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Abstract

Adaptive filtering algorithms promise an improvement of the active noise control (ANC) problem encountered in
many scenarios. Just to name a few, the Filtered-X Least Mean Square (FXLMS) algorithm, the Leaky FXLMS (LFXLMS)
algorithm, and other modified LMS-based algorithms have been developed and utilized to combat the ANC problem.
All of these algorithms enjoy great performance when the signal-to-noise ratio (SNR) is high. On the other hand, when
the SNR is low, which is a known trend in ANC scenarios, the performance of these algorithms is not attractive. The
performance of the Least Mean Fourth (LMF) algorithm has never been tested on any ANC scenario under low or high
SNR. Therefore, in this work, reflecting the development in the LMS family on the LMF, we are proposing two new
adaptive filtering algorithms, which are the Filtered-X Least Mean Fourth (FXLMF) algorithm and the Leakage-based
variant (LFXLMF) of the FXLMF algorithm. The main target of this work is to derive the FXLMF and LFXLMF adaptive
algorithms, study their convergence behaviors, examine their tracking and transient conduct, and analyze their
performance for different noise environments. Moreover, a convex combination filter utilizing the proposed
algorithm and algorithm robustness test is carried out. Finally, several simulation results are obtained to validate
the theoretical findings and show the effectiveness of the proposed algorithms over other adaptive algorithms.

1 Introduction
Adaptive filtering algorithms are by now omnipresent in
a variety of applications, such as plant modeling, adaptive
equalization, and system identification, to name a few
[1–8]. Add to that, noise control and noise cancelation
are important issues whose effects adaptive filtering al-
gorithms strive to mitigate. Active noise control (ANC)
techniques use adaptive filtering algorithms to cancel
the effect of acoustic noise, by playing anti-noise signal
estimated from the noise source itself.
The Least Mean Square (LMS) algorithm suffers from

problems, such as a degradation in the algorithm effi-
ciency, due to the presence of a filter in the auxiliary or
error path, as in the case of the ANC technique, as well as
slow convergence, instability of the algorithm, increased
residual noise power, and lower convergence rate. These
constraints urged researchers to enhance the performance
of the conventional LMS algorithm [9–11].
The Filtered-X LMS (FXLMS) algorithm is considered

as the cornerstone for ANC applications [12–15]. In this
algorithm, an identical copy of the secondary path, mainly

used to solve the instability problem and to eliminate the
noise from the primary signal, is used to filter the input
before the adaptive algorithm uses it in order to adjust the
coefficient vector of the adaptive filter, as depicted in Fig. 1
[9]. More details about the different parameters in Fig. 1
will be given in the next section.
In the last decade, intensive research was carried out

for the purpose of enhancing the performance of the
FXLMS algorithm. In [14], a new stochastic analysis for
the FXLMS algorithm was introduced, using an analytical
model not based on the independence theory [16], to
derive the first moment of the adaptive weight filter.
The main assumption of this work was to ignore the
correlation between the data vector and the weights
and compare the correlation between data vectors, pre-
serving past and present data vector correlations. This
model was validated for both white and colored pri-
mary input signals and shows stability even when using
large step sizes.
The FXLMS algorithm is preferred because of its in-

herent stability and simplicity, but sometimes, the
adaptive filter suffers from high noise levels caused by
low-frequency resonances, which may cause nonlinear
distortion due to overloading of the secondary source.
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This problem was solved by adding output power con-
straints to the cost function, as was proposed in the
Leaky FXLMS (LFXLMS) algorithm [17]. Moreover,
the LFXLMS reduces the numerical error in the finite
precision implementation and limits the output power
of the secondary source to avoid nonlinear distortion.
The LFXLMS increases the algorithm’s stability, especially
when a large source strength is used.
Another modification of the FXLMS algorithm is the

Modified FXLMS (MFXLMS) algorithm [15]. Since the
FXLMS exhibits poor convergence performance, the
MFXLMS proposes a better convergence and reduces
the computational load.
The LMS may suffer from divergence due to the insuf-

ficient spectral excitation, like a sinusoid signal without
noise, which consequently may cause overflow for the
weight vector during the updating process. This diver-
gence problem can be resolved by proposing a leak term
during the update process of the weight vector. Of
course, this will result in lesser performance; however,
the leakage factor is controlled, which is necessary to
balance for the lost performance. In addition, this will
add complexity, but more robustness of the adaptive
filter is achieved, as was done in the case of the Leaky
LMS (LLMS) algorithm.
In [17], a stochastic analysis for the LFXLMS algorithms

was proposed without resorting to the independence the-
ory. Furthermore, to strengthen their work, the authors
assumed an inexact estimation for the secondary path,
which is the case in most practical implementations for
the adaptive filter.
Due to very low input signal, the Leaky LMS algo-

rithm proposed in [18] aims to reduce the stalling ef-
fect, where the gradient estimate is too small to adjust
the coefficients of the algorithm. Moreover, the leakage
term stabilized the LMS algorithm successfully. Also,
the LLMS solved the problem of bursting in short-
distance telephones when they added the adaptive echo
canceller [19].

A very important extension of the LMS algorithm is
the Least Mean Fourth (LMF) algorithm [20], where the
cost function for LMF algorithm, defined in terms of the
error signal (e(n)) is given by

JLMF nð Þ ¼ E e4 nð Þ� �
: ð1Þ

The LMF weights converge proportionally to the LMS
weights. The performance of the LMF algorithm has never
been tested on any ANC scenario under low or high
signal-to-noise ratio (SNR). In this work, we propose two
new algorithms, the Filtered-X LMF (FXLMF) and Leaky
FXLMF (LFXLMF) algorithms. We analyze the conver-
gence behaviors and examine the performance of both of
them. This is carried out under different statistical input
signals and noise for the mean and mean square error of
the adaptive filter weights, depending on secondary path
modeling error using an energy conservation relation
framework. These two algorithms are expected to have a
high effectiveness on the ANC issue at an extra computa-
tional complexity. Monte Carlo simulations used to assess
the analytical assumptions, as well as the accuracy of the
proposed model, are verified and assessed.
This paper is organized as follows: Section 1 provides

an introduction and a literature review. In Section 2,
analytical derivations for the FXLMF and LFXLMF algo-
rithms are presented. Section 3 proposes the convex
combination of the FXLMF algorithm with the FXLMS
algorithm. Simulation results are presented in Section 4,
and finally, the conclusions and future work are pre-
sented in Section 5.

