of the proposed model are given in Sec-
tion 5. This paper is summarized in Section 6.

2 The loss of contrast in TV regularization
In this section, we analyze the loss of contrast in TV
regularization for radially symmetric piecewise constant
functions. We do this because image features are often
partially or entirely composed by piecewise constant, or
the ‘limit’ of piecewise constant functions. Another im-
portant reason is that we can find exact results for radially
symmetric piecewise constant case, which are impossible
to derive in the general case.
Firstly, with radially symmetry, we rewrite the TV

regularization problem as a general mode,

min
u

Z
1
2

u rð Þ−u0 rð Þð Þ2 þ α ur rð Þj jdΩ rð Þ ð3Þ

where ur(r) is the directional derivative of u(r) with
respect to r; and dΩ(r) is the infinitesimal element
which satisfies dΩ(r) = dr in R1, dΩ(r) = 2πrdr in R2 and
dΩ(r) = 4πr2dr in R3, respectively. We note that the true
image and its corresponding noisy version u0(r) are radi-
ally symmetric. So in this case, the noise present in the
image is also supposed as radially symmetry. In general,
noise is not radially symmetric. The reason why we
make this assumption is to make the mathematical ana-
lysis and results possible.
Any piecewise constant functions are comprised of

two types of features: “steps” and “extrema” regions, as
illustrated in Fig. 2. So in what follows, we only study
the effects of TV regularization when u0(r) is a mono-
tonic steps function and a unimodal function, separately.
Proposition 1 (Monotonic steps function) Let u0(r) be

defined on [r0, r3]. In addition, suppose that:

1. u0(r) is a monotonic steps function, i.e., Ui ≥Ui + 1 for
any 1 ≤ i ≤3, where

Ui ¼

Z ri

ri−1

u0 rð ÞdΩ rð ÞZ ri

ri−1

dΩ rð Þ

that is actually the mean of u0(r) in the region of

Ωri−1;ri ¼ Ωri−Ωri−1 :
2. Ui + δi ≥Ui + 1 + δi + 1 for any 0 ≤ i ≤3.



Fig. 2 The denoised results of TV regularization for noisy piecewise constant functions. a Monotonic steps function. b Unimodal function
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3. max{|u0(r) −U|} ≥ |δi| ≥max0 ≤ i ≤ 3{|u0(r) −Ui|} for
any 1 ≤ i ≤ 3, where

U ¼

Z r3

r0

u0 rð ÞdΩ rð ÞZ r3

r0

dΩ rð Þ

that is actually the mean of u0(r) in the entire region

Ω.
Then the solution of (3) can be written as
u rð Þ ¼ Ui þ δi for r∈ ri−1; ri½ � with 1 ≤ i ≤ 3:

where
δi ¼
α ∂Ωri−1j j− ∂Ωrij jð Þ

Ωri−1;ri

�� �� ; if
α ∂Ωri−1j j− ∂Ωrij jð Þj j

Ωri−1;ri

�� �� ≤max u0 rð Þ−Uj jf g

U−Ui; if
α ∂Ωri−1j j− ∂Ωrij jð Þj j

Ωri−1;ri

�� �� ≥max u0 rð Þ−Uj jf g

8>><
>>:

9>>=
>>;

ð4Þ
We note that Ω is the symmetry interval in R1, the

circle in R2, or the sphere in R3; |∂Ω| is the
boundary of Ω; |Ω| is the length of the symmetry
interval in R1, the area of the circle in R2, or the
volume of the sphere in R3.
Remark 1 For Proposition 1, we make a few notes. (1)
We refer the reader to Theorem 1 in [18] for a similar
proof of this proposition. (2) If the mean of noise added
to each region is zero, then the most ideal restoration
(i.e., true image) is a monotonic steps function whose
discontinuities are at {ri}, and the value in region Ωri−1;ri

is Ui. (3) Proposition 1 only shows the results for mono-
tonically decreasing step function. Actually, the results
for monotonically increasing step functions are analo-
gous. The only difference between them is that the
changes in intensity over each region are of opposite
sign. (4) For α sufficiently large (but finite), from the
Eq. (4), we note that the regularized image u(r) is
constant and is simply the mean of the observed image
u0(r) over the entire domain Ω. In this case, the con-
trast of the regularized image u(r) is zero.
Example 1 In the simplest case of R1 function, we assume

that (1) r0 = 0; (2) ∂Ωr0j j ¼ 0 and ∂Ωr3j j ¼ 0 (Neumann
boundary conditions); and (3) |r0r1| = |r1r2| = |r2r3| = r
(equidistant interval). In this case, the change in function
intensity is given by δ1 = − α/r, δ2 = 0 and δ3 = α/r; and the
regularized image is represented as

u rð Þ ¼ Ui þ δi ¼
U1−

α

r
; i ¼ 1

U2; i ¼ 2

U3 þ α

r
; i ¼ 3

8>><
>>:

It is obvious that the contrasts (i.e., the scale of the
discontinuities at {ri}) are less than they were in the true
image, as illustrated in Fig. 2a. And the total loss of con-
trasts is 2α/r.
Example 2 We extend our results in Example 1 to

the R2 functions. In this case, Ωris are the concentric
circles centered at r = 0 and with radius of ri. Under
the same conditions as Example 1, by Proposition 1, we
have δ1 = − 2α/r, δ2 = − 2α/3r, and δ3 = 4α/5r. Then the
regularized image is represented as

u rð Þ ¼ Ui þ δi ¼
U1−

2α
r
; i ¼ 1

U2−
2α
3r

; i ¼ 2

U3 þ 4α
5r

; i ¼ 3

8>>>><
>>>>:

From the last equation, we obtain that the total loss of
contrasts for concentric circles in R2 is 14α/5r. Similarly,
we deduce that the total loss of contrasts for concentric
spheres in R3 is 69α/19r.
Proposition 2 (Unimodal function) Let u0(r) be de-

fined in [r0, r3]. In addition, suppose that:
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1) u0(r) is a step function with a single extremum, i.e.,
U1 ≤U2 ≥U3.

