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1  Introduction
Due to the advantages of low cost of attacks and strong cooperative combat capabili-
ties, unmanned aerial vehicle (UAV) cooperative search has attracted much attention 
from various countries and been widely used in Dull, Dirty, Dangerous and Deep (4D) 
task. Especially in the dynamic environments, the UAV swarms can find dynamic targets 
effectively through the cooperative of swarm [1–4].
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The UAV collaborative searching refers to process of detecting targets and reducing 
regional uncertainty fulfilled by multiple UAVs. Among them, the mission planning 
technology is the key to improving search efficiency and UAV survival rate in UAV col-
laborative search [5–9]. UAV collaborative mission planning methods can be divided 
into two types: centralized control ones and distributed control ones respectively [10]. 
The centralized optimization approach act in a simple manner and have the ability of 
global optimal. Max-sum [11] is a classic centralized control architecture algorithm that 
can be used to solve the problem of UAV collaborative mission planning. It uses message 
passing that can be configured to work in an approximate mode. The main drawback of 
max-sum is that it cannot adapt to large-scale UAV swarm and online re-planning in 
dynamic environments. Genetic algorithm (GA) [12, 13] is another common algorithm. 
According to biological evolution theory, mechanisms such as selection, evolution, and 
mutation can be used to improve the fitness of individuals. Jia et al. [14] proposed an 
improved GA to solve the multi-constrained task assignment problem of heterogene-
ous UAVs. Ramirez Atencia et  al. [15] presented a new multi-objective genetic algo-
rithm for solving complex mission planning problems involving a team of UAVs and a 
set of ground control stations. However, none of them considered online re-planning in 
dynamic environments.

Distributed planning algorithms [16–18] are capable of parallel computing, which 
means UAVs can dynamically join and exit. Thus, this type of planning algorithms has 
high robustness and can be applied to a dynamic environment. The auction-based is a 
classic distributed algorithm. The assignment of the task and the receiver respectively 
auction and bid on the task according to its own revenue function and bidding strat-
egy. However, the bidding negotiation overhead consumes more time and computa-
tional resources compared to other approaches. Swarm intelligence methods such as ant 
colony optimization (ACO) [19–21] have also been used to solve the problem of UAV 
collaborative search. Zhen et  al. [22–24] proposed an intelligent cooperative mission 
planning scheme for UAV swarm, to search and attack the time-sensitive moving targets 
in uncertain dynamic environment, by HAPF-ACO. However, this method can easily fall 
into a local optimum and cannot cover the whole area. Alotaibi [25] considered the use 
of a team of multiple UAVs to accomplish a search and rescue (SAR) mission. In the con-
text of search and rescue, the locust-inspired approaches for multi-UAV task allocation 
(LIAM) [26, 27] and layered search and rescue (LSAR) methods are studied separately. 
Among them, LIAM is a distributed architecture, and LSAR is a centralized architec-
ture. Through the comparison of the two methods, it can be seen that when the number 
of UAVs swarm is small, LASR can achieve better results, while the number of UAVs 
swarm is larger, LIAM performs better.

In this paper, we propose a hybrid control architecture to combine the advantages of 
both centralized and distributed architectures. Aiming at the UAV search problem in 
dynamic environments, this paper considers multiple types of targets, and proposes a 
search algorithm based on a hybrid layered artificial potential fields algorithm.

The main contributions of this article are: 

1.	 An improved distributed APF algorithm, including a segmented target attraction 
field function to adapt to distributed multi-target multi-UAV search tasks and a 
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search repulsion field generated by the UAV search path to avoid intervals repeated 
searches.

2.	 A centralized CS scheduling algorithm, including a new type of search map used to 
help CS evaluate the search situation in sub-areas and a priority function to sort the 
scheduling priorities of sub-areas. Meanwhile, some mechanisms such as CS activa-
tion and UAV assignment cool-down are added, which can effectively improve the 
scheduling efficiency of CS.

3.	 An HL-APF algorithm based on a hybrid control architecture, in which the central-
ized CS scheduling algorithm can be optimized globally to improve the overall area 
coverage and discover unknown targets; the distributed IAPF algorithm is optimized 
locally to increase the coverage of sub-area and discover targets with prior informa-
tion.