2 Analysis
Figure 1 illustrates the block diagram of an ANC and
illustrates the location of the secondary path S and its
estimated secondary path Ŝ. The secondary path is a
transfer function which can be represented by a group of a
digital-to-analog (D/A) converter, a power amplifier, a

Fig. 1 Block diagram for ANC system
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canceling loudspeaker, an error microphone, and an
(A/D) converter.
The realization of the secondary path is usually ob-

tained using a system identification technique. For this
work, the assumption used considers an inexact estima-
tion for the secondary path which may cause errors on
the number of coefficients or on their values as was
done in [21]. Consequently, the values of the secondary
path will be as Ŝ ≠ S, and the filter coefficients’ number
M̂≠M . Table 1 describes the different parameters used
in Fig. 1.
Referring to Fig. 1, the error signal is given by

e nð Þ ¼ d nð Þ− y′ nð Þ þ z nð Þ; ð2Þ
where d(n) is the desired response and y(n) is the output
of the adaptive filter given by

y nð Þ ¼ xT nð Þw nð Þ ¼ wT nð Þx nð Þ; ð3Þ
y ' (n) is the output of the secondary path

y0 nð Þ ¼
XM−1

i¼0

siy n−ið Þ

¼
XM−1

i¼0

sixT n−ið Þw n−ið Þ;
ð4Þ

and z(n) is the active noise. Finally, the filtered input signal
is given as

x0 nð Þ ¼
XM̂−1

i¼0

ŝ ix n−ið Þ: ð5Þ

For the case of an exact approximation for the second-
ary path, that is S = Ŝ, the input signal, x(n), will be fil-
tered by S.

2.1 Development of FXLMF algorithm
Using the block diagram in Fig. 1, the cost function for
the FXLMF algorithm is given by the following relation:

JFXLMF nð Þ ¼ E e4 nð Þ� �
; ð6Þ

where the error signal, e(n), is given below as the differ-
ence between the output signal from the secondary path
and the primary signal, that is,

e nð Þ ¼ d nð Þ−
XM−1

i¼0

six
T n−ið Þw n−ið Þ þ z nð Þ: ð7Þ

During the course of derivations, we will resort to the
same assumptions, used in the literature [17–23], to
simplify our algorithms. These assumptions are as
follows:

2.1.1 Assumption A1
x(n) is the input signal, a zero mean wide-stationary
Gaussian process with variance σx

2, and Ri,j = E[x(n −
j)xT(n − i)] > 0 is a positive definite autocorrelation matrix
of the input signal.

2.1.2 Assumption A2
z(n) is the measurement noise, an independent and iden-
tically distributed (i.i.d) random variable with zero mean
and variance σz

2 = E[z2(n)], and there is no correlation be-
tween the input signal and the measurement noise. In
other words, the sequence z(n) is independent of x(n)
and w(n). The measurement is assumed to have an even
probability density function.
Assuming that the vector w is fixed, then the cost

function looks like the following:

JFXLMF ¼
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM−1

l¼0

sisjsksl E xT n−lð Þx n−kð Þ xT n−jð Þx n−ið Þ½ �
 !( )

wk k4

−4
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

sisjsk E d nð Þx n−kð Þ xT n−jð Þx n−ið Þ½ �
 !( )

wk k3

þ 6

( XM−1

i¼0

XM−1

j¼0

sisj E d2 nð Þ x n−jð Þ xT n−ið Þ� � !

þ σz
2
XM−1

i¼0

XM−1

j¼0

sisj E x n−jð Þ xT n−ið Þ½ �
 !)

wk k2

−4

( XM−1

i¼0

si E d3 nð Þ xT n−ið Þ� � !

−σz
2
XM−1

i¼0

si E d nð ÞxT n−ið Þ½ �
 !)

wk k

þ E d4 nð Þ� �þ σz
2−4 E z3 nð Þ½ �E d nð Þ½ � þ 6 σd

2σz2
� �� �

:

ð8Þ

To obtain the optimal weight vector for the cost func-
tion, we take the derivative of Eq. (8) with respect to w
and set it to zero. Discarding the noise, z(n), the derivative
of Eq. (8) will be

Table 1 Parameters and their descriptions used in Fig. 1

Adaptive filter weights w(n) = [w0(n) w1(n)… wN − 1(n)]
T

Stationary input signal x(n) = [x(n) x(n − 1)… x(n − N + 1)]T

Secondary path S = [s0 s1… sM − 1]
T

Estimate of the secondary path Ŝ = [ŝ0 ŝ1… ŝM − 1]
T

Primary (desired) signal d(n)

Stationary noise process z(n)

Number of tap weight coefficients N

Number of the secondary path
coefficients

M
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∂JFXLMF nð Þ
∂w nð Þ ¼ wk k3 −3 ~Rs4

−1~Pd;s3

� 	
wk k2

þ 3~Rs4
−1 ~Pd2;s2

� 	
� wk k−~Rs4

−1 ~Pd3;s

� 	
; ð9Þ

where

~Rs2 ¼
XM−1

i¼0

XM−1

j¼0
sisj E x n−jð ÞxT n−ið Þ� �

¼
XM−1

i¼0

XM−1

j¼0
sisj Ri;j;

Ri,j = E [x(n − j)xT(n − i)] is the input autocorrelation
matrix,

~Pd;s ¼
XM−1

j¼0
sj E d nð Þx n−jð Þ½ �

¼
XM−1

j¼0
sjPd;j;

Pd,j = E [d(n)x(n − j)] is the cross-correlation between
the input and the primary signals,

~Rs4 ¼
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM−1

l¼0

sisjsksl E xT n−lð Þx n−kð Þ xT n−jð Þx n−ið Þ½ �

¼
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM−1

l¼0

sisjsksl Ri;j;k;l ;