2) U2 + δ2 ≥Ui + δi for i = 1,3.
3)U2 þ δ2≤minr∈ r1;r2½ �u0 rð Þ
4) Ui þ δi≥maxr∈ ri−1;ri½ �u0 rð Þ for i = 1,3.
5) max{|u0(r) −U|} ≥ |δi| for any 1 ≤ i ≤ 3.

Then the solution of (3) can be written as

u rð Þ ¼ Ui þ δi for r∈ ri−1; ri½ � with 1 ≤ i ≤ 3:

where

δi ¼
−1ð Þi−1 α ∂Ωri−1j j þ ∂Ωrij jð Þ

Ωri−1;ri

�� �� ; if
α ∂Ωri−1j j þ ∂Ωrij jð Þj j

Ωri−1;ri

�� �� ≤max u0 rð Þ−Uj jf g

U−Ui; if
α ∂Ωri−1j j þ ∂Ωrij jð Þj j

Ωri−1;ri

�� �� ≥max u0 rð Þ−Uj jf g

8>>><
>>>:

ð5Þ
This proposition can be proved by dividing the uni-

modal function u0(r) into two types of component u10 rð Þ
and u20 rð Þ with the splitpoint r1þr2

2 , where u10 rð Þ and u20 rð Þ
are monotonically increasing and decreasing step func-
tions, respectively, and then using the conclusion in
Proposition 1.
Example 3. For the simplest case of R1 unimodal

function, we still assume that (1) r0 = 0; (2) ∂Ωr0j j ¼ 0
(a) Noise-free image        (b) Noisy

(e) The plots of the cross-section slice    

Fig. 3 The denoised results of TV regularization for noisy monotonic step ima
the cross-section slice. f The plots of the cross-section slice
and ∂Ωr3j j ¼ 0; and (3) |r0r1| = |r1r2| = |r2r3| = r. In this
case, the change in function intensity is given by δ1 = α/r,
δ2 = − 2α/r, and δ3 = α/r; and the regularized image is rep-
resented as

u rð Þ ¼ Ui þ δi ¼
U1 þ α

r
; i ¼ 1

U2−
2α
r
; i ¼ 2

U3 þ α

r
; i ¼ 3

8>>>><
>>>>:

We can clearly see that the contrasts in the restoration
are less than they were in the true image, as illustrated
in Fig. 2b. And the total loss of contrasts is 3α/r.
Example 4. We extend our results to the unimodal

functions in R2 and R3. Under the same conditions as
Example 3, by Proposition 2, we obtain that the total
loss of contrasts is 4α/r in R2 and 36α/7r in R3.
Examples 1–4 indicate that in TV regularization, the

loss of contrast for piecewise constant functions is
exactly inversely proportional to scale of local feature
measured by r (which explains why TV regularization
can remove smaller scaled noise, while preserving larger
scaled features essentially intact), is independent of original
intensity, and is directly proportional to the regularization
parameter α.
 image        (c) Denoised image

  (f) The plots of the cross-section slice

ge. a Noise-free image. b Noisy image. c Denoised image. e The plots of
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To further show the loss of contrast in TV regularization,
we use TV regulation model (3) to two synthetic images,
one is a noisy monotonic step image, and another is a noisy
step image with some extremums. The noisy images are
obtained by adding the Gaussian noise with zero mean
and 10 standard deviation to the corresponding clean
versions. The results are show in the Figs. 3 and 4, re-
spectively. From the results, it is obvious that the resto-
rations (Figs. 3c and 4c) have a loss in contrast. The
plots of the cross-section slice further illustrate this
point. Overall, the agreement between the theory and
the experiment results is compatible.
3 Forward-backward diffusion in the framework
of TV (TV-FBD)
3.1 Backward diffusion model
Let f ∈ L2(Ω), we construct an energy with respect to u.Z

Ω
φ ∇uj jð Þdxþ 1

2
f −uk k22 ð6Þ

where ⋅k k22 denotes the square of the L2-norm; ∇ repre-
sents gradient operator; and potential function φ is de-
fined in [0, +∞) and satisfies that:

(C.1) φ(s) ≥ 0 for any s∈ [0, +∞);
(a) Noise-free image        (b) Noisy i

(e) The plots of the cross-section slice    

Fig. 4 The denoised results of TV regularization for noisy step image with
e The plots of the cross-section slice. f The plots of the cross-section slice
(C.2) φ(s) is a monotony decreasing function in [0, +∞);
(C.3) φ(0) = 1 and lims→ +∞φ(s) = 0.

