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1  Introduction
In the 5G cellular communication, millimeter wave (mmWave) has been drawing enormous 
attention from academia, colleges and governments due to the wide available spectrum 
[1, 2]. However, challenges also exist in the application of mmWave [3, 4]. With frequency 
increasing, various attenuation losses of the mmWave channel, for example, the path loss 
and showing effects, become more hostile. One solution to the power loss problem in the 
channel is to use large MIMO antennas. For both the base station and the mobile station, 
large antennas are equipped to get transceiver powerful communication. However, another 
challenge is that the conventional training overhead for the channel state information 
(CSI) acquisition grows proportionally with the BS and MS antenna size. Fortunately, the 
massive MIMO system has a high correlation due to the finite number of scatters in the 
propagation path, so that the effective dimension is much less than the actual dimension 
[5]. Hence, with the uniform linear array (ULA) assumption, the mmWave channel can be 
approximately transformed into the sparse representation under the discrete Fourier trans-
form (DFT) basis when large-scale antennas are equipped [6–8]. Compressive sensing (CS) 
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theory was developed by Candes et al. [9] and Donoho [10] which can be very useful when 
signals are sparse or compressible. Several algorithms have been presented in [5, 11–13] 
to exploit such hidden sparsity. The above methods contribute to achieving a significant 
reduction in the training overhead. However, there are still some limits in the algorithms. 
For example, in the expectation–maximization (EM) sparse Bayesian learning algorithm, 
the computation complexity increases exponentially with the signal dimension [14], which 
may meet great challenges in practical implementations. Another generally existed problem 
is that although the sparse algorithms can achieve super estimation performance for sparse 
signals, there also exists a grid mismatch issue. Some super-resolution (off-grid) com-
pressed sensing methods and two-stage channel estimation algorithms have been applied 
to improve channel estimation accuracy [14–20] aiming to overcome the grid mismatch 
caused by conventional compressed sensing techniques. However, the super-resolution dic-
tionary learning algorithm has two main shortcomings: the convergence of the results can-
not be guaranteed; a large amount of prior training is required for the sparse dictionary. 
These two shortcomings limit the practical design and implementation.

In this paper, we adopt a two-step algorithm. The first step is coarse channel estimate by 
the SBL algorithm, which simplifies operations using DGAMP. The second step is an accu-
rate angle estimate by the interpolation of three 2-DFT spectral lines. The following sum-
marizes the contributions of this paper.

•	 We formulate a sparse recovery problem and develop a DGAMP-SBL algorithm for 
the coarse estimation channel of the hybrid MIMO system. Based on the algorithm, we 
accelerate the computation speed of the original EM sparse Bayesian learning algorithm 
for mmWave channel estimation. The computation complexity shows that we signifi-
cantly reduce operation time comparing to the original SBL algorithm with large-scale 
transmission and reception antennas.

•	 To address the sparse reconstruction based channel estimation schemes suffering from 
the grid-off problem, we improve a fast refined algorithm without iteration. In the dis-
crete Fourier transform domain, the influence of Gaussian noise decreases with the 
increasing antenna number, which helps obtain a more accurate angle estimation.

The rest of the paper is organized as follows. In Sect. 2, we outline our algorithm and briefly 
explain the operation steps. The system and channel model are discussed in Sect. 3. We 
formulate the sparse recovery-based channel estimation with the proposed DGAMP-SBL 
algorithm and get more accurate channel estimation using a refined algorithm in Sect. 4. 
The performance of the proposed algorithm is compared with that of the existing algo-
rithms, and the superiority of the proposed algorithm is concluded in V. At the end of the 
paper, a conclusion is given in Sect. 6.

The notations related to this paper are shown in Table 1.

2 � Method
In this section, an off-grid channel model is implied for sparse representation of mas-
sive mmWave MIMO systems and was propose a computationally efficient and accu-
rate mmWave channel estimation algorithm. Generalized approximate message passing 
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(GAMP) is an extension of the approximate message passing algorithm [21] to more 
comprehensive scenarios involving arbitrary priors and observation noise [22]. We use a 
GAMP based low complexity SBL algorithm to avoid the high-dimension matrix inver-
sion. This algorithm can be embedded in the expectation–maximization (EM) frame-
work to approximate the true posterior distribution of sparse. Then we improve a fast 
refined algorithm that utilizes the interpolation of three 2-DFT spectral lines to improve 
the accuracy of the algorithm. Significantly, the improved algorithm can get accurate 
angles of departures/arrivals (AoAs/AoDs) estimation without iterations. Consequently, 
we can obtain both computational efficiency and estimation precision. Finally, the lower 
bound of normalized mean-squared error of the proposed algorithm is derived analyti-
cally: the lower bound of estimation is derived by the least square (LS) algorithm with 
the assumption that the angles of AoAs/AoDs are known. And then, we estimate the 
channel by using the LS algorithm. The result indicates our proposed algorithm is close 
to the lower bound at high signal-to-noise ratios.