~Pd;s3 ¼
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

sisjsk E d nð Þx n−kð Þ xT n−jð Þx n−ið Þ½ �

¼
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

sisjsk Pd;i;j;k ;

~Pd2;s2 ¼
XM−1

i¼0

XM−1

j¼0

sisj E d2 nð Þ x n−jð Þ xT n−ið Þ� �

¼
XM−1

i¼0

XM−1

j¼0

sisjPd2;i;j;

and

~Pd3;s ¼
XM−1

i¼0

si E d3 nð Þ xT n−ið Þ� �

¼
XM−1

i¼0

si Pd3;i:

Equation (9) has three solutions, and the optimal
solution is given by

wo ¼ ~Rs2
−1~Pd;s: ð10Þ

2.2 Mean behavior for the FXLMF algorithm
The FXLMF algorithm is governed by the following
recursion:

w nþ 1ð Þ ¼ w nð Þ− μ

4
∂JFXLMF nð Þ
∂w nð Þ ; ð11Þ

where the instantaneous gradient can be approximated
as

∂ĵFXLMF nð Þ
∂w nð Þ ≈ −4 e3 nð Þ

XM̂ −1

i¼1

ŝ ix
T n−ið Þ ð12Þ

due to the absence of the exact knowledge of the sec-
ondary path. Substituting Eqs. (2)–(5) and (11) in (10),
the adaptive weight vector update is given by

w nþ 1ð Þ ¼ w nð Þ þ μ
XM̂−1

i¼0

ŝ i d
3 nð Þx n−ið Þ

−3 μ
XM−1

i¼0

XM̂−1

j¼0

siŝ j d
2 nð Þx n−jð ÞxT n−ið Þw n−ið Þ

 !

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂−1

k¼0

sisjŝ k d nð Þx n−kð ÞxT n−jð Þ x n−ið Þw n−jð Þ wT n−ið Þ
 !

−6 μ
XM−1

i¼0

XM̂ −1

j¼0

siŝ j z nð Þ d nð Þx n−jð ÞxT n−ið Þw n−ið Þ
 !

− μ

 XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM̂−1

l¼0

sisjsk ŝ l x n−lð ÞxT n−kð Þ x n−jð Þ

xT n−ið Þw n−kð Þ wT n−jð Þw n−ið Þ
!

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂−1

k¼0

sisjŝ k z nð Þx n−kð ÞxT n−jð Þ x n−ið Þw n−jð Þ wT n−ið Þ
 !

−3 μ
XM−1

i¼0

XM̂−1

j¼0

siŝ j z2 nð Þx n−jð ÞxT n−ið Þw n−ið Þ
 !

þμ
XM̂−1

i¼0

ŝ i z3 nð Þx n−ið Þ
 !

þ 3 μ
XM̂−1

i¼0

ŝ i d nð Þz2 nð Þx n−ið Þ
 !

þ3 μ
XM̂−1

i¼0

ŝ i d
2 nð Þz nð Þx n−ið Þ

 !
:

ð13Þ

To find the expectations for the terms on the right-
hand side of Eq. (13), we resort to the following assump-
tions [1, 21]:

2.2.1 Assumption A3
Independence theory (IT) states that the taps of the
input vector x(n–i), i = 0,1,2,… are statistically dependent
so that E[x(n − i)xT(n − j)] = E[x(n − i)xT(n − j)x(n − k)] =
E[x(n − l)xT(n − k)x(n − j)xT(n − i)] = 0, for any i ≠ j, i ≠
j ≠ k, and i ≠ j ≠ k ≠ l, respectively.
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2.2.2 Assumption A4
Take into consideration the correlation between x(n–i),
x(n–j), x(n–k), and x(n–l)∀ i, j, k, l and ignore the correl-
ation between w(n–v) and x(n–i) or x(n–j) or x(n–k)∀ i, j, k.
Using assumption A3, the mean weight update recur-

sion for the FXLMF algorithm will look like the following:

E w nþ 1ð Þ½ � ¼ E w nð Þ½ � þ μ
XM̂ −1

i¼0

ŝ i Pd3;i−3 μ
XM−1

i¼0

XM̂−1

j¼0

siŝ j Pd2;i;jE w n−ið Þ½ �
 !

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂ −1

k¼0

sisjŝ k Pd;i;j;kE w n−jð ÞwT n−ið Þ½ �
 !

−μ
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM̂−1

l¼0

sisjsk ŝ l Ri;j;k;lE w n−kð ÞwT n−jð Þw n−ið Þ½ �
 !

−3 μ σz
2
XM−1

i¼0

XM̂ −1

j¼0

siŝ j Ri;jE w n−ið Þ½ �
 !

þ 3 μ σz
2
XM̂−1

i¼0

ŝ i Pd;i

 !
:

ð14Þ
Consequently, after taking into account the independ-

ence theory, Eq. (14) looks like the following:

E w nþ 1ð Þ½ � ¼ E w nð Þ½ � þ μ ŝ 0 E d3 nð ÞxT nð Þ� �

−3 μ
Xmin M̂ ;Mð Þ−1

i¼0

siŝ i Pd2;i;jE w n−ið Þ½ �
0
@

1
A

−3 μσz
2

Xmin M̂ ;Mð Þ−1

i¼0

siŝ iRi;jE w n−ið Þ½ �
0
@

1
A

þ3 μ
Xmin M̂ ;Mð Þ−1

i¼0

sisiŝ i Pd;i;j;kE w n−ið ÞwT n−ið Þ½ �
0
@

1
A

þ3 μ σz
2ŝ 0 E d nð Þx nð Þ½ �

− μ
Xmin M̂ ;Mð Þ−1

i¼0

sisisiŝ iRi;j;k;l E w n−ið ÞwT n−ið Þw n−ið Þ½ �
0
@

1
A :

ð15Þ
Since in a practical situation, an exact modeling for the

secondary path cannot be achieved, which may lead to in-
correct number of tap weights, such as M̂ < M or may
have the same number of taps but they do not have the
same Ŝ ≠ S. Here, we consider the case of overestimation
for the secondary path, as was the case for Eq. (12). More-
over, to study the steady-state condition, we assume that
the optimal solution of tap weights is governed by limn→∞