The corresponding gradient descent flow of energy (6) is

∂u
∂t

¼ div
φ

0
∇uj jð Þ
∇uj j ∇u

� �
þ u−fð Þ ð7Þ

In the Eq. (7), the term div(φ'(|∇u|)/|∇u| ⋅ ∇u) is the
diffusion term with the diffusion velocity φ'(|∇u|)/|∇u|.
Because φ(s) is a monotonically decreasing function in
[0, +∞), we have φ ' (s) < 0 in [0, +∞). With the nonnega-
tivity of |∇u|, it is obvious that φ ' (|∇u|)/|∇u| < 0. In this
case, the gradient descent flow

∂u
∂t

¼ div
φ

0
∇uj jð Þ
∇uj j ∇u

� �
ð8Þ

is actually a backward diffusion equation with a nega-
tive diffusion velocity. Next, we study the diffusion be-
havior in Eq.(8) in theory. Eq.(8) can be rewritten as

∂u
∂t

¼ φ0 ∇uj jð Þ
∇uj j Δuþ ∇

φ0 ∇uj jð Þ
∇uj j

� �
⋅∇u ð9Þ

More precisely, Eq.(9) is a reaction diffusion equation,
in which, the term φ'(|∇u|)/|∇u| ⋅ Δu is the diffusion
term, and ∇(φ′(|∇u|)/|∇u|) ⋅ ∇u is the reaction term.
mage        (c)Denoised image

  (f) The plots of the cross-section slice

few extremums. a Noise-free image. b Noisy image. c Denoised image.
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Then, studying the diffusion behavior of Eq.(8) is equiva-
lent to study the diffusion term φ′(|∇u|)/|∇u| ⋅ ∇u in
Eq.(9), where Δ is Laplacian operator. To simplify the
notation, we denote φ′(|∇u|)/|∇u| = ψ(u). With the con-
clusion stated in above, we have

Ψ uð Þ < 0

We next study the diffusion behavior of ∂u/∂t = φ'(|∇u|)/
|∇u| ⋅Δu =Ψ(u)Δu in Eq.(9) in the framework of differ-
ence. Using forward difference to approximate ∂u/∂t, and
successively using backward difference and forward differ-
ence once to approximate Laplacian, we obtain

utþ1
s ¼ uts þ

Ψ uts
� �
Nsj j

X
p∈Ns

∇uts:p ð10Þ

where uts represents value of function u at the “s” point
after t times iterations; Ns represents the neighborhood
of s point; |Ns| is the cardinality of the neighborhood;
and

∇uts:p ¼ up−uts; p ∈N s ð11Þ

In combining Eq.(10) with Eq.(11), we obtain

utþ1
s ¼ uts þ

Ψ uts
� �
Nsj j

X
p∈Ns

∇uts:p ¼ uts þ
Ψ uts
� �
Nsj j

X
p∈Ns

up−uts
� �

From the last equation, we deduce that

utþ1
s −uts ¼ Ψ uts

� ��� �� uts−
1
Nsj j
X

p∈Ns
up

� �
ð12Þ

where 1
Nsj j
X

p∈Ns
up is the mean of u the neighborhood

Ns.

We suppose that u0s >
1
Nsj j
X

p∈Ns
up , where u0s is the

initial value of u before iteration. By Eq.(12), we have

u1s > u0s ;
Fig. 5 The contrast enhancement by backward diffusion model
u2s−u
1
s ¼ Ψ u1s

� ��� �� u1s−
1
Nsj j
X

p∈Ns
up

� �

> Ψ u1s
� ��� �� u0s−

1
Nsj j
X

p∈Ns
up

� �
> 0

In successively using the last inequality, we deduce that

utþ1
s > uts

Similarly, if u0s <
1
Nsj j
X

p∈Ns
up, we have

utþ1
s < uts

From the above analysis, we can conclude that if the
function value of a point is larger (smaller) than the
mean of its neighborhood, its function value is getting
larger (smaller) and larger (smaller) during the iteration,
which may further increase the difference between itself
and its neighbors. So, backward diffusion model can en-
hance the contrast and sharpen edges in image process-
ing. Two examples of contrast enhancement by backward
diffusion model can be observed in Fig. 5 for the “mono-
tonic step” and “extrema” cases.

3.2 The selection of φ
With the conditions (C.1)–(C.3), there are several different
choices for potential function φ. We here only consider
two typical real-valued functions: one is an exponential
function, and the other is a rational function, which are
defined as following,

φ1 sð Þ ¼ e−s; φ2 sð Þ ¼ 1
1þ s

Figure 6a shows the plots of these two functions. It is
obvious that both the functions meet the conditions
(C.1)–(C.3), and also have the same variation trend in
[0, +∞). A little difference between them is that φ1(s)
has a faster descent velocity than φ2(s). In the backward
diffusion equation, the diffusion velocities with potential
function φ1 and φ2 are



(a) The plot of the potential function (b) The corresponding backward-diffusion velocity 

Fig. 6 The plots of the potential function φ and the corresponding backward diffusion velocity Ψ. a The plot of the potential function. b The
corresponding backward diffusion velocity Ψ
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Ψ 1 sð Þ ¼ φ1
0 sð Þ
s

¼ −e−s

s

Ψ 2 sð Þ ¼ φ2
0 sð Þ
s

¼ −1

s 1þ sð Þ2

, respectively. Figure 6b shows the plots of these two
diffusion velocity functions Ψ1 and Ψ2. We have the fol-
lowing observations:

(1)Both plots are below the line of s = 0, which implies
that Ψ1(s) < 0 and Ψ2(s) < 0 for any s∈ [0, +∞).
This further demonstrates that we can achieve the
backward diffusion by using the above potential
functions φ1 and φ2.

(2)The plots show that the diffusion velocity decreases
with the increase of the value of s, and the smaller
the value of s is, the faster the diffusion viscosity is.
That is to say, in image diffusion, the area with small
variation in intensity has a large backward diffusion
velocity. Conversely, the area with large intensity
variation has a small backward diffusion velocity.
In this case, we can enhance the contrast in the
regions with small intensity variation, and preserve
the sharp intensity variation in the other regions.

(3)Ψ1 and Ψ2 have the same variation trend on
[0, +∞), and providing nearly the same function
values at the same point of s. So, in image diffusion,
using these two potential function φ1 and φ2, we
can obtain nearly the same backward diffusion
velocity. In what follows, we set potential function
as φ(s) = e− s.