2 � Methods
In this section, the system Model, improved APF algorithm, CS Scheduling and UAV 
decision are introducted respectively.

2.1 � System model

The mission of dynamic target collaborative search with UAV swarm can be described 
as: there is a task area D ∈ L2 which has NT dynamic moving targets and Np unknown 
threats. According to the prior information, the target information including position, 
speed and direction is partially known. There are also a swarm of UAVs connected 
through a cloud server to accomplish the mission. The UAVs in the swarm are isomor-
phic, which namely each UAV has the same functional and performance constraints.

As shown in Fig. 1, the mission area is discretized and grided and the length and width of 
each grid are Lx , Ly respectively. The five-pointed shape represents the target and the filled 

Fig. 1  Discrete mission area
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circle represents the threat. The detect performance of UAV is modeled as round and the 
detect radius is R. The targets and threats that appear in the detection range of the UAV 
can be detected by the UAV. Assume that the maximum turning angle of the UAV is ϕmax , 
hence the possible positions of the UAV at the next moment are marked in dark.

The purpose of collaborative search of UAV swarm is to find as many targets as possible 
under constrained conditions. The target search benefit JT can be defined as:

where NT is the total number of targets. aik indicates whether the target is detected. vi 
indicates the value of the target detected by the UAV. Define area search benefit JE as:

where the value of grid(m,n) can be 0 and 1. If the grid(m,n) has been searched, grid(m,n)(k) 
is 1, otherwise it is 0. The area search benefit is expressed as the search coverage of the 
mission area.

The constraints are:

where Cm is the maximum turning radius constraint of the UAV, which is determined 
by the maneuverability. ϕmax is the turning radius of the UAV at the moment k. Cc is the 
minimum safe distance constraint between the UAVs. The UAV needs to maintain a rea-
sonable safe distance to avoid collisions, and dmin is the minimum safe distance between 
the UAVs, dij(k) is the distance between the i-th UAV and j-th UAV at the moment k. Cb 
is the boundary constraint, (x, y) is the coordinates of the UAV in the mission area, and 
the UAV cannot fly out of the mission area during the execution of the mission. Cr is 
obstacle avoidance constraints and Rl is the threat radius, dil(k) is the distance between 
the i-th UAV and the l-th threat.

For multi-UAV mission planning, the optimization model is:

where ω1 and ω2 respectively represent the weight coefficient of the target search ben-
efit and area search benefit. The value of the coefficient is determined according to the 
specific combat mission, when ω2 is 0, this is a pure target mission, such as subsequent 
continuous monitoring, attack, etc., when ω1 is 0, this is an scan search mission. Xi and 
∼
Xi respectively represent the status of the UAV and its communicable UAVs, JTi(Xi,

∼
Xi ) 

(1)JT(k) =

NT
∑

i=1

aikvi

(2)JE(k) =

Nx
∑

m=1

Ny
∑

n=1

grid(m,n)(k)/(Nx × Ny)

(3)
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Cc : dmin − dij(k) ≤ 0, (i, j = 1, 2, . . . ,NV , i �= j)

Cb : 0 ≤ x, y ≤ Nx,Ny

Cm : �ϕi(k)− ϕmax ≤ 0, (i = 1, 2, . . . ,NV )

Cr : Rl − dil(k) ≤ 0, (i = 1, 2, . . . ,NV ; l = 1, 2, . . . ,Np)

(4)

U∗
i (k) = arg max

Ui(k)
(ω1JTi(Xi, X̃i )+ ω2JEi(Xi, X̃i ))

X̃i = {Xj|j ∈ NC
i }

s.t. Ci ≤ 0, i = 1, 2, . . . ,NV
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and JEi(Xi,
∼
Xi ) respectively are the target search benefit and area search benefit are the 

above-mentioned various constraints.

2.2 � Improved APF algorithm

The basic idea of the artificial potential field [28, 29] is to regard the movement of the 
UAV in the task space as a force movement in the virtual force field. The target point 
forms a attraction field, which generates gravity and attracts the target to fly towards it. 
The no-fly zone or threat forms a repulsive force field, which generates a repulsive force 
to push the target away from the threat, and the UAV moves under the combined force 
of gravity and repulsive force. This section will introduce the search algorithm based on 
the improved artificial potential field (IAPF), which mainly includes the target attraction 
field, the search repulsion field and other repulsive field.