3 � System model
In this paper, we consider a typical hybrid mmWave MIMO systems consisting of a BS 
and a MS, where the BS and MS are equipped with Nt and Nr antennas, respectively. 
Let NRF

t  and NRF
r  be the number of transmitter radio frequency (RF) chains and receiver 

RF chains, respectively. We consider a hybrid analog–digital communication system 
that has inherent sparse characteristics as shown in Fig. 1. For mmWave massive MIMO 
with hybrid precoding, the amount of RF chains is far less than the amount of antennas, 
i.e., NRF

t < Nt , N
RF
r < Nr [23–25]. We assume that F = FRFFBB is the Nt × Nt

s  hybrid 

Table 1  Related notations

Notations Definitions

capital bold letters Matrices

lowercase bold letters Vectors

[·]∗ Conjugate operator

[·]H Conjugate transpose operator

[·]T Transpose operator

[·]−1 Inverse operator

‖X‖F Frobenius norm of X

‖x‖2 l2 norm of x

⊗ Kronecker product

⊙ Khatri–Rao product

diag(x) Diagonal matrix with elements of x on its diagonal

vec(X) Vectorization operation of X

vecd(X) Vectorization operation of diagonal elements of X

Re{·} Real part operator

Im{·} Imaginary part operator

E(·) Expectation operator

det(·) Determinant operator
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precoding matrix in BS, where FRF ∈ C
Nt×NRF

t  and FBB ∈ C
NRF
t ×Nt

s  denote the analog 
and digital precoders, respectively. W = WRFWBB ∈ C

Nr×Nr
s  is the hybrid combiner. 

WRF ∈ C
Nr×NRF

r  and WBB ∈ C
NRF
r ×Nr

s  denote the analog and digital combiners, respec-
tively, and the received signal r ∈ C

Nr
s ×1 can be rewritten as

where r ∈ C
Nr
s ×1 is the received vector, H ∈ C

Nr×Nt is the channel matrix, s ∈ C
Nt
s×1 and 

n ∈ C
Nr
s ×1 is the Gaussian noise matrix.

Use x = Fs ∈ CNt×1 to denote the transmit signal, and the transmit vector elements 
correspond to the transmit antennas position. Firstly the channel estimation is con-
sidered in M time slots, and the channel matrix remains unchanged during the M 
time slots. Nx (Nx < Nt) pilot sequences x1, x2, . . . xNx are sent by transmitters, and 
we also use Ny dimensional received pilot yp by receiving antennas for each transmits 
pilot sequence xp(1 � p � Nx)

where Wr = [W1,W2, . . . ,WM] ∈ C
Nr×Ny , np ∈ C

Nr×1 is the noise. Denote 
Y = [y1, y2, . . . , yNx ] , X = [x1, x2, . . . xNx ] , N =

[

n1,n2, . . . ,nNx

]

 , we have

where ⌢
N

= WH
r N and N represents the noise matrix with each entry following the dis-

tribution CN (0, σ 2
n ) . In this paper, we suppose that the matrices Wr and X are known as 

prior knowledge at the receiver without loss of generality. As mentioned in [16], the 

(1)
r = WH

BBW
H
RFHFRFFBBs

+WH
BBW

H
RFn

= WHHFs+WHn,

(2)yp = WH
r Hxp +WH

r np,

(3)Y = WH
r HX + ⌢

N
,

RF Chain

RF Chain

RF Chain

RF Chain

Fig. 1  A mm-wave system employing hybrid analog-digital precoding



Page 5 of 22Shao et al. EURASIP J. Adv. Signal Process.         (2021) 2021:85 	

entries in Wr and X are optimally chosen from the set wi,j =
√

1
/

Nte
jβi,j

,xi,j =
√

ρ
/

Nte
jβi,j where βi,j is the random phase uniformly distributed in [0, 2π) . This 

assumption is also employed in [26, 27]. Further details of how to design Wr and X can 
be found from [28].

It is not available to observe H directly. Instead, a noisy edition WH
r HX can be 

observed from the receiver. This is referred to as channel subspace sampling and a 
detailed analysis can be found in [29, 30]. Fortunately, as mentioned above, the chan-
nel estimation problem can be solved as a sparse signal recovery. The typical model of 
mmWave channel is modeled as [31]

where L̃ denotes the number of communication paths. There are usually a few reflected 
path clusters in mmWave multipath propagation channel [26–28]. Therefore, we usually 
have L̃ ≪ min{Nr ,Nt} . αl is the complex-valued gain corresponding to the l-th commu-
nication path. θl ∈ [−π ,π ] and φl ∈ [−π ,π ] are the corresponding azimuth AoAs and 
AoDs [32–34], respectively, and ar ∈ C

Nr×1
(

at ∈ C
Nt×1

)

 is the array response vector 
corresponding to the receiver (transmitter).