3.3 The TV-FBD model
In combining backward diffusion energy with TV en-
ergy, we have
α

Z
Ω
∇uj jdxþ β

Z
Ω
φ ∇uj jð Þdxþ 1

2
f −uk k22 ð13Þ

where α and β are two nonnegative tuning parameters
which balance the strength of backward diffusion and
forward diffusion. The corresponding gradient descent
flow of energy (13) is

∂u
∂t

¼ αdiv
∇u
∇uj j

� �
þ βdiv

φ0 ∇uj jð Þ
∇uj j ∇u

� �
þ u−fð Þ

ð14Þ
Because the div is a linear operator, the Eq.(14) can be

rewritten as

∂u
∂t

¼ div
αþ βφ0 ∇uj jð Þ

∇uj j ∇u
� �

þ u−fð Þ ð15Þ

Equation (15) is actually a reaction diffusion equation,
in which (α + βφ ' (|∇u|))/|∇u| is diffusion velocity. In fact,
the term α/|∇u| > 0 is forward diffusion velocity, which
measures the ability of denoising for diffusion equation
(15); and βφ ' (|∇u|)/|∇u| < 0 is backward diffusion vel-
ocity, which controls the ability of contrast enhancing for
diffusion equation (15). Here, the parameters α and β play
the key role in our forward-backward diffusion to deter-
minate magnitudes and directions of diffusion velocity.
We next give a few observations.
First, we notice that if we take α = β, then α/s > β|φ ' (s)|/s,

i.e., the forward diffusion velocity is larger than the back-
ward diffusion velocity. Figure 7a shows the plots of α/s
and β|φ ' (s)|/s with α = β = 1, which further demonstrates
this point. So in this case, the forward-backward diffusion
velocity satisfies that (α + βφ ' (|∇u|))/|∇u| > 0, which im-
plies that the forward diffusion dominates the diffusion di-
rections, and the forward-backward diffusion only turns
into a pure forward diffusion (see Fig. 7b).
Second, we notice that if we take α < β, then the

forward-backward diffusion velocity (α + βφ ' (|∇u|))/|∇u|



Fig. 8 Plots of the forward-backward diffusion velocity when α < β
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is not always greater than zero, or always less than zero.
Let s0 be a zero point of (α + βφ ' (s))/s, i.e., (α + βφ ' (s0))/
s0 = 0. It is obvious that

(1)when |∇u| < s0, we have (α + βφ ' (|∇u|))/|∇u| < 0,
Eq.(15) is a backward diffusion equation which can
enhance the contrast in the regions where u satisfies
|∇u| < s0;

(2)when |∇u| > s0, we have (α + βφ ' (|∇u|))/|∇u| > 0,
Eq.(15) is a forward diffusion equation which can
remove the noise from the regions where u satisfies
|∇u| > s0.

Figure 8 further demonstrates the above conclusions.
In addition, from this figure, we deduce that the larger
the difference between α and β is, the larger the value
of s0 is.

4 Numerical implementation
In this paper, we employ the two-step splitting (TSS)
method to implement the proposed model (13), which al-
lows for further fine tuning of strength of backward diffu-
sion and forward diffusion. In addition, the TSS method
splits the mixed diffusion model (13) into a backward dif-
fusion and a forward diffusion, which enables us to seek
the suitable fast algorithm for them, separately.
Firstly, we split the mixed diffusion model (13) into

two sub-problems:

min
u

α

Z
Ω
∇uj jdxþ 1

2
f −uk k22

� �
ð16Þ

and

min
u

β

Z
Ω
φ ∇uj jð Þdx

� �
ð17Þ

Then, the TSS method is stated as follows:
(a) Forward and backward diffusion velocity 

Fig. 7 The plots of the diffusion velocity when α = β = 1 a Forward and ba
Step 1: Solve the forward diffusion term u with initial
condition u(x, t = 0) = un in problem (16) till some
time Tf to obtain the intermediate solution, denoted
by un + 1/2 = u(x, Tf );
Step 2: Solve the backward diffusion term u with
initial condition u(x, t = 0) = un + 1/2 in problem (17)
till some time Tb to obtain the final solution, denoted
by un = u(x, Tb).

The first step is to remove the noise from the observa-
tion, while leading to a reduction of contrast in intensity.
And the second step is a correction for the first step,
which can make up the losses in contrast. Because the
backward diffusion is ill-posed, the second step may
have the risk of moving the diffusion term u far away
from observation f. By choosing a small enough Tb com-
pared to the spatial resolution (i.e., the number of grid
points), and iteratively using the first step to smooth the
backward diffusion term u during the iteration process,
the deviation will fall within acceptable limits. So, by
using forward diffusion (step 1) and backward diffusion
(b) Forward-backward-diffusion velocity 

ckward diffusion velocity. b Forward-backward diffusion velocity
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(step 2) alternatively, we can remove the noise, simultan-
eously preserve the contrast.
We here adopt the projection algorithm in the dual frame-

work proposed by Chambolle [29] to solve minimization
problem (16). The solution can be represented as:

u ¼ f −ProjGα
fð Þ

where ProjGα
fð Þ is the orthogonal projection of f on the

closed convex set Gα = {v : ||v||G ≤ α}. In the discrete
case, setting ProjGα

fð Þ ¼ div gð Þ, the computation of this
nonlinear projection amounts to solve the following con-
strained minimization problem with inequality constraints:

min
g∈C1

c Ω; R2ð Þ
αdiv gð Þ−fk k22; gi;j

��� ���≤1; i ¼ 1; 2;⋯;M; j ¼ 1; 2;⋯;N
n o

where M × N is the image size; gi;j

��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
with

g ¼ g1; g2
� �

. The necessary condition (Euler-Lagrange
equation) of the minimization problem (27) getting an
extremum is:

−∇ αdiv gð Þ−fð Þi;j þ λi;jgi;j ¼ 0 ð18Þ

where λi,j is Lagrange multiplier. By the complementary
slackness condition, we have

λi;j ¼ ∇ αdiv gð Þ−fð Þi;j
��� ���

Then, using semi-implicit fixed point iteration strategy
to solve Eq.(18) with respect to g, we obtain the follow-
ing iteration scheme:

g0
i;j ¼ 0; gnþ1=2

i;j

¼
gn
i;j þ Δt1 ∇ div gnð Þ− f

α


 �
i;j

� �

1þ Δt1 ∇ div gnð Þ− f
α


 �
i;j

� �����
����

ð19Þ

The forward diffusion term u is represented as

unþ1=2 ¼ αdiv g
nþ1=2
i;j


 �
ð20Þ

By variation theory and gradient descent scheme, the
minimum of (17) is the steady-state solution of the fol-
lowing PDE.

∂u
∂t

¼ βdiv
φ

0
∇uj jð Þ
∇uj j ∇u

� �
u x; t ¼ 0ð Þ ¼ u0 xð Þ

8<
:

ð21Þ
In evolution Eq.(21), |∇u| is in the denominator. In

order to avoid the singularity, it is common to use a

slightly perturbed norm ∇uj jε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇uj j2 þ ε

q
, where ε is
a small positive constant, to replace |∇u|. This is equiva-
lent to minimize the functional

β

Z
Ω
φ ∇uj jε
� �

dx ð22Þ

In [30], it is shown that the solutions of the perturbed
problems (22) converge to the solution of (17) when
ε→ 0. In our experiment, we set ε = 10− 5. In this case,
by variation theory and gradient descent scheme, the
minimum of (17) is the steady-state solution of the fol-
lowing PDE.

∂u
∂t

¼ βdiv
φ

0
∇uj jε
� �
∇uj jε

∇u

 !

u x; t ¼ 0ð Þ ¼ u0 xð Þ

8><
>:

ð23Þ
Using finite difference method to solve Eq.(23) numer-

ically, we obtain the following iteration scheme:

unþ1
i;j ¼ unþ1=2

i;j þ Δt2 βdiv
φ

0
∇unþ1=2
�� ��

ε


 �
∇unþ1=2j jε

∇unþ1=2

0
@

1
A

0
@

1
A

i;j

ð24Þ
where the discrete version of the gradient predator
(∇u)i,j = ((∂xu)i,j, (∂yu)i,j) is computed by:

∂xuð Þi;j ¼
n
ui;jþ1−ui;j; j < N
0; j ¼ N

and ∂yu
� �

i;j

¼ uiþ1;j−ui;j; i < M
0; i ¼ M

�

And the discrete version of the divergence predator
div(ξ1, ξ2)i,j is computed by:

div ξ1; ξ2
� �

i;j ¼
n

ξ1i;j−ξ
1
i;j−1; 1 < j < N

ξ1i;j; j ¼ 1

−ξ1i;j−1; j ¼ N

þ
ξ2i;j−ξ

2
i−1;j; 1 < i < M

ξ2i;j; i ¼ 1

−ξ2i−1;j; i ¼ M

8><
>:

In the first step, we smooth the observation by for-
ward diffusion Eqs. (19)–(20). While in the second step,
we enhance the contrast in the smoothed version ob-
tained from the previous step by backward diffusion Eq.
(24). Then, the enhanced version obtained from the
second step is used as the next input of the forward dif-
fusion step Eqs. (19)–(20). We proceed with successive
application of the above alternate steps, and obtain the
alternate iteration algorithm for our TV-FBD model
(see Algorithm 1).
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5 Experimental results
In this section, we show the experimental results of image
denoising on several synthetic and real images. The com-
parisons with TV model [12], TSM model [20], FBD
model [23], and TV-FF model [26] are also performed in a
forthcoming paper to show the superiority of the pro-
posed model. The reason why we choose these models to
compare in that the TV model [12] is the most original
variational model in image denoising, which is the source
of our study in this paper, and the other three models are
representations of the three major classes of contrast pre-
serving in TV regularization, respectively.
The algorithms are implemented by MATLAB software

on a PC with an Intel Core (I5), CPU (2.50 GHz) and
RAM (2.00 GB). We give also the peak signal-to-noise ra-
tio (PSNR) and mean structural similarity (MSSIM) index
[31] for quantitative analysis, which is defined as

PSNR u;u0ð Þ ¼ 10⋅ log10
2552

MSE

� �
with MSE ¼

XM

i¼1

XN

j¼1
u−u0ð Þ2

M � N

and
MSSIM u; u0ð Þ ¼ 1
M

XM

i¼1
SSIM ui; ui0

� �
with

SSIM ui; ui0
� � ¼ 2μuiμui0 þ C1


 �
2σui ui0 þ C2


 �
μ2ui þ μ2

ui0
þ C1


 �
σ2
ui þ σ2

ui0
þ C2


 � ;
respectively. Here, u is the restored image from the

observation u0, μui and σui are the mean and the stand-
ard deviation of u at the i-th local image window, re-
spectively; σui ui0 is the covariance between ui and ui0 ; M

is the number of local windows in the image; C1 and C2

are two constants. In all experiments, we set C1 = (0.01 *
255)2 and C2 = (0.03 * 255)2.
5.1 The choice of parameters
The parameter α is to adjust the degree of smoothing. If
it is too small, the model cannot effectively remove the
noises. Conversely, if α is too large, a large amount of
image details will be erased due to the oversmoothing of



(a) Noise-free image        (b) Noisy image        (c)Denoised image

(d) The plots of the cross-section slice      (e) The plots of the cross-section slice