E[w(n + 1)] = limn→∞E[w(n)] =w∞; as a result,

w∞≈wo ¼ ~Rs2
−1 ~Pd;s ð16Þ

2.3 Second moment analysis for FXLMF algorithm
Using Eq. (7), the mean square error (MSE) for the
FXLMF algorithm is obtained:

MSEFXLMF nð Þ ¼ E e2 nð Þ½ �

¼ E d2 nð Þ� �
−2
XM−1

i¼0

si E d nð Þx n−ið Þ½ �E w n−ið Þ½ �

þ
XM−1

i¼0

XM−1

j¼0

sisj E x n−jð ÞxT n−ið Þ½ �E w n−ið ÞwT n−ið Þ½ �

þE z2 nð Þ½ � ¼ σd
2−2
XM−1

i¼0

si Pd;i E w n−ið Þ½ �

þ
XM−1

i¼0

XM−1

j¼0

sisj Ri;j E w n−ið ÞwT n−ið Þ½ � þ σz
2:

ð17Þ
Next, to find the minimum mean square error

(MMSE), we need to substitute the optimal solution of
the FXLMF algorithm (16) in (17); moreover, the optimal
error is given by

eo nð Þ ¼ d nð Þ−
XM−1

i¼0

six
T n−ið Þwo ð18Þ

Relying on the orthogonality principle [1, 2], the input
signal will be orthogonal to the error, and noting that

σd2 ¼ ~Pd;s
� ~Rs2

−1~Pd;s , where σd
2 is the power of the de-

sired response and ~Pd;s and ~Rs2 have been already de-
fined in Section 2.1, the MMSEFXLMF can be expressed
as follows:

MMSEFXLMF ¼ σz
2 ð19Þ

2.4 FXLMF algorithm stability
Choosing the right value of step size ensures that the al-
gorithm will converge. The FXLMF algorithm weight
update equation is given by

w nþ 1ð Þ ¼ w nð Þ þ μ e3 nð Þ x0 nð Þ: ð20Þ
Then, the algorithm converges when E[w(n + 1)] =

E[w(n)], that is, the expected value of the weight adjust-
ment term will be zero:

μ E e3 nð Þ x0 nð Þ½ � ¼ 0

or

μ E d nð Þ−
XM−1

i¼0

sixT n−ið Þw n−ið Þ þ z nð Þ
 !3 XM−1

i¼0

sixT n−ið Þ
 !" #

¼ 0;

ð21Þ
since

e nð Þ ¼ d nð Þ−
XM−1

i¼0

sixT n−ið Þw n−ið Þ þ z nð Þ

¼
XM−1

i¼0

sixT n−ið Þwo −
XM−1

i¼0

sixT n−ið Þw n−ið Þ þ z nð Þ:
ð22Þ

The weight error vector is defined as

Al Omour et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:39 Page 5 of 20



v nð Þ ¼ w nð Þ−wo: ð23Þ
Hence,

e nð Þ ¼ z nð Þ−
XM−1

i¼0

six
T n−ið Þv nð Þ: ð24Þ

Using Eqs. (23) and (24) in Eq. (19), then

v nþ 1ð Þ ¼ v nð Þ þ μ z nð Þ−
XM−1

i¼0

six
T n−ið Þv nð Þ

 !3 XM−1

i¼0

six
T n−ið Þ

 !
:

ð25Þ
The value of v(n) approaches zero when the algorithm

converges, and therefore, higher order terms of v(n) can
be ignored, and as a result, the weight error update
equation can look like

v nþ 1ð Þ≅v nð Þ

þ μ z3 nð Þ−3
XM−1

i¼0

siz
2 nð ÞxT n−ið Þv nð Þ

 !

�
XM−1

i¼0

six
T n−ið Þ

 !
: ð26Þ

Following assumptions A1 and A2 that the noise is in-
dependent of the input signal and independent of the
weight error vector, the expected value of Eq. (26) re-
sults into

E v nþ 1ð Þ½ � ¼ E v nð Þ½ �−μ 3σz2
XM−1

i¼0

XM−1

j¼0

siE x n−jð ÞxT n−ið Þ½ �E v nð Þ½ �
( )

¼ I−μ 3σz
2 ~Rs2

� �� �
E v nð Þ½ �:

ð27Þ
Since the autocorrelation matrix Ri,j > 0, the range of

the step size for the FXLMF algorithm can be shown to
be given by

0 < μ <
2

3σz2λmax ~Rs2
� � ; ð28Þ

where λmax ~Rs2
� �

represents the maximum eigenvalue

of ~Rs2 .

2.5 Development of Leaky FXLMF (LFXLMF) algorithm
In this section, the leaky version of the FXLMF algo-
rithm is developed using assumptions A1–A4. Using the
block diagram in Fig. 1, the cost function for the
LFXLMF algorithm will be as follows:

JLFXLMF nð Þ ¼ E e4 nð Þ� �þ γ wT nð Þw nð Þ; ð29Þ
where γ is the leakage factor γ ≥ 0. In the case where
γ = 0, then the cost function will be for the FXLMF
algorithm, and the error signal, e(n), is given by

e nð Þ ¼ d nð Þ−
XM−1

i¼0

six
T n−ið Þw n−ið Þ þ z nð Þ: ð30Þ

The derivative of the cost function with respect to
w(n) will be as follows:

∂JLFXLMF nð Þ
∂w nð Þ ¼ wk k3−3 ~Rs4

−1~Pd;s3

� 	
wk k2

þ3~Rs4
−1 ~Pd2;s2 þ

γ

2
I

0
@

1
A wk k−~Rs4

−1~Pd3;s :

ð31Þ

2.6 Mean behavior of the adaptive weight vector for
LFXLMF algorithm
Using the same block diagram used for the FXLMF algo-
rithm in Fig. 1, the weight update equation for the
LFXLMF algorithm is given by

w nþ 1ð Þ ¼ w nð Þ− μ
4

∂JLFXLMF nð Þ
∂w nð Þ ¼ 1−μ

γ

2

� 	
w nð Þ þ μ e3 nð Þ x0 nð Þ;

ð32Þ
where the instantaneous gradient can be approximated
as follows:

∂ĵ LFXLMF nð Þ
∂w nð Þ ≈ −4 e3 nð Þ

XM̂ −1

i¼1

ŝ ix
T n−ið Þ þ 2γw nð Þ: ð33Þ

Since we do not have the exact knowledge of the sec-
ondary path, we can substitute Eqs. (2)–(4) and (32) in
Eq. (31) to get the adaptive weight vector update expres-
sion as follows:

w nþ 1ð Þ ¼ 1−μ
γ

2

� 	
w nð Þ þ μ

XM̂−1

i¼0

ŝi z3 nð Þx n−ið Þ
 !