2.2.1 � Target attraction field

Based on the APF method, the target will generate a gravitational field which can attract 
UAV. The basic gravitational field has a linear relationship with the distance between 
UAV’s current position and the target. In a multi-target mission, this gravitational field 
will cause the UAV to be oscillate between targets. For this reason, the target attraction 
field is redefined as follows:

where ki,att is the magnitude of the target attraction field, which is proportional to the 
value of the i-th target. v̂j is the unit vector of the movement direction of the j-th UAV. 
di,j is the distance between the i-th target and the j-th UAV.  is the field range brought 
about by the uncertainty of the target, which can be set as UAV detect radius R. In this 
range, the direction of the target attraction field received by the UAV is determined by 
its own motion direction, and the field’s amplitude is fixed. When the UAV enters this 
range, it does not need to change the flight direction, and it can continue to search for 
the possible location of the target. x̂i,j is the unit vector of the direction from the UAV to 
the target. Li,max is the maximum range of the target attraction field, which can be set as:

where Nmax is the maximum number of iterations. NT,known is the number of known 
targets. Setting the maximum range can not only reduce the computational complexity 
effectively, but also help the UAV focusing on the possible unknown targets. The action 
of the target attraction field is shown in Fig. 2. It can be seen that when the possible loca-
tion of the target is within the detection range of the UAV, the UAV can maintain the 
current flight direction and complete the search. Meanwhile, it also avoids that the UAV 
receives the opposite force when it just flies away from the target point, forcing it to turn 
around. When the distance exceeds the maximum range, the UAV will search for other 
targets at this time. In other cases, the UAV receives a gravitational force in the direction 
of the potential target, so that the gravitational force drives the UAV to fly toward the 

(5)Fatt(i, j) =











ki,att · v̂j, di,j ≤ Li,uc

ki,att ·
L2i,uc
d2i,j

· x̂i,j, Li,uc < di,j ≤ Li,max

0, di,j > Li,max

(6)Li,max = Nmax/NT,known + 2R
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target. Compared with the algorithm using target probability map, the method in this 
paper does not need to store and update the probability map, which reduces the compu-
tational complexity while ensuring the search efficiency.

2.2.2 � Search repulsive field

In order to avoid repeated searches in a short time interval, the related work [24] is 
based on the ant colony algorithm, which reduces the pheromone in the searched 
path according to the rules to increase the probability of the UAVs flying to the unde-
tected area. Each iteration needs to update the pheromone of the entire task area, 
which also has the problem of high computational complexity. Based on the artifi-
cial potential field algorithm, this paper designs a search repulsion field, so that the 
UAV will leave a series of search repulsion fields on its search path. Futher, in order to 
adapt to the uncertainty of the moving target, the search repulsion field decays with 
time. This method reduces the amount of calculation while ensuring search efficiency. 
Define the k-th search repulsion field center position left by j-th UAV as:

where Nsrp is the time interval constant of the search repulsive filed, which can be set 
as 

√

Nx+Ny

2  . Locuav(j, k) indicates the position of the j-th UAV at time k. Define search 
repulsive field between the i-th search repulsive field and j-th UAV as:

where ksrp is the search repulsion field constant. Lsrp1 and Lsrp2 is the uncertainty range 
and the maximum range of action respectively. β is the time decay factor, which repre-
sents the uncertainty of the environment. The larger β is, the more likely the UAV will 
perform a second search in the same area.

(7)Locsrp(j, k) =
1

Nsrp

Nsrp−1
∑

i=0

Locuav(j, k·Nsrp + i)

(8)Fsrp(i, j, t) =











ksrpe
−βt v̂j, di,j ≤ Lsrp1

ksrp
L2srp1
d2i,j

e−βt x̂i,j, Lsrp1 < di,j ≤ Lsrp2

0, di,j > Lsrp2

Fig. 2  Diagram of target attraction field
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2.2.3 � Other repulsive field

According to reference [24], the threat repulsive field between i-th threat and j-th UAV is 
designed as:

where ktrp is the threat repulsive field constant, dmax,i is the radius of action of i-th threat, 
d0  is the minimum safe distance. The repulsive field between the i-th and j-th UAVs is 
designed as:

where b and c are determined. The magnitude of the repulsion between the UAVs 
depends only on the distance.