In this paper, we employ ULA both at the transmitter and the receiver. Then, the 
steering vectors at the BS and MS can be written as

where � is the signal wavelength and d denotes the spacing between every two adjacent 
antenna elements with d = �/2 . For convenience, each scatterer is assumed to possess a 
transmission path, and the channel gains are modeled as independent identically distrib-
uted random variables with the distribution CN (0, σ 2

α ) . By defining the steering matrices 
�r = [ar(θ1), . . . , ar(θL̃)] ∈ C

Nr×L̃ , �t = [at(φ1), . . . , at
(

φL̃

)

] ∈ C
Nt×L̃ in a matrix form, 

the mmWave channel matrix H in (4) can be rewritten in a matrix form as follows

where Hv is a diagonal matrix with diagonal elements α = [α1, . . . ,αL̃]T . To transform 
the signal estimation problem into the sparse recovery problem, we firstly express the 
channel in a sparse matrix form

where both Ar �
1√
Nr
[ar(ψ1) · · · ar

(

ψN1

)

] ∈ C
Nr×N1 and 

At �
1√
Nt
[at(ω1) · · · ar

(

ωN2

)

] ∈ C
Nt×N2 are overcomplete beamforming matrices 

(4)H =
L̃

∑

l=1

αlar(θl)a
H
t (φl),

(5)ar(θl) =
[

1, e−j2π d
�
sin(θl), . . . , e−j2π (Nr−1)d

�
sin(θl)

]T
,

(6)at(φl) =
[

1, e−j2π d
�
sin(φl), . . . , e−j2π

(Nt−1)d
�

sin(φl)
]T

,

(7)H = �rHv�
H
t ,

(8)H = ArCA
H
t ,
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(N1 � Nr ,N2 � Nt) which are assumed as channel-invariant unitary DFT matrices, and 
ArA

H
r = IN1 , AtA

H
t = IN2 , respectively. C ∈ C

N1×N2 is a sparse representation matrix of 
mmWave channel with the L̃ nonzero elements correspond to each scatterer under the 
condition that each AoA/AoD is defined in quantization grids. Note that the practical 
direction is usually invalid to locate on the predefined grids, so it is actually that the 
quantizing error exists in the sparse channel matrix. Hence, a refined channel estimation 
scheme is given in the later sections to solve the off-grid problem. What is more, it is 
worth noting that C is no longer diagonal.

The signal model in (3) can be further denoted as follows

where c = vec(C) , y = vec(Y) ∈ C
NxNy×1 and ⌢

n
= vec(

⌢

N
) . The estimation of c can be 

handled as a sparse signal recovery problem with 2D dictionary matrix 
(

A∗
t ⊗ Ar

)

 , and 
the sensing matrix also can be denoted as � = FTt A

∗
t ⊗WH

r Ar . We consider the number 
of grids N1 = N2 for simplicity, and the channel estimation problem can be summarized 
as compressed sensing problem as follows

where ζ is a tolerance constant which is determined by noise power. Since recovery sig-
nal from l0-norm is a NP hard question, we replace the l1-norm with l0-norm as follows

4 � Proposed GAMP‑SBL‑based high precision channel estimation
This section describes the proposed SBL scheme for sparse beamspace channel vector 
estimation. We begin by introducing the proposed hierarchical prior model. Then, we 
use the DGAMP-SBL to estimate the mmWave channel. After that, we propose a refined 
algorithm to get the accurate estimation of AoAs and AoDs. And then we propose a 
refined algorithm to estimate the AoAs and AoDs accurately. Finally, we analyze the 
computation complexity of the proposed algorithm and make a comparison to the com-
plexity of SBL.

4.1 � Hierarchical prior model

We have the following results using the assumption of circular symmetric complex 
Gaussian noises

(9)

y =
√
Pvec(WH

r HX)+ vec(
⌢

N
)

=
√
P
(

XT ⊗WH
r

)

vec(H)+ ⌢

n

=
√
P
(

XTA∗
t ⊗WH

r Ar

)

c+ ⌢

n
,

(10)arg min �c�0
c

subject to
∥

∥

∥
y −

√
P�c

∥

∥

∥

2
< ζ ,

(11)arg min �c�1
c

subject to
∥

∥

∥
y −

√
P�c

∥

∥

∥

2
< ζ .

(12)p(y|c, �) = CN

(

y|�c, �−1I
)

,
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where � = σ−2 stands for the noise precision. In order to leverage the sparse structure 
of the underlying mmWave channel, we enforce sparsity constraints on the channel vec-
tor which is commonly used in the sparse Bayesian model. The sparse channel vector c 
is assumed to follow a two hierarchical prior Gaussian distribution. In the first layer, c is 
assumed that the entries of c are independent and identically distributed, i.e.