þμ
XM̂−1

i¼0

ŝi d
3 nð Þx n−ið Þ−3 μ

XM−1

i¼0

XM̂−1

j¼0

siŝj d
2 nð Þx n−jð ÞxT n−ið Þw n−ið Þ

 !

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂−1

k¼0

sisjŝk d nð Þx n−kð ÞxT n−jð Þ x n−ið Þw n−jð Þ wT n−ið Þ
 !

−6 μ
XM−1

i¼0

XM̂−1

j¼0

siŝj z nð Þd nð Þx n−jð ÞxT n−ið Þw n−ið Þ
 !

þ3 μ
XM̂−1

i¼0

ŝi d
2 nð Þz nð Þx n−ið Þ

 !

− μ

 XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM̂−1

l¼0

sisjsk ŝl x n−lð ÞxT n−kð Þ x n−jð ÞxT n−ið Þ
w n−kð Þ wT n−jð Þw n−ið Þ

!

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂−1

k¼0

sisjŝk z nð Þx n−kð ÞxT n−jð Þ x n−ið Þw n−jð Þ wT n−ið Þ
 !

−3 μ
XM−1

i¼0

XM̂−1

j¼0

siŝj z2 nð Þx n−jð ÞxT n−ið Þw n−ið Þ
 !

þ3 μ
XM̂−1

i¼0

ŝi d nð Þz2 nð Þx n−ið Þ
 !

:

ð34Þ
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Following assumptions A1–A4, the mean weight of the
adaptive weight vector for LFXLMF algorithm is
expressed as in the following:

E w nþ 1ð Þ½ � ¼ 1−μ
γ

2

� 	
E w nð Þ½ �

þ μ
XM̂−1

i¼0

ŝi Pd3;i−3 μ
XM−1

i¼0

XM̂−1

j¼0

siŝj Pd2;i;jE w n−ið Þ½ �
 !

þ3 μ
XM−1

i¼0

XM−1

j¼0

XM̂−1

k¼0

sisjŝk Pd;i;j;kE w n−jð ÞwT n−ið Þ½ �
 !

−μ
XM−1

i¼0

XM−1

j¼0

XM−1

k¼0

XM̂−1

l¼0

sisjsk ŝl Ri;j;k;lE w n−kð ÞwT n−jð Þw n−ið Þ½ �
 !

−3 μ σz2
XM−1

i¼0

XM̂−1

j¼0

siŝj Ri;jE w n−ið Þ½ �
 !

þ 3 μ σz2
XM̂−1

i¼0

ŝi Pd;i

 !
:

ð35Þ
The mean weight of the adaptive weight vector for

LFXLMF algorithm considering the independence theory
looks like the following:

E w nþ 1ð Þ½ � ¼ 1−μ
γ

2

0
@

1
AE w nð Þ½ � þ μ ŝ0 E d3 nð ÞxT nð Þ� �

−3 μ

 Xmin M̂ ;Mð Þ−1

i¼0

siŝ i Pd2;i;jE w n−ið Þ½ �
!

þ3 μ
Xmin M̂ ;Mð Þ−1

i¼0

sisiŝ i Pd;i;j;kE w n−ið ÞwT n−ið Þ½ �
0
@

1
A

− μ
Xmin M̂ ;Mð Þ−1

i¼0

sisisiŝ iRi;j;k;l E w n−ið ÞwT n−ið Þw n−ið Þ½ �
0
@

1
A

−3 μσz
2

Xmin M̂ ;Mð Þ−1

i¼0

siŝ i Ri;jE w n−ið Þ½ �
0
@

1
A

þ3 μ σz
2 ŝ0 E d nð Þx nð Þ½ �ð Þ:

ð36Þ

2.7 Second moment analysis for LFXLMF
The performance analysis for the mean square error,
E[e2(n)]., of the LFXLMF algorithm is carried out, where
the error is updated according to Eq. (7). Therefore, the
MSE for the LFXLMF algorithm is obtained as follows:

MSELFXLMF nð Þ ¼ E e2 nð Þ½ �
¼ E d2 nð Þ� �

−2
XM−1

i¼0

si E d nð Þx n−ið Þ½ �E w n−ið Þ½ �

þ
XM−1

i¼0

XM−1

j¼0

sisj E x n−jð ÞxT n−ið Þ½ �E w n−ið ÞwT n−ið Þ½ � þ E z2 nð Þ½ �:

¼ σd
2−2
XM−1

i¼0

si Pd;i E w n−ið Þ½ �

þ
XM−1

i¼0

XM−1

j¼0

sisj Ri;j E w n−ið ÞwT n−ið Þ½ � þ σz
2:

ð37Þ
Following the steps used in deriving Eq. (19), here, we

reach the same results for the MMSE of the LFXLMF as
given by

MMSELFXLMF ¼ σz
2: ð38Þ

2.8 LFXLMF algorithm stability
In the ensuing, the effect of the leakage factor γ on the
stability of the LFXLMF algorithm is discussed. As was
done in [21], the value of γ is determined by the filter
designer using trial and error methodology. For this
work, the range of the leakage factor can be found with
respect to the step size μ. To do that, first, we start with
the LFXLMF algorithm weight update:

w nþ 1ð Þ ¼ 1−μ
γ

2

0
@

1
Aw nð Þ− μ

4
∂JLFXLMF nð Þ

∂w nð Þ

¼ 1−μ
γ

2

0
@

1
A w nð Þ þ μ e3 nð Þ x0 nð Þ:

ð39Þ

The algorithm converges when E[w(n + 1)] = E[w(n)].
In other words, the weight adjustment term will be zero,
that is,