2.3 � CS scheduling

In the first stage of mission, the improved artificial potential field algorithm can help the 
UAV to quickly search for the targets with prior knowledge (such as the start location). 
Meanwhile, the target search benefit JT increase faster. In the later stage, when most of 
targets with prior knowledge have been detected, the search efficiency of UAV swarm is 
reduced. In order to solve this problem, a layered scheduling algorithm determined by the 
cloud server is added.

2.3.1 � Partitioning

According to the idea of the reference [25], the task area is partitioning. Divide the entire 
mission area into N × N  sub-areas. The length and width of each sub-area are L/N.

2.3.2 � Search map

CS managers sub-regions by storing search graphs in order to make assignment decisions. 
Define the basic search map as:

where lai,j=1, if grid(i, j) has been covered, otherwise lai,j = 0 . 

(9)Ftrp(i, j) =







ktrp

�

1
d2i,j

− 1

(dmax,i−d0)
2

�

x̂i,j, di,j ≤ dmax,i

0, di,j > dmax,i

(10)Furp =
b · e

di,j
c

c · (e
di,j
c − e

dmin
c )

2
· x̂i,j

(11)s_map(i, j) = lai,j
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Here, considering dynamic targets, some area may need to be searched twice. After each 
iteration, the searched area needs to be decayed by time. Meanwhile, in order to distinguish 
the searched area from the unsearched area, it is necessary to set infimum for the searched 
area. Moreover, there are no-fly zones in the area, and the search map of the detected 
no-fly zone is set as a constant. This value is recommended to be between infimum and 
1, which has been adapted to the UAV’s search for the area. In addition, in order to solve 
the problem of repeated assignment of the same location, the future flight target point of 
the UAV is also regarded as the detected area. In summary, the improved search map is 
defined as Algorithm 1, where τ is the attenuation coefficient and is used to characterize the 
dynamic environment. γ is the threat search map constant. UAVm is the m-th UAV in the 
CS. UAVm_Detect_Range is the UAVm ’s detect range and UAVm_Assign_Detect_Range 
is the detect range when UAVm arrives at the designated place. Threatm is the m-th known 
threat of CS. Threatm_Range is the range of Threatm . CS obtains the global search coverage 
of the UAV swarm by storing and updating the search map. Therefore, CS can start from 
the overall situation and help the UAV swarm to jump out of the local optimum, thereby 
improving the overall coverage.

2.3.3 � Sub‑area priority

According to the priority of each sub-area, CS selects the closer and more idle UAV for the 
sub-area need to be detected. Define the search value of k-th sub-areapart_valuek as the 
sum of the search map values of the sub-area:

(12)part_valuek =
∑

s_map(i, j), grid(i,j) in partk
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The smaller thepart_valuek , the more the sub-area needs to be detected. The idle state 
of each UAV is defined as the amplitude of its potential field force. The more force the 
UAV receives, the busier the UAV. Above all, define the k-th sub-area priority as:

where wp0 , wp1 , wp2 are the search map, distance and field coefficient respectively. di,k is 
the distance of i-th UAV and k-th sub-area’s center. Fi is represents the magnitude of the 
potential field force of the i-th UAV. CS traverses all sub-area to get the minimum value 
of the priority. It should be noted that the priority also implies the assigned UAV.

2.3.4 � CS control mechanisms

The CS control mechanism includes two aspects. One is that in the initial stage of the mis-
sion, in order to maximize the use of the prior information of the targets, the UAVs search 
targets by the IAPF algorithm. Meanwhile, the CS does not participate in the control of the 
UAVs and is in an inactive state. When most of the known targets are found, CS partici-
pates in the control of the UAVs and is active. We call it the CS activation mechanism and 
define CS_ACT  as the activated state of CS. When the UAV arrives at the center of the des-
ignated sub-area during the CS scheduling, it needs to search the sub-area autonomously to 
improve the search efficiency of the sub-area. Uninterrupted CS scheduling will cause the 
UAV to fly back and forth between the center points of the sub-region, while ignoring the 
search for other locations in the sub-region. Therefore, CS needs a cool-down mechanism 
for the scheduling of each UAV. In the cool-down time, the UAV’s state is unready and can 
not be controlled by CS.