where γi denotes the inverse variance, and γ = [γ1, γ2, . . . , γN1N2 ] . Meanwhile, a Gamma 
prior is employed for the inverse variance vector

where a, b are parameters associated with the above distribution, and Ŵ(a) =
∫∞
0 ta−1e−t 

is the Gamma function. Besides, ⌢
n

 is Gaussian noise with zero mean and covariance 
matrix (1/�)I . We set a Gamma hyperprior over � : 
p(�) = Gamma(� | c + 1, d) = Ŵ(c + 1)−1d(c+1)�

ce−d�.
To obtain a broad hyperprior, we set a, b → 0 [35, 36]. This two-stage hierarchical prior 

gives

which is helpful to obtain sparse solutions due to the sharp peak and heavy tails with 
small a and b. Actually, according to paper [37], the maximum posterior estimation of c 
is consistent with l0-norm solution in formula (10) by FOCUSS with p → 0 . To update 
the parameter θ = {γ , �} , we can also use maximum posteriori estimation to achieve the 
most probable values, i.e.,

or, equivalently,

Then, the EM-SBL algorithm is employed to learn the sparse vector c and iteratively 
update the hyper-parameters θ = {γ , �} . Note that the key step is to update the hyper-
parameters p(γ ,� | y) by maximizing the posterior probability when the EM-SBL is in 
the updating phase. And in the stage of E-step, the likelihood function can be written as 
follows

(13)p(c|γ ) ∼
N1N2
∏

i=1

CN

(

ci; 0, γ−1
i

)

,

(14)

p(γ ) =
N1N2
∏

i=1

Gamma(γi | a+ 1, b)

=
N1N2
∏

i=1

Ŵ−1(a+ 1)baγ a
i e

−bγi ,

(15)p(ci) =
∫ ∞

0
p(ci | γ−1

i )p(γi)dγi,

(16)
(

γ ∗, �∗
)

= arg max
γ ,�

p(γ ,�|y),

(17)
(

γ ∗, �∗
)

= arg max
γ ,�

ln p(γ ,�, y).
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As noted before, the conditional density p(c|r) shows c is Gaussian distribution. When 
we treat c as a hidden variable, its posterior distribution we need to compute con-
ditioned on the observed vector y and the updated hyper-parameters θ is a complex 
Gaussian [35] function

where the posterior covariance �c and mean µc are given, respectively,

where D = diag
(

γ0, γ1, . . . , γN1N2

)

 , �c and µc are the posterior mean and variance with 
relevant for p

(

c | y, γ (t), �(t)
)

 , respectively. We assume that τc is the vector whose ele-
ments are composed of the diagonal of the covariance matrix �c . As mentioned above, 
in the EM algorithm iterative process, the hyper-parameters are updated by iteratively 
maximizing the R-function, i.e.,

Using Bayesian rule, (21)) can be rewritten by ignoring part unrelated to θ as follows

Firstly. the algorithm carries out the M-step for the hyper-parameters {γn} . We take 
the partial derivative of the R-function with respect to γn with eliminating independent 
terms. Since the first term in (22) does not depend on γ , it can be ignored as it will not 
be relevant for the M-Step. The objective function in (22) becomes

(18)p
(

y|c; σ 2
)

= 1
(

2πσ 2
)NxNy

exp

(

− 1

2σ 2
�y −�c2�

)

.

(19)
p
(

c|y, γ (t), �(t)
)

=
p
(

c|γ (t)
)

p
(

y|c, �(t)
)

p(y|γ (t), �(t))

= (2π)−
(N1N2+1)

2 |�c|−
1
2 exp

{

−1

2
(c− µc)

T�−1(c− µc)

}

,

(20)
�c =

(

��T�+D
)−1

µc = ��c�
Ty,

(21)
θ(t+1) � arg max

θ
R
(

θ |θ(t)
)

� arg max
θ

Ec|y,θ(t) [log p(θ |c, y)].

(22)
Ec/y;γ t ,�

[

log p(γ t , �|c, y)
]

= Ec/y;γ t ,�[− log p(y|c; �)− log p(c|γ )− log p(γ )].

(23)

Ec|y,θ(t) [log p(θ |c, y)]
= Ec|y,θ(t) [− log p(c|γ )− log p(γ )]

=
N1N2
∑

n=1

(

γn
(

ĉ2n + τcn
)

2
− 1

2
log γn + log p(γn)

)

=
N1N2
∑

n=1

((

γn
(

ĉ2n + τcn
)

2
− 1

2
log γn + a log γn − bγn

))

.
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We take the partial derivative of the R-function with respect to γn with eliminating inde-
pendent terms, and the iteration of γn can be denoted by

According to the hyperprior p(γn) which possesses a non-informative when the param-
eter a and b tend to zero, we can simplify the update formalization as

Similarly, we then compute the estimation of the scalar hyper-parameter � and it can be 
updated as

where N = NxNy represents the dimension of y . According to the references and 
practical implementation tips, we can consistently set the constant as follows: 
a = b = c = d = 0.0001 , since the result of constant initialization has little effect on 
estimation performance.

4.2 � Update by DGAMP

As mentioned earlier, it is obvious that the calculation of the posterior mean and pos-
terior variance which involve the inversion of high-dimensional matrices is extensive. 
Hence, the high computational complexity characteristic of the EM-SBL algorithm 
causes that it is impractical to be adopted by the massive MIMO channel estimation. 
To simplify the calculation, we replace posterior calculation with the GAMP algorithm 
which is a very-low-complexity Bayesian iterative technique. It is noted that the hyper-
parameters {γ , �} are considered as known constants during the iterative process of the 
GAMP algorithm.