Fig. 9 The denoised results of our model for noisy step images shown in Figs. 3 and 4. a Noise-free image. b Noisy image. c Denoised image.
d The plots of the cross-section slice. e The plots of the cross-section slice
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the image. How to choose an optimal smoothing param-
eter α in TV regularization is still an “open question”. In
this paper, we use the “trial and error” technique to de-
termine the value of smoothing parameter. The param-
eter β controls the velocity of backward diffusion, as
discussed in Section 3.3, which may be larger than α to
achieve forward and backward diffusion. In all experi-
ments, we set β = 5α.
In [29], the authors introduced a sufficient condition

to ensure the convergence of the iterative formula (13):
if Δt1 ≤ 1/8, then αdiv gnð Þ→ProjGα

fð Þ as n→ +∞. With
consideration of the numerical stability, convergence,
and diffusion efficiency, we set Δt1 = 0.12 in all experi-
ments. Actually, the time step Δt2 also controls the
backward diffusion in Step 2 as the weighting parameter
β, and a large Δt2 has the risk of increasing the range of
image intensity excessively, and resulting in intensity dis-
tortion. Therefore, we should use a small enough Δt2
compared to the time step Δt1 of the forward diffusion
so that the range of image intensity is within acceptable
limits. In our experiments, we set Δt2 = 0.01.

5.2 Test of synthetic images
In our first experiment, we demonstrate contrast pre-
serving in denoising application for different synthetic
images. The test noisy images are obtained by adding
the Gaussian noise with standard deviation σ = 10 into
the clean versions.



(a) Noise-free image         (b) Noisy image        (c)Denoised image (our)   (d)Denoised image (TV)

(e) The plots of the cross-section slice (our)  (f) The plots of the cross-section slice(TV)
Fig. 10 The denoised results for noisy mixed step image. a Noise-free image. b Noisy image. c Denoised image (our). d Denoised image (TV).
e The plots of the cross-section slice (our). f The plots of the cross-section slice (TV)
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Figure 9 shows the denoised results of our model for
two noisy step images shown in Figs. 3 and 4. The first
row shows the denoised results for the monotonic
steps function shown in Fig. 3, the corresponding
plots of the cross-section slice are shown in Fig. 9d.
The second row shows the denoised results for the
extremal steps function shown in Fig. 4, and the corre-
sponding plots of the cross-section slice are shown in
Fig. 9e. Here, compared with the noise-free images, we
observe that there is no significant loss of contrast in
the denoised images. We can see this much more
clearly by the plots of the cross-section slice.
Figure 10 shows the denoised results of our model

and TV regularization for a mixed step image com-
prised of monotonic steps and extremal steps. And
Fig. 11 shows the denoised results of our model and
TV regularization for a piecewise smooth image that
can be seen as a “limit” of the piecewise constant. We
can clearly see that in the both case, our model and
TV regularization can successfully remove the noise
and prevent the edges. But TV regularization obvi-
ously reduces the contrast in the denoised images,
mainly in extremum regions, and starting and ending
of the monotonic steps. Due to the case that the back-
ward diffusion term is incorporated into the energy,
our model can compensate the loss of contrast caused
by TV regularization.
5.3 Test of real images
In our second experiment, we evaluate the performance
of the proposed model using the Barbara image contam-
inated by Gaussian noise with different standard devia-
tions. In addition, we compare our model to TV, FBD,
TSM, and TV-FF. We note that the parameters of each
model are optimized to achieve the best restoration with
respect to the PSNR.
Figure 12 shows the denoised results for noisy Bar-

bara obtained by adding Gaussian noise with standard
deviation σ = 5 to the clean one. Figure 12a shows the
noise-free Barbara image; Fig. 12b shows the corre-
sponding noisy version. The black solid line in the
noisy Barbara represents the cross-section slice that will
be plotted in the following experiments to show how noise
is removed and how contrast changes. Figure 12c–g shows
the denoised results using the five models, and Fig. 12h–l



(a) Noise-free image         (b) Noisy image        (c) Denoised image (our)   (d) Denoised image (TV)

(e) The plot of the cross-section slice (our)  (f) The plot of the cross-section slice(TV)
Fig. 11 The denoised results for noisy piecewise smooth image. a Noise-free image. b Noisy image. c Denoised image (our). d Denoised image
(TV). e The plot of the cross-section slice (our). f The plot of the cross-section slice (TV)
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shows the corresponding local zoom-in of the plots of
the cross-section slice (range is of horizontal axis ∈ [140,
160]; intensity ∈ [100, 200]). Figure 13 shows denoised
results for noisy Barbara contaminated by Gaussian
noise with standard deviation σ = 10.
From the results shown in Figs. 12 and 13, we see

that the five models can be ranked according to the
restoration quality: TSM < TV < TV-FF < FBD < TV-
FBD. The TSM model performs worst since it applies
histogram equalization to enhance the restoration
obtained by TV regularization in the previous step.
Histogram equalization can perform well in contrast
enhancement and improve the visual quality. But it
has the drawback of increasing the range of intensity,
and resulting in visual distortion. So, the restoration
obtained by TSM may be worse than that obtained by
TV. The TV-FF model performs better but also has
some loss of contrast near steps. The FBD model
performs significantly better since it adopts a linear
backward diffusion in the diffusion PDE, which can
compensate the loss of contrast caused by forward dif-
fusion. The proposed TV-FBD model performs best,
which leads to a best approximation of the original
data with appropriate contrast near steps. The reason
why the TV-FBD model performs better than FBD
model is that the TV-FBD model adopts a nonlinear
backward diffusion, which allows for further fine tun-
ing of velocity in backward diffusion (see Fig. 6). And
the FBD model adopts linear backward diffusion
which has a constant velocity at any position. The
quantitative evaluation of the restoration emphasizes
the visual impression of the results. See Table 1 for the
exact PSNR and MSSIM values.
Next, we test the denoising capabilities of the five