μ E e3 nð Þ x0 nð Þ½ � ¼ 0

E d nð Þ−
XM−1

i¼0

sixT n−ið Þw þ z nð Þ
 !3 XM−1

i¼0

sixT n−ið Þ
 !" #

¼ 0:

ð40Þ
But, since

e nð Þ ¼ d nð Þ−
XM−1

i¼0

sixT n−ið Þw þ z nð Þ

¼
XM−1

i¼0

sixT n−ið Þwo −
XM−1

i¼0

sixT n−ið Þw þ z nð Þ;
ð41Þ

and assuming fixed w, then we can define the weight
error vector

v nð Þ ¼ w nð Þ−wo; ð42Þ
Hence, Eq. (41) looks like the following:

e nð Þ ¼ z nð Þ−
XM−1

i¼0

six
T n−ið Þv nð Þ: ð43Þ

Using Eqs. (42) and (43) in Eq. (39), one obtains

v nþ 1ð Þ ¼ 1−μ
γ

2

� 	
v nð Þ

þμ z nð Þ−
XM−1

i¼0

six
T n−ið Þv nð Þ

 !3 XM−1

i¼0

six
T n−ið Þ

 !
:

ð44Þ
The value of v(n) approaches zero when the algorithm

converges so that we can ignore the high-order terms of
v(n), and as a result, the weight error update equation
can be written as
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v nþ 1ð Þ≅ 1−μ
γ

2

� 	
v nð Þ

þ μ z3 nð Þ−3
XM−1

i¼0

siz
2 nð ÞxT n−ið Þv nð Þ

 !

�
XM−1

i¼0

six
T n−ið Þ

 !
: ð45Þ

To find the mean weight error, we need to take the ex-
pectation of Eq. (45), and relying on the assumptions
A1–A4, the noise is independent of the input signal as
well as the weight error vector. Consequently, the mean
of the weight error vector is given by

E v nþ 1ð Þ½ � ¼ 1−μ
γ

2

� 	
E v nð Þ½ �

−μ 3σz
2
XM−1

i¼0

XM−1

j¼0

siE x n−jð ÞxT n−ið Þ½ �E v nð Þ½ �
( )

E v nþ 1ð Þ½ � ¼ 1−μ
γ

2

� 	
I−μ 3σz2~Rs2ð Þ

� 	
E v nð Þ½ �:

ð46Þ
Assuming a positive definite autocorrelation matrix,

Ri,j > 0, the range of the leakage factor γ for LFXLMF al-
gorithm is given by

3σz2λmax ~Rs2
� �

−1
3
2 σz

2λmax ~Rs2
� � < γ <

2
μ

ð47Þ

where λmax ~Rs2
� �

represents the maximal eigenvalue of
~Rs2 . As can be seen from Eq. (48), the leakage factor has
an effect on the step size.

3 Algorithms’ convex combination
In this section, we examine the behavior of our algo-
rithm through the convex combination approach,
namely the convex combination with the FXLMF algo-
rithm. The method of combining two algorithms is an
interesting proposal. It aims to mix the output of each
filter and highlights the best features of each individual
algorithm. Then, it utilizes the features in the overall
equivalent filter to improve the performance of the
adaptive filter [24–29]. In this section, we will examine
our proposed algorithms with members from the LMS
and LMF families.
Figure 2 is the proposed block diagram for the convex

combination of two filtered input signals, where the out-
put of the overall combined filter can be given as in [25]
by the following equation:

y nð Þ ¼ λ nð Þy01 nð Þ þ 1−λ nð Þ½ �y02 nð Þ ð48Þ
where y ' 1(n) and y ' 2(n) are the output of the two filters
and λ(n) is the contribution or mixing parameter, where
0 ≤ λ(n) ≤ 1. This parameter shows the percentage of in-
volvement for each algorithm in the overall filter output.

Therefore, the combined filter will extract the best fea-
tures for each filter w1(n) and w2(n) individually. Assum-
ing both filters w1(n) and w2(n) have the same size M,
then the weight vector of the overall filter can be given as

w nð Þ ¼ λ nð Þw1 nð Þ þ 1−λ nð Þ½ �w2 nð Þ: ð49Þ
Each filter is updated individually, depending on its

own error e1(n) or e2(n), and the overall weight vector is
updated according to the total error e(n) = [d(n) − y(n) +
z(n)] which adapts the mixing parameter λ(n). Using the
gradient descent method, we can minimize the fourth-
order e4(n) and the second-order e2(n) errors for the
overall filter. Based on that, we can use the convex com-
bined filter over two scenarios.
In the first scenario, we will do the minimization for

the quadratic error e2(n), where λ(n) is the sigmoidal
function given as

λ nð Þ ¼ 1
1þ e−a nð Þ ; ð50Þ

and instead of doing the update equation with respect to
λ(n), we will define the update equation with respect to
the changing value a(n) as follows:

a nþ 1ð Þ ¼ a nð Þ− μa2
2

∂e2 nð Þ
∂a nð Þ

¼ a nð Þ− μa2
2

∂e2 nð Þ
∂λ nð Þ

∂λ nð Þ
∂a nð Þ

¼ a nð Þ þ μa2e nð Þ y01 nð Þ−y02 nð Þ½ �λ nð Þ 1−λ nð Þ½ �:
ð51Þ

The second scenario is to conduct the minimization
for the fourth-order error of the overall filter; then, the
updated equation with respect to a(n) will be as the
following:

a nþ 1ð Þ ¼ a nð Þ− μa4
4

∂e4 nð Þ
∂a nð Þ

¼ a nð Þ− μa4
4

∂e4 nð Þ
∂λ nð Þ

∂λ nð Þ
∂a nð Þ

¼ a nð Þ þ μa4e
3 nð Þ y01 nð Þ−y02 nð Þ½ �λ nð Þ 1−λ nð Þ½ �;