GAMP is a fast heuristic algorithm and can be utilized for simplifying matrix inver-
sion within the SBL framework [38, 39]. GAMP algorithm obtains the maximum pos-
terior estimation of c by Taylor approximation. Specifically, the process of iteratively 
computing the marginal posterior p

(

cn | y, γ , �
)

 is performed by message passing on the 
GAMP factor graph. By utilizing the condition that all posteriors are Gauss, the process 
can be simplified by replacing posterior probability with expectation and variance of the 
sparse variables {cn} and mixture variables {zm} whose elements are denoted by z = �c . 
To detour the convergence of GAMP whose measurement matrix satisfies independent 
Gaussian distribution, paper [40] proposes a DGAMP algorithm to improve the robust-
ness of the measurement matrix through importing damping factors ρs , ρc ∈ (0, 1] , but it 
will also slow down the convergence speed. Nevertheless, the process is computationally 

(24)γ i+1
n = arg min

γn

(

γn
(

ĉ2n + τcn
)

2
+ log p(γn)−

1

2
log γn

)

.

(25)γ i+1
n = 1

ĉ2n + τcn
.

(26)

�
i+1 = arg max Ec|y,γ ;�[p(y, c, γ ; �)]

=

∥

∥y −�c
∥

∥

2 + (�)i
N1N2
∑

n=1

(1− τcn
γn

)

N
,
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efficient since that it only contains scalar operations. Then, we summarize the key steps 
of DGAMP in Algorithm 1. The readers can refer to [22] to learn more about details of 
the derivation of DGAMP. 

There are two versions which are the max-sum version and sum-product versions 
damp-GAMP algorithm. The input and output functions gs

(

p, τp
)

 and output functions 
gx(r, τr) in Algorithm 1 are distinguished according to whether the max-sum or the sum-
product version of GAMP. Coincidentally, both the sum-product and max-sum version 
simplify the same equation. We only introduce the functions of the input and output of 
the sum-product, and readers can refer [41] to get furthermore detail. The intermedi-
ate variables r and p are explained as approximations of Gaussian noise corrupted of c 
and z = �c with the noise levels of τr and τp , respectively. The difference between the 
sum-product and max-sum version is the estimation strategy. The sum-product version 
uses the vector minimum mean-squared error (MMSE) estimation which is reduced to 
a sequence of scalar MMSE estimation. The input and output functions are shown as 
follows
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According to the (12–15) which are the prior information and the posterior information 
we imposed on c and p

(

y|c
)

 , respectively, the input function and its derivative function 
can be rewritten as follows

Similarly, the output function and its derivative function can be rewritten as follows

Upon convergence, DGAMP-SBL yields a sparse estimate of c according to the prior 
information given by the posterior mean. This also gets a coarse estimate of the channel 
matrix, which can be represented by a paired frequency of AoAs and AoDs using multi-
plying the steering vectors. The initial channel estimation can be obtained as

where Ĉ denote order by columns as H.
It is worth noting that GAMP is a low complexity algorithm that transforms the 

vector estimation into the scalar estimation; therefore, (27), (28) and the operations 
in the Algorithm  1, all vector squares, divisions and multiplications are taken ele-
ment-wise. Figure 2 represents sparse channel matrix based on discrete Fourier basis. 
Figure  3 represents the SBL-GAMP algorithm estimation without considering the 
sparse off-grid problem when the number of grids is chosen as N1 = N2 = 180 for 
comparison.

4.3 � Refined estimation

In the following, we propose an exact and fast 2D frequency estimation method base 
on the interpolation of three 2-DFT spectral lines [42]. The SBL-DGAMP algorithm, 

(27)
[

gs
(

p, τp
)]

m
=

∫

zmp(ym|zm)N
(

zm; pm
τpm

, 1
τpm

)

dzm
∫

p(ym|zm)N
(

zm; pm
τpm

, 1
τpm

)

dzm

,

(28)[gc(r, τr)]n =
∫

cnp(cn)N
(

cn; rn, τrn
)

dcn
∫

p(cn)N
(

cn; rn, τrn
)

dcn
.

(29)gc(r, τr) =
γ

γ + τr
r,

(30)g ′c(r, τr) =
γ

γ + τr
.

(31)gs(p, τp) =
(

p
/

τp − y
)

(

�+ 1
/

τp
) ,

(32)g ′s(p, τp) =
�
−1

�−1 + τp
.

(33)Ĥ(0) = ArĈA
H

t ,
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represented by the frequency estimate f̂ =
{

f̂1, f̂2, . . . f̂L̃

}

 where the 

f̂i = {fi1, fi2} (i = 1, 2, . . . , L̃) , is only a coarse estimate due to grid mismatch.
For (k , j) ∈ [(k1, j1), (k2, j2) . . . , (kL̃, jL̃)] related to the corresponding index set of the 

coarse estimate frequency. And then, we present a interpolation on Fractional Fourier 
Coefficient. The Fractional Fourier transform can be formulated as follows