2.3.5 � Flow chart of CS

Based on the above design, the flow of the CS Scheduling is shown in Fig. 3. In order to 
make full use of the target prior information, when the number of undetected targets with 
prior information is less than or equal to one, CS_ACT  = 1. Define the ready statue of 
UAVs as that the UAV has not been assigned and has not been assigned during the previous 
iterations. The purpose of setting the assigned cool-down period is to effectively search the 
sub-areas after the assigned UAV goes to the target sub-areas. When the number of UAV 
in the ready state is more than zero, CS get the minimum priority of sub-areas and set the 
assigned k-th UAV CS_flag true.

2.4 � Hybrid‑layered APF

In summary, this paper proposes the hybrid-layered APF method, including distributed 
artificial potential field algorithm and centralized layered algorithm scheduled by CS. 
Under the hybrid control architecture, the UAV will not only conduct self-organized search, 
but also be scheduled by CS. Under the condition of CS, the UAV will fly as far as possi-
ble to the center of the k-th sub-area that needs to be detected command and meeting the 
constraints. Assuming the current grid is si , the transition rule when CS_FLAG is ture are 
designed as:

(13)priority_valuek = wp0 · part_valuek +min(wp1 ∗ di,k + wp2 ∗ Fi)

(14)sj = arg min
j∈�

(djk)
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where sj is the next grid. � is the candidate grid set that meeting the constraints. djk is 
the distance between sj and the center of k-th sub-area.

When the UAV reaches the center of the designated sub-area or finds that the 
center of the sub-area is within the no-fly zone, CS_flag  is set to 0. In this situation, 
the UAV will enter the cool-down state and will not be assigned by CS in the next 
Ncool iterations. Meanwhile, the UAV will make decisions based on the IAPF.

When CS_flag  is 0, the UAV get the total field of current grid and surrounding 
grid. When the field direction of the surrounding grid of the current grid is consist-
ent, it means there may be targets or no-fly zones around. At this point, the UAV 
will make decisions based on the direction of the field. Otherwise, the UAV will keep 
the current flight direction. The UAV decision under IAPF is designed as:

where θj is the angle between the path from the current grid to the candidate grid sj and 
the direction of the current grid potential field. std(Fi) is the standard deviation of the 
field direction among the current grid and the surrounding grids.

(15)sj = arg min
j∈�

(θj), std(Fi) < ϕmax/2

Fig. 3  Diagram of flow chart of CS
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3 � Results and discussion
In order to verify the superiority of the HL-ACO algorithm for the search problem of 
UAV swarm, the Python based simulations are carried out.

3.1 � Mission scenarios and parameter settings

To set-up our simulation, we consider that the mission area is 100 km × 100 km and is 
discretized to 100 × 100 grids. The number of targets is 20. The targets are divided into 
five types and each type has 4 targets. The target parameters are shown in Table 1.

The target 13–20 information is unknown, and the information in other target tables is 
known. To verify the obstacle avoidance performance of the mission planning algorithm, 
5 unknown threats are added in the above mission area. The threat information is shown 
in Table 2. Assume that the speed of UAV is 100 m/s and each decision step is 10 s, so 
the UAV moves a grid in a single iteration. The UAV’s maximum turning angle is 45◦ , 
and the detection distance is 3 km. Some relevant parameters in the HL-APF algorithm 
are shown in Table 3.