models in case of severe noise. Figure 14 shows the
denoised results for noisy Barbara containing Gaussian
noise of standard deviation σ = 15; and Fig. 15 shows
results for noisy Barbara containing Gaussian noise of
standard deviation σ = 20. It is obvious that these five
models can remove noise very well and preserve the sharp
edges in the restorations. However, TV regularization
leads to a darker result due to the loss of contrast. Due
to the use of the contrast enhancement scheme, the
other four models lead to significantly better results.
Qualitatively, these models perform equally well, but
the quantitative evaluation shows that the proposed
TV-FBD model has higher PSNR and MSSIM values
(see Table 1).
Finally, to further show the effectiveness and adapt-

ability of the proposed model, we apply it to denoise



(a) Noise-free image     (b) Noisy image           (c) TV

(d) FBD (e) TSM           (f) TV-FF           (g) TV-FBD

(h) TV                          (i) FBD (j) TSM

(k) TV-FF                   (l) TV-FBD

Fig. 12 The denoised results of noisy Barbara (σ = 5). a Noise-free image. b Noisy image. c TV. d FBD. e TSM. f TV-FF. g TV-FBD. h TV. i FBD. j TSM.
k TV-FF. l TV-FBD
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four images of size 128 × 128 contaminated by Gaussian
noise with different standard deviations (σ = 5,10,15,
and 20). The first two test images are relatively simple.
One is a panda image that contains large white areas
and black areas (see Fig. 16a); the second is a camera-
man in front of a blurry background, which contains
large black areas and gray areas (see Fig. 17a). The
other two are butterfly and Lenna images, respectively
(see Figs. 18a and 19a, respectively). Compared to the
first two images, these two are more complex, which
contain a large amount of details, textures, and features
of low contrast. Again, we compare our model to TV,
FBD, TSM, and TV-FF.
We here only show the restoration results of the im-
ages containing Gaussian noise with standard devia-
tions σ = 10 (see Figs. 16, 17, 18, 19). For the other
cases, we only give the PSNR and MSSIM values in
Table 2. From these figures, we can clearly see that all
models can successfully remove noise and simultan-
eously preserve edges. But the quantitative evaluation
shows that the proposed TV-FBD model has the highest
PSNR and MSSIM values (see Table 2), which further
demonstrates that our model has the best performance in
these five models.
From the above denoised results, we note that

forward-backward diffusion is a good tool for noise



(a) Noisy image            (b) TV              (c) FBD

(d) TSM           (e) TV-FF          (f) TV-FBD

(g) TV                          (h) FBD (i) TSM

(j) TV-FF                   (k) TV-FBD

Fig. 13 The denoised results of noisy Barbara (σ = 10). a Noisy image. b TV. c FBD. d TSM. e TV-FF. f TV-FBD. g TV. h FBD. i TSM. j TV-FF. k TV-FBD

Tang and Fang EURASIP Journal on Advances in Signal Processing  (2016) 2016:13 Page 16 of 21
removing and contrast preserving. Table 2 shows that
the traditional FBD model and TV-FBD have the best
performance in terms of PSNR and MSSIM indexes
among the five models. We here compare the efficiency
of the proposed TV- FBD to the traditional FBD. The
Table 1 PSNR and MSSIM for different models

Noise
level

TV FBD TSM

PSNR MSSIM PSNR MSSIM PSNR

σ=5 28.0192 0.9135 29.5753 0.9207 27.032

σ=10 27.7714 0.8963 28.9002 0.9247 26.560

σ=15 25.9548 0.8387 26.5473 0.8912 25.634

σ=20 25.4821 0.8242 25.7425 0.8298 23.926
CPU time for FBD and TV- FBD models are listed in
Table 3, where the CPU time is the cost time that the
restoration takes from the initiation to first achieve the
local maximum of PSNR. One can clearly see that our
model performs faster than traditional FBD since it
TV-FF TV-FBD

MSSIM PSNR MSSIM PSNR MSSIM

1 0.8921 28.0813 0.9147 31.8464 0.9824

0 0.8546 27.8249 0.9045 29.9547 0.9628

7 0.8364 25.9754 0.8425 27.1542 0.8847

8 0.7845 25.4967 0.8256 26.1264 0.8796



(a) Noisy image          (b) TV             (c) FBD

(d) TSM           (e) TV-FF          (f) TV-FBD

Fig. 14 The denoised results of noisy Barbara (σ = 15). a Noisy image. b TV. c FBD. d TSM. e TV-FF. f TV-FBD

(a) Noisy image         (b) TV          (c) FBD

(d) TSM           (e) TV-FF          (f) TV-FBD
Fig. 15 The denoised results of noisy Barbara (σ = 20).a Noisy image. b TV. c FBD. d TSM. e TV-FF. f TV-FBD
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(a) Noise-free image     (b) Noisy image           (c)TV

(d) FBD (e) TSM           (f) TV-FF            (g) TV-FBD

Fig. 17 The denoised results of noisy cameraman (σ = 10). a Noise-free image. b Noisy image. c TV. d FBD. e TSM. f TV-FF. g TV-FBD

(a) Noise-free image     (b) Noisy image        (c) TV

(d) FBD (e) TSM           (f) TV-FF           (g) TV-FBD

Fig. 16 The denoised results of noisy panda (σ = 10). a Noise-free image. b Noisy image. c TV. d FBD. e TSM. f TV-FF. g TV-FBD

Tang and Fang EURASIP Journal on Advances in Signal Processing  (2016) 2016:13 Page 18 of 21



(a) Noise-free image     (b) Noisy image           (c) TV

(d) FBD (e) TSM           (f) TV-FF           (g) TV-FBD

Fig. 18 The denoised results of noisy butterfly (σ = 10). a Noise-free image. b Noisy image. c TV. d FBD. e TSM. f TV-FF. g TV-FBD
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adopt the more efficient dual projection algorithm ra-
ther than the finite differences scheme.