ð52Þ
where μa2 and μa4 are the step sizes for the overall filter,
for the quadratic and fourth-order errors, respectively.
In this work, we study the mean square performance for
the convex-combined filter using the filtered input sig-
nal. Since the range of λ(n) is between zero and one, we
need to insure that the combined filter keeps adapting
and does not stick with only one algorithm all the time.
For this purpose, we have to reduce the interval of the
mixing parameter by limiting the value of a(n) inside
[1 − a+, a+]; then, the range of the mixing parameter
will be between 1 − λ+ ≤ λ(n) ≤ λ+, as the following:
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λ nð Þ ¼
0:998; a nð Þ > aþ

λ nð Þ; aþ≥a nð Þ≥−aþ
0:002; a nð Þ < −aþ

8<
: ð53Þ

Simulations in Section 4 will investigate four cases,
where the comparison will be done by using the FXLMF
and FXLMS algorithms, as the two transversal filters are
used in the convex combination, according to the sec-
ond error order minimization.

4 Simulation results
Simulations in this section are divided into two parts.
The first part examines the proposed algorithms in the
mean square error and mean weight context. The simu-
lation has been done for the FXLMF and LFXLMF algo-
rithms under some conditions and environments. While
in the second part, we test the concept of convex combi-
nations over the FXLMF and FXLMS algorithms. Fur-
thermore, comparisons with other algorithms are carried

Fig. 2 Block diagram of adaptive convex combination for two filtered input signal algorithms

Fig. 3 Comparison over MSE for FXLMF and LFXLMF with other algorithms using fixed step size μ = 0.001 and high SNR = 40 dB and Gaussian
noise, leakage factor γ = 0.05
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Fig. 4 Comparison over MSE for FXLMF and LFXLMF algorithms with other algorithms using fixed step size μ = 0.001 and low SNR = 5 dB and
Gaussian noise, leakage factor γ = 0.05

Fig. 5 Comparison over mean weight vector for FXLMF algorithms using different step sizes μ = [red = 0.001, green = 0.0005, blue = 0.0001] using
Gaussian noise at low SNR = 5 dB. Solid line: proposed models (a), (b), and (c). Dashed line: IT model
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Fig. 6 Comparison over mean weight vector for LFXLMF algorithms using different leakage factors γ = [0.1, 0.250, 0.50, 1] and fixed step size
μ = 0.001 using Gaussian noise at low SNR = 5 dB

Fig. 7 MSE for the FXLMF and LFXLMF algorithm robustness using Gaussian noise at low SNR = 5 dB, fixed step size μ = 0.00125, and leakage
factor γ = 0.50
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out to show under which circumstances the new pro-
posed algorithms outperform algorithms from the LMS
family, in convergence. The plant vector used to filter
the input signal is wp with nine taps where

wp ¼ ½ 0:0179 0:1005 0:2795 0:4896 0:5860 0:4896

0:2795 0:1005 0:0179�:

In addition, for simplicity, we assume the secondary

path and the estimated secondary path are equal S ¼ Ŝ
¼ 0:7756 0:5171 −0:3620½ �.
The result for all simulations are the average of 500

Monte Carlo simulations, the noise is white Gaussian for
Figs. 3, 4, 5, 6, and 7 and uniform noise for Figs. 8, 9, 10,
11, and 12.
Next, Figs. 13, 14, 15, 16, 17, 18, and 19 are for the con-

vex combination; we used both of the transversal filters to
have the same adaptive algorithm but with different step
sizes. Then, we did a comparison between the FXLMF
and FXLMS algorithms at low and high SNR for white
Gaussian noise. All previous simulations were done using
the minimization for quadratic error equation.
Figure 3 shows a comparison of the mean square error

MSE behavior for different algorithms from the LMS
family (i.e., NLMS, FXLMS, FeLMS, MFXLMS), the
NLMF, and our proposed ones. It can be shown that the

FXLMF algorithm converges, and it will reach the white
noise level after a large number of iterations. For the
LFXLMF algorithm, it reaches the steady state level
faster than the others and after almost 5000 iterations,
but it converges to a higher white noise level at almost
12 dB. Using a larger step size μ may lead the algorithm
to diverge.
Figure 4 shows a comparison of the mean square error

MSE behavior for different algorithms with fixed step
size but this time for low SNR with a value of 5 dB. We
can clearly notice that the FXLMF and LFXLMF algo-
rithms outperform other LMS family algorithms in
speed of convergence, an advantage to our proposed al-
gorithms with almost 500 iterations. FXLMF and
LFXLMF almost have identical curves because we are
using a small leakage factor γ.
Figure 5 shows the effect of changing the step size on

the mean weight vector of the FXLMF algorithm; when
we increase the values of the step size, the algorithm
converges faster to the larger mean of the weight. More-
over, using assumption A4 makes the algorithm con-
verge to a higher mean weight level.
Figure 6 shows the effect of changing the leakage fac-

tor on the mean weight of the LFXLMF algorithm. We
can see that increasing the value of the leakage factor
will increase the mean weight of the LFXLMF algorithm
and it does not affect the speed of convergence.

Fig. 8 Comparison over MSE for FXLMF and LFXLMF with other algorithms using a fixed step size μ = 0.001 using uniform noise at high SNR =
40 dB and leakage factor γ = 0.05
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Fig. 9 Comparison over MSE for the FXLMF and LFXLMF algorithms with other algorithms using a fixed step size μ = 0.001 and uniform noise at
low SNR = 5 dB and leakage factor γ = 0.05

Fig. 10 Comparison over mean weight vector for FXLMF algorithms using different step sizes μ = [red = 0.001, green = 0.0005, blue = 0.0001]
using uniform noise at low SNR = 5 dB. Solid line: proposed models (a), (b), and (c). Dashed line: IT model
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Fig. 11 Comparison over mean weight vector for LFXLMF algorithms using different leakage factors γ = [0.1, 0.250, 0.50, 1] and fixed step size μ =
0.001 using uniform noise at low SNR = 5 dB