Table 1  Target movement information

Label Coordinate (km) Speed (m/s) Moving direction

1 (80,70) Random Random

2 (15,60) Random Random

3 (45,50) Random Random

4 (70,20) Random Random

5 (30,40) 30 Random

6 (15,90) 20 Random

7 (40,10) 40 Random

8 (85,30) 50 Random

9 (8,15) 10 1

10 (55,20) 20 1.7

11 (60,85) 25 4

12 (25,70) 30 5

13 (65,60) 0 0

14 (20,30) 0 0

15 (40,80) 0 0

16 (75,40) 0 0

17 (5,70) Random Random

18 (70,5) Random Random

19 (40,40) Random Random

20 (20,20) Random Random

Table 2  Threat information

Threat label Coordinate (km) Radius (km)

1 (10,40) 3

2 (30,85) 4

3 (60,30) 6

4 (30,15) 3

5 (70,85) 3
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3.2 � Algorithm comparison

Assuming that 10UAVs perform the missions, the following three algorithms are 
investigated:

Algorithm 1  HAPF-ACO [24]: It is based on a distributed ACO algorithm with an 
improved transition rule considering the range constraint, and the APF is introduced 
considering the dynamic updating of the TPM. The target attraction field, threat repul-
sive field and repulsive field are also constructed for the environmental cognition

Algorithm  2  IAPF: It is introduced in chapter  2.2, based on four types of artificial 
potential field.

Algorithm 3  HL-APF: It is based on IAFP with CS scheduling.

The UAV search trajectory after 250 iterations obtained from the above three algo-
rithm is shown in Fig. 4. The solid line is the target’s trajectory, the dotted line is the 
trajectory of the UAVs, and the “+” sign marks the location where the target was found. 
Furthermore, 100 simulations were performed for each algorithm, 250 iterations per 
iteration. Then we summarize the number of discovered targets and area coverage aver-
age of the 100 experiments. The final statistical results is shown in Fig. 5.

Table 3  Description and value of the HL-ACO algorithm parameters

Parameter name Parameter value Parameter description

ksrp   3 Search repulsion field constant

β 0.9 Time decay factor of search repulsion field

ktrp   20 Threat repulsive field constant

dmax   3 Radius of action of threat repulsive field

inf(s_map) 0.1 Infimum of search map

τ 0.9 Time decay factor of search map

γ 0.2 Threat search map constant

wp0 10 Search map coefficient

wp1 0.1 Distance coefficient

wp2 1 Field coefficient

Fig. 4  Ten UAVs’ paths generated after 250 iterations for the mission
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It can be seen from Fig.  4 that there is no patchy unsearched area in the HL-APF 
method, and both HAPF-ACO and IAPF have patchy unsearched area. From the final 
statistical results, it can also be seen that compared to HAPF-ACO and IAPF, HL-APF 
has achieved more number of found target and better area coverage rate in the later 
stage of mission execution. This means that the addition of the CS assignment mecha-
nism greatly improves the search efficiency of the UAV swarm.

3.3 � Analysis of the number of UAVs

It is assumed that the swarm is composed of 10 UAVs ,15 UAVs and 20 UAVs respec-
tively. The UAV search trajectory using HL-APF after 250 iterations obtained from the 
15 UAVs and 20 UAVs is shown in Fig. 6. Furthermore, 100 simulations were performed 
for each set of numbers, 250 iterations per iteration. Then we count the number of dis-
covered targets and area coverage average of the 100 experiments. The statistical results 
are shown in Figs. 7 and 8.

It can be seen from Fig. 7 that as the number of UAVs increases, the detection effi-
ciency of the swarm also increases. This proves that this method is suitable for mission 
planning of large-scale UAV swarm. Meanwhile, it can also be seen that as the num-
ber of UAVs increases, the overall detection performance also has an upper limit. When 
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Fig. 6  Different number of UAVs’ paths generated after 250 iterations for the mission with HL-APF
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the number of UAVs is 20, the average number of targets found is 19.9, and the average 
area coverage is 99.8% . It means that the UAVs swarm is close to completing the task 
perfectly. Furthermore, it can be seen from Fig. 8 that compared with HAPF-ACO and 
IAPF, HL-APF achieves close to the performance of the first two under 20 UAVs when 
the number is 10. To sum up, the empirical results confirm the superiority of method.

3.4 � Analysis of the CS mechanisms

It is assumed that the swarm is composed of 10 UAVs. In order to compare the impact of 
CS_ACT  and cool-down mechanisms performaned on search effectiveness mentioned 
in Sect. 2.3.4, the following three groups of controlled experiments are set up. Then we 
count the number of discovered targets and area coverage average of the 100 experi-
ments. The statistical results are shown in Table 4.