(34)D(k , j) =
Nr
∑

m=0

Nt
∑

n=0

[H̃ ]n,me−j2π(im+kn)/NDFT ,

(35)D(k ± δ, j) =
Nr
∑

m=0

Nt
∑

n=0

[H̃ ]n,me−j2π(im+(k±δ)n)/NDFT ,

Fig. 2  Instance diagram, L̃ = 3 , N1 = N2 = 180 . Sparse channel matrix can be showed under the under the 
DFT basis by this figure

Fig. 3  Instance diagram, SNR=20dB, L̃ = 3 , N1 = N2 = 180 , the “peaks” are actually paths with a larger gain 
and the location corresponding to the angle of AoAs and AoDs.
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where δ is a real number, and we formulate the D(k , j),D(k ± δ, j) , D(k , j ± δ) as D,DK+δ , 
DK−δ , DJ+δ , DJ−δ , respectively. Then, we propose the interpolation algorithm as follows

where �̂x, �̂y are frequency deviation normalized by grid distance �f  which is defined by 
�f = 1/(NDFT /2).

And then we could get the frequency estimations that

and

According to [43], in order to get a more accurate frequency estimate, we adopt a par-
abolic interpolation algorithm. For each frequency dimension d ∈

{

x, y
}

 , we calcu-
late three periodogram sample Dd1 , Dd2 and Dd3 at frequency θ

d1
= f̂d −�d , θ

d2
= f̂d 

and θ
d1

= f̂d +�d . Middle frequency f̂d given by (39) and (40), and the sides of fre-
quency θd1 and θd3 are excursed by �d which is chosen to satisfy �d ∈ (0, 1

2NDFT
) , as 

well as high estimation accuracy. The last step of frequency estimation along the dth 
dimension is achieved by calculating the vertex of a parabola fitted through points 
(θd1,Dd1), (θd2,Dd2) and (θd3,Dd3) , i.e.

 where d = x, y , �12 = (Dd1 − Dd2) , �31 = Dd3 − Dd1 , �23 = Dd2 − Dd3 . Eventually, 
according to (41) the final estimation frequency, the accurate angles AoAs and AoDs can 

be obtained, i.e., 
{

θ̂l

}L̃

l=1
 and 

{

φ̂l

}L̃

l=1
.

(36)D(k , δ ± j) =
Nr
∑

m=0

Nt
∑

n=0

[H̃ ]n,me−j2π(i(m±δ)+kn)/NDFT ,

(37)

�̂x =
Nr

π
tan−1

(

Re

{

(

DK+δE
+
r − DK−δE

−
r

)

· sin(π i/Nr)
(

DK+δE
+
r + DK−δE

−
r

)

· cos(π i/Nr)− 2D cos(π i)

})

,

(38)

�̂y =
Nt

π
tan−1

(

Re

{

(

DJ+δE
+
t − DJ−δE

−
t

)

· sin(π i/Nt)
(

DJ+δE
+
t + DJ−δE

−
t

)

· cos(π i/Nt)− 2D cos(π i)

})

,

(39)f̂x =
{

−(�̂x + k)/(NDFT /2) k < NDFT /2

2− (�̂x + k)/(NDFT /2) k � NDFT /2
,

(40)f̂y =
{

(�̂y + j)/(NDFT /2) j < NDFT /2

−(2− (�̂y + j)/(NDFT /2)) j � NDFT /2
.

(41)θ
fin
d = 1

2

θ2d3(�12)+ θ2d2(�31)+ θ2d1(�23)

θd3(�12)+ θd2(�31)+ θd1(�23)
,
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4.4 � Reconstruct mmWave MIMO channel

In this subsection, according to the obtained AoAs 
{

θ̂l

}L̃

l=1
 and AoDs 

{

φ̂l

}L̃

l=1
 , the 

mmWave MIMO channel will be reconstructed as follow. Firstly, we recover the steering 
vectors ar(θ̂l) and at(φ̂l) in (5) and (6) using the estimated AoAs and AoDs. Secondly, we 
rewrite the expression (6) as follows

Thus, the receive signal also can be rewritten using vector form as follows

where hv = vecd(Hv) , Qo = XT
�

∗
t ⊙WH

r �r . The estimator estimates hv in the LS 
sense. From (35), the LS estimate of hv , denoted as ĥv , is given as follows

Finally, according to the obtained exact angle estimation, and the gains of path ĥv above, 
we can recover the high-dimensional mmWave MIMO channel as Ĥ = �rdiag(hv)�

H
t .

4.5 � Analysis of computational complexity

Apparently, the complexity of the DGAMP-SBL algorithm is dominated by the E-step, 
and the matrix multiplications are a big part of it which matrix multiplications by S , ST , 
� , and �T at each iteration. The complexity of each iteration is O(4 · N1N2(NxNy)) , since 
we should convert the complex signal to a real signal. It is worth noting that separate 
operations can reduce the single time, so we also can neglect the coefficient 4. Nonethe-
less, it is mentioned above that the multiplications operation in Algorithm  1 is taken 
element-wise. The complexity is much smaller than O

(

N1N2(NxNy)
2
)

 . The complexity of 
SBL iteration when the dimension of NxNy is large. And the refined part does not need 

(42)H = (�∗
t ⊙�r)vecd(Hv).