Fig. 12 MSE for the FXLMF and LFXLMF algorithm robustness using uniform noise at low SNR = 5 dB, fixed step size μ = 0.00125, and leakage
factor γ = 0.50
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Figure 7 shows the robustness of the proposed algo-
rithms FXLMF and LFXLMF at low SNR and using
Gaussian noise, when a sudden change occurred in the
weight vector.
Figure 8 reports the performance of the algorithms

when the uniform noise ids used instead of Gaussian,
using the same conditions as we used before in Fig. 3.
As we can see, we have almost the same result, since

both the FXLMF and LFXLMF algorithms converge,
where the first one keeps converging while the second
one reaches the steady state faster.
Figure 9 is the same as Fig. 4 but using a fixed step size

and uniform noise. In addition, the FXLMF and LFXLMF
algorithms outperform the LMS family in convergence.
Figure 10 shows the effect of changing the step size on

the mean weight vector of the FXLMF algorithm, and as

Fig. 13 MSE for combined FXLMF and FXLMS using Gaussian noise at high SNR = 40 dB and fixed step size μ = 0.00125

Fig. 14 Values of the mixing parameter λ(n) for Fig. 13
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depicted in Fig. 5, the algorithm converges faster as we
increase the step size using uniform noise.
Figure 11 shows the effect of changing the leakage fac-

tor on the mean weight of the LFXLMF algorithm as
shown in Fig. 6; increasing the value of the leakage fac-
tor will increase the mean weight of the LFXLMF
algorithm.

Figure 12 shows the robustness of the proposed algo-
rithms FXLMF and LFXLMF at low SNR and using uni-
form noise.
Figure 13 illustrates the behavior of the convex-

combined filter of FXLMS and FXLMF algorithms; we
can see at the beginning that the combined filter
followed the FXLMF algorithm since it has a faster

Fig. 15 MSE for combined FXLMF and FXLMS using Gaussian noise at low SNR = 5 dB and fixed step size μ = 0.00125

Fig. 16 Values of the mixing parameter for Fig. 15
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Fig. 17 MSE for combined FXLMF algorithm robustness using Gaussian noise at low SNR = 5 dB and fixed step sizes μ = 0.00125 (green) and
0.000625 (blue)

Fig. 18 MSE for the combined FXLMF and FXLMS algorithm robustness test using Gaussian noise at high SNR = 40 dB and fixed step
size μ = 0.00125
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speed of convergence. After that, the combined filter
moved to the FXLMS algorithm, which showed better
convergence at high SNR. Also, we can see from
Fig. 14 the behavior of the mixing parameter λ(n). We
assume a 50 % mixing percentage as the initial case,
then λ(n) followed the FXLMF algorithm at the begin-
ning where the FXLMF shows faster convergence, and

after that, the mixing parameter switched to the other
algorithm FXLMS where it has a better convergence.
In Fig. 15, with the same environment as in Fig. 13
but with low SNR, the FXLMF algorithm outperforms
the FXLMS algorithm and the combined filter
followed the FXLMF algorithm at the beginning; then,
when both algorithms have the same convergence, the

Fig. 19 MSE for combined FXLMF and FXLMS algorithm robustness test using Gaussian noise at low SNR = 5 dB and fixed step size μ = 0.00125
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Fig. 20 ERLE performance of the FXLMF and LFXLMF algorithms
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mixing parameter is λ(n) = 50 %. This is shown in
Fig. 16.
Figure 17 shows the robustness of the convex-

combined filter of FXLMF for two different step sizes at
low SNR and using Gaussian noise. We can clearly see
that the combined filter followed the one with a larger
step size, which already shows better performance. Simi-
larly, Fig. 18 shows the robustness of the convex-
combined filter of the FXLMF and FXLMS algorithms at
high SNR and using Gaussian noise. We can clearly see
that the combined filter followed the FXLMF algorithm
at the beginning and then switched to the FXLMS algo-
rithm, which shows better performance at high SNR. Fi-
nally, Fig. 19 shows the robustness of the convex-
combined filter of the FXLMF and FXLMS algorithms at
low SNR and using Gaussian noise. We can clearly see
that the combined filter followed the FXLMF algorithm
all the time since it shows better performance than the
FXLMS algorithm at low SNR.
Finally, the performance of the proposed algorithms is

tested using the echo return loss enhancement (ERLE)
metric. As can be depicted from Fig. 20, our proposed
algorithms outperform the rest of the algorithms.

5 Conclusions
Two algorithms FXLMF and LFXLMF were proposed in
this work; an analytical study and mathematical deriva-
tions for the mean weight adaptive vector and the mean
square error for both algorithms have been obtained.
Moreover, the step size and the leakage factor bound
ranges were investigated.
From the literature, we received a good sense about

proposing new algorithms to the LMF family, as was
proposed before in the LMS. The FXLMF and LFXLMF
algorithms successfully converge under a large range of
SNR. Furthermore, we see the ability of both algorithms
to converge under different environments of noise:
Gaussian and uniform. However, the LMF family re-
quires more computational complexity; our proposed al-
gorithms were faster in convergence than members of
the LMS family under some circumstances.
From the simulations, we saw that both algorithms

converge well under relatively high SNR but they con-
verge faster under low SNR. In addition, using a step
size near the upper boundary will guarantee less time to
converge; however, working close to the upper boundary
of the step size ensures faster convergence, but we have
to take the risk of algorithm divergence. Also, we see
that a larger step size will increase the mean of the
weight vector. Step size under the upper boundary is
given in Eq. (28).
The leakage factor in the LFXLMF algorithm adds

more stability to the algorithm, at the expense of

reduced performance as was expected from the litera-
ture. The leakage factor boundaries were derived in
Eq. (47).
The convex combination is an interesting proposal to

get the best feature of two or more adaptive algorithms.
We were able to successfully apply it using the FXLMF
and FXLMS algorithms with different step sizes. In the
other scenario, we applied the combination over the
FXLMS and FXLMF algorithms and we noticed that the
convex-combined filter, at every iteration, followed the
best algorithm.
A robustness test was done for all the scenarios used,

to ensure that the proposed algorithms are able to adapt
in case of a sudden change in the tap weights of the fil-
ter, either in the transient or steady state stage.
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