6 Conclusions
In this paper, we proposed a forward-backward diffu-
sion model in the framework of total variation (i.e., TV-
FBD), which can effectively solve the problem of the
contrast loss in TV regularization. New model was
obtained by introducing a nonconvex and monotony
(a) Noise-free image     (b) Noisy

(d) FBD (e) TSM        

Fig. 19 The denoised results of noisy Lenna (σ = 10). a Noise-free image. b
decrease function with respect to total variation into
the TV energy. A two-step splitting method was then
proposed to effectively solve the TV-FBD model. We
adopted the efficient projection algorithm in the dual
framework to solve the forward diffusion in the first
step, and then employed the simple finite differences
scheme to solve the backward diffusion to compensate
the loss of contrast occurred in the previous step. The ex-
periments in both synthetic and real images demonstrated
 image         (c) TV

   (f) TV-FF           (g) TV-FBD

Noisy image. c TV. d FBD. e TSM. f TV-FF. g TV-FBD



Table 2 PSNR and MSSIM for different models

Image TV FBD TSM TV-FF TV-FBD

PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

Panda (σ = 5) 31.5289 0.9887 32.8156 0.9915 29.7899 0.9575 31.4687 0.9827 34.3858 0.9996

Panda (σ = 10) 29.9145 0.9541 30.7611 0.9786 29.9093 0.9624 29.7495 0.9526 31.2835 0.9879

Panda (σ = 15) 28.0571 0.9127 28.4116 0.9247 26.0272 0.8547 28.6672 0.9356 28.8940 0.9245

Panda (σ = 20) 26.4142 0.8684 27.0674 0.8914 20.9034 0.6013 26.1909 0.8456 27.4173 0.8975

Cameraman (σ = 5) 31.7429 0.9876 33.2583 0.9990 29.4312 0.9489 31.6916 0.9915 35.1524 0.9998

Cameraman (σ = 10) 29.9190 0.9568 30.9482 0.9875 25.6738 0.8240 29.7772 0.9524 31.6007 0.9904

Cameraman (σ = 15) 28.8345 0.9247 28.8403 0.9287 24.7083 0.8004 28.6645 0.9147 28.8666 0.9314

Cameraman (σ = 20) 26.3152 0.8645 27.1729 0.9005 22.7043 0.7524 26.1041 0.8432 27.5059 0.9010

Butterfly (σ = 5) 29.5958 0.9527 31.2972 0.9916 25.2441 0.8225 29.7328 0.9489 33.3647 0.9991

Butterfly (σ = 10) 27.4500 0.9046 28.7401 0.9230 24.8330 0.8123 27.5483 0.9102 29.9052 0.9468

Butterfly (σ = 15) 26.1095 0.8603 27.0424 0.8996 21.4993 0.7056 27.0781 0.9014 27.5441 0.9032

Butterfly (σ = 20) 24.9835 0.8113 25.1705 0.8245 21.4317 0.6957 25.0673 0.8241 25.7847 0.8498

Lenna (σ = 5) 29.9093 0.9648 31.4282 0.9935 23.4201 0.7658 29.8653 0.9426 33.4752 0.9992

Lenna (σ = 10) 29.4348 0.9450 30.4161 0.9878 24.2896 0.8114 29.3260 0.9437 31.1194 0.9840

Lenna (σ = 15) 27.4370 0.9083 27.9907 0.9116 25.8678 0.8339 27.4010 0.9016 28.5369 0.9402

Lenna (σ = 20) 25.1589 0.8245 26.6747 0.8756 23.7794 0.7892 26.1157 0.8604 26.7442 0.8765
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the promising performance of the proposed model.
Compared with the classical TV, FBD, TSM, and TV-
FF, our TV-FBD model has the highest PSNR and
MSSIM values.
It should point out that our model cannot very well re-

cover the texture in the restoration due to the use of TV
regularization. And the TV minimization favors the solu-
tions that are piecewise constant, which implies that the
oscillatory components such as textures are removed. Ac-
tually, we have proposed a multi-scale variational image
decomposition model to extract texture in our previous
work [32]. This implies that if the extracted texture can
be incorporated into the restoration, the quality of the
restoration can be improved. Our successive research will
focus on how to incorporate texture representation into
our forward-backward diffusion function based on total
variation.
Table 3 CPU time for FBD and TV-FBD models (second)

Image FBD TV-FBD Image FBD TV-FBD

Panda (σ = 5) 2.4380 1.7895 Butterfly (σ = 5) 2.4546 1.7863

Panda (σ = 10) 2.7710 1.8215 Butterfly (σ = 10) 2.7864 1.8264

Panda (σ = 15) 2.7135 1.7886 Butterfly (σ = 15) 2.7657 1.7756

Panda (σ = 20) 2.7642 1.7541 Butterfly (σ = 20) 2.7689 1.7787

Cameraman (σ = 5) 2.4346 1.7878 Lenna (σ = 5) 2.4789 1.7826

Cameraman (σ = 10) 2.6879 1.7996 Lenna (σ = 10) 2.7883 1.7864

Cameraman (σ = 15) 2.6450 1.7231 Lenna (σ = 15) 2.7687 1.7725

Cameraman (σ = 20) 2.6661 1.7325 Lenna (σ = 20) 2.7965 1.7896
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