(43)

y =
√
PWH

r ((�∗
t ⊙�r)vecd(Hv))X + ⌢

n

=
√
P(XT

�
∗
t ⊙WH

r �r)hv + ⌢

n

=
√
PQohv + ⌢

n

(44)ĥv = 1√
P

(

(

Qo
)H

Qo
)−1

(

Qo
)H

y.
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iteration so that it can ignore the complexity. For the OMP scheme, the main computa-
tional complexity is O(N1N2(NxNy)) which lies in the correlation operation. According 
to [16], a preprocessing step is proposed to reduce the computational cost of each itera-
tion greatly. For the iterative reweight (IR) scheme, the main computational cost that 
is contributed by gradient operation is O(L2 · (NxNy(Nr + Nt))) . Actually, according to 
the author’s description in [16], the first L maximum correlation angles extracted only 
according to preprocessing are likely to miss the real angle, especially when L is large. 
That means the first 2L maximum correlation angles are often taken so that the com-
putational complexity can be written as O(4L2 · (NxNy(Nr + Nt))) . Finally, for the least 
square algorithm, the total complexity of LS is O((NxNy)

2(NrNt)+ (NxNy)
3)) . Due to 

the large antenna dimension of the channel, it is difficult to use LS for mm-Wave chan-
nel estimation.

According to the above analysis, we can find that the computational complexity of 
DGAMP-SBL is proportional to N1N2(NxNy) , which is similar to the OMP algorithm. 
Obviously, for large NxNy , the computational costs of DGAMP-SBL are much smaller 
than SBL. When L is small, the computational complexity of IR is the smallest, but as the 
value of L becomes larger, the complexity of IR becomes close to that of DGAMP-SBL 
and OMP.

5 � Results and discussion
In this section, we will prove the performance of the proposed algorithm superiority-
based channel estimation scheme through MATLAB simulation with the following 
parameters. The transmitter and the receiver are equipped with Nr = Nt ∈ {32, 64} , 
NRF = NRF

t = NRF
r = 2 , Nx = Ny ∈ {24, 32} and N1 = N2 = 120 . Each item of the trans-

mitted pilots X is defined as xi,j =
√

ρ
/

Nte
jβi,j , where ρ is the transmitted power, βi,j is 

the random phase uniformly dirstributed in [0, 2π) . The signal-to-noise (SNR) is defined 
by SNR= ρσ 2

α

σ 2  . We consider the ULA geometry, and we take the following algorithm as 
comparison algorithms, i.e., the OMP-based channel estimation [44], the IR-based 
super-resolution channel estimation scheme [16], the Oracle estimator in [44] and the 
LS estimator. The normalized mean-squared error (NMSE) which is denoted as 

E

[

∥

∥

∥
H− Ĥ

∥

∥

∥

2

F

/

�H�2F
]

 is used for performance comparison. And the achievable spectral 

efficiency efficiency (ASE) can be defined as log2
∣

∣

∣
IN

RF
+ P

N
RF
R−1
n W̃HHF̃F̃HHHW̃

∣

∣

∣
 , for 

the channel estimation Ĥ . And F̃ and W̃ are defined as the optimal precoder and com-
biner, respectively, which are designed via the singular value decomposition of Ĥ , 
denoted as Ĥ = Û�̂V̂H . Here the diagonal entries of the singular value matrix �̂ are 
arranged in decreasing order. F̃ and W̃ consist of the first NRF columns of V̂ and Û , 
respectively. The Rn can be defined as Rn

.= σ 2W̃HW̃ . The results in this simulation are 
all obtained through 200 Monte Carlo experiments [45, 46].

Figures  4 and 5 compare NMSE performance against SNR with Nr = Nt = 32 , 
Nx = 24 and Nr = Nt = 64 , Nx = 32 , respectively. In both scenarios, it is apparent 
that the curves of the proposed algorithm are below that of comparing algorithms 
under most circumstances. Comparison results indicate that the proposed scheme 
has remarkable performance improvement. Note that our proposed scheme almost 
coincides with the curve of Oracle in the condition of high SNR. Under the same 
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SNR, our algorithm achieves a huge advantage since our algorithm considers the off-
grid influence which can estimate a more accurate angle. By comparing Fig.  4, our 
proposed algorithm achieves a great advantage for all of SNR. And with the increase 
in SNR, the advantage of our proposed algorithm performance over OMP becomes 
greater. Moreover, our proposed algorithm is superior to the IR algorithm, and it 
almost coincides with the Oracle curve. The NMSE performance degrades in low SNR 
levels because the suffer noise interference exists. And under the low SNR, our pro-
posed algorithm coarse estimation faces a challenge which is brought by noise and 
off-grid, so the performance does not achieve the expectation. Although the num-
ber of antennas and pilots decline, our proposed algorithm still have superior perfor-
mance. Taking the SNR of 10dB, 15dB, 20dB as an example, our proposed algorithm 

Fig. 4  NMSE performance comparison of different schemes against SNR, when Nx = Ny = 32 , Nt = Nr = 64 
are considered, respectively

Fig. 5  NMSE performance comparison of different schemes against SNR, when Nx = Ny = 24 , Nt = Nr = 32 
are considered, respectively
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is also very close to the Oracle curve. It can be seen that the channel estimation accu-
racy based on our proposed algorithm is better than that of comparing algorithm, 
which verifies the advantages of our proposed schemes. To summarize, the proposed 
scheme is superior to another scheme in channel estimation accuracy regardless of 
the antennas and pilots are more or less.

Figure  6 compares the NMSE performance against the number of training beams 
when SNR=10dB, Nt = Nr = 64 . As the number of training beams with Nx increases, 
the NMSE curves of all algorithms decrease monotonically. It is obvious that the com-
paring algorithm curves tends to decrease slowly. Even so, our proposed algorithm still 
achieves a huge advantage under different pilots. When the SNR is 10dB, our proposed 
algorithm achieves high estimation accuracy, and it is very close to the Oracle curve. 
And we have tested that our algorithm may get an accurate result when Nx is very small. 
Still, a probability of failure exists comparing with high Nx . Again, among the comparing 
algorithm, the proposed algorithm still performs better outperforms than others.

Figure  7 compares the difference in runtime between the original SBL and the pro-
posed scheme. In order to facilitate comparison, we fix the number of iterations 200 
times. Note that although we apply 200 iterations, the algorithm convergence only needs 
100 times and even less in most cases. It is obvious that the proposed algorithm needs 
much less time than the original SBL algorithm as the dimension increases, which sug-
gests that the proposed algorithm is more practical for large-size sparse matric recovery.

Figure 8 shows the NMSE curves against the number of grids N1 = N2 when the SNR 
is 10 dB. We refine the mesh and compare the performance of different algorithms at 
different mesh spacing. In order to compare the advantages of the second refining algo-
rithm, we add the unrefined DGAMP-SBL to the comparison. It is obvious that the per-
formance of the refined results is greatly improved under any grid spacing. The proposed 
algorithm outperforms the IR when N1 = N2 ≥ 70 . After the number of grids is greater 
than 70, the NMSE of the proposed algorithm is slightly down. The NMSE curves of 
the sparse matric algorithms monotonically decrease with the number of the grids 

Fig. 6  NMSE performance against the number of training beams when Ny = 32 , Nt = Nr = 64 are 
considered, respectively
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increasing. It is interesting that the number of grids only needs to be set to 80 to balance 
the complexity of the computation and the accuracy of estimation. For comparison, the 
NMSE curves of the Oracle, LS and IR algorithms remain unchanged for different values 
of grids since all of those work are off-grid.

Figure  9 compares the NMSE curves against the number of paths. When L var-
ies from 2 to 12, the curve of the IR scheme is basically stable since it can still find 
the most relevant columns. Nevertheless, the number of iterations increases greatly, 
and as mentioned in Sect. 4.5, with the increase in L, the calculation cost of the IR 
scheme is proportional to 4L2 . When L is large, the computation costs required for 
a single calculation are much bigger than our algorithm to maintain the estimation 
accuracy. For our proposed algorithm, the NMSE curve rises slightly. This is because 
when the number of L is large, due to the small adjacent angular distance, it may 

Fig. 7  Running time against the number of grids when Ny = 32 , Nt = Nr = 64 are considered, respectively

Fig. 8  NMSE performance against the number of grids when Nx = Ny = 32 , Nt = Nr = 64 are considered, 
respectively
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lead to the ambiguity of adjacent peaks, which affects the performance of the second 
step estimation. It is worth noting that our algorithm still has good estimation ability 
and is much higher than the comparison algorithm OMP.

Figure  10 compares the ASE against SNR when different channel estimation 
schemes are used with Nr = Nt = 64 , Nx = 32 . We introduce a perfect CSI as a ref-
erence upper limit curve. It is noted that although the performance of our proposed 
algorithm is slightly worse than the IR scheme at -5dB, the ASE curve of the pro-
posed scheme almost overlaps that of CSI for high SNR values.

Fig. 9  NMSE performance against L when Nx = Ny = 32 , Nt = Nr = 64 , NRF
r = NRF

t = 2 are considered, 
respectively

Fig. 10  ASE performance against SNR when Nx = Ny = 32 , Nt = Nr = 64 , NRF
r = NRF

t = 2 are considered, 
respectively
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6 � Conclusion
In this paper, we have proposed a high-precision channel estimation scheme for 
mmWave massive MIMO with hybrid precoding. Specifically, a two-stage strategy is 
used to estimate the channel. In the first phase of the algorithm, the DGAMP-SBL which 
simplifies operations is used to estimate the mmWave MIMO channel coarsely. In the 
second phase of the algorithm, the previously obtained channel which considers off-grid 
error is refined by 2DFT-interpolation algorithm. Experimental results have indicated 
that the proposed high-precision channel estimation strategy can perform better than 
state-of-art estimation precision. For future work, we focus on the sparse channel esti-
mation 2D high-dimension matrix reduction, since the sparse recovery problem still be 
limited by the 2D sparse dictionary matrix which has a huge matrix dimension.
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