Set 1. CS_ACT  + cool-down: Method used in this article
Set 2. Only cool-down: Allow UAVs to autonomously search for a period of time 
after reaching the sub-areas
Set 3. Only CS_ACT  : In the initial stage of the mission, CS does not participate in 
UAV’s control
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It can be seen that the CS_ACT  mechanism can help increase the number of target 
discoveries when achieving similar area coverage by comparing the results of set 1 and 
set 2. This is because in the initial stage of the mission, IAPF can help UAVs to quickly 
approach those targets with prior information. At this time, the activation of CS will 
reduce the search efficiency. In the later stage of the mission, as most of targets with 
prior information are detected, the activation of CS can help increase coverage and dis-
cover unknown targets. The comparison between set 1 and set 3 proves the importance 
of cool-down in improving mission coverage and number of targets found. UAV with 
cool-down mechanism can fully search the sub-areas, and avoid the constant moving 
between different sub-areas.

3.5 � Robustness analysis

It is also assumed that the swarm is composed of 10 UAVs. In order to analyze the 
robustness of HL-APF, we randomly set part of the UAVs disable in the swarm at differ-
ent times. The number of disabled UAVs is 4, and the iteration of failure is 50, 100, 150 
and 200 respectively. Then we count the number of discovered targets and area coverage 
average of 100 experiments. The final statistical results is shown in Fig. 9.

It can be seen that when some UAVs fail, the remaining swarm can still continue to 
complete the search task and obtain considerable search performance. The method in 
this paper is robust. Furthermore, the UAV’s failure time is related to the influence of 
the swarm search performance. In the early stage of the mission, if a swarm attrition 
occurs at 50 o’clock, it will significantly affect the number of search targets and coverage. 
In the later stage of the mission, the failure of some UAVs will hardly affect the search. 
This is because in the later stages of the mission, most of the targets and areas have been 

Table 4  Comparison of the CS mechanisms

Set label Number of targets found Area 
coverage 
( %)

1 19.62 96.0

2 19.5 96.1

3 19.37 94.5

0 50 100 150 200 250

iterations

0

5

10

15

20

nu
m

be
r 

of
 f

ou
nd

 ta
rg

et
s

dis50
dis100
dis150
dis200
normal

(a) Comparison on number of found targets
of different disabled time.

0 50 100 150 200 250

iterations

0

0.2

0.4

0.6

0.8

1

co
ve

ra
ge

 r
at

e(
%

)

dis50
dis100
dis150
dis200
normal

(b) Comparison on coverage rate of of differ-
ent disabled time.

Fig. 9  Comparison after 250 iterations for the mission of different disabled time



Page 16 of 18Shao et al. EURASIP J. Adv. Signal Process.        (2021) 2021:101 

searched, and the search gains that the mission area can provide are limited, so the fail-
ure of some UAVs can be ignored.

4 � Conclusions
This paper studies the mission planning of dynamic target cooperative search in UAV 
detection, considering multiple target types, and adopting the modeling of discrete ras-
terization of the task space, and proposes the HL-APF algorithm. First, the distributed 
APF is improved, and a new segmented gravitational field function is designed, and the 
search repulsion field formed by the search path is added. Secondly, in order to solve the 
unknown target search and improve the area coverage, a centralized hierarchical task 
assignment algorithm controlled by CS is added, and an assignment priority function 
based on the search map is proposed. In addition, we use CS_ACT  to control the activa-
tion of the CS scheduling, as well as the mechanism of assigning cool-down to control 
the UAVs state. Finally, a collaborative search process based on the hybrid control archi-
tecture is designed.

Simulation results show that compared with HAPF-ACO and IAPF without CS con-
trol, HL-APF can significantly increase the number of target discovery and area cov-
erage. Meanwhile, the CS mechanism comparison experiment proved the necessity of 
setting CS activation and cool-down to improve the search performance. Finally, it also 
verified the robustness of the method under the failure of some UAVs.

However, this paper does not consider the heterogeneity of UAV swarm such as dif-
ferences in sensor and kinematics performance. It also ignores the multi-task scenario. 
Therefore, the study of heterogeneous multi-UAV multi-tasks is the next research goal 
and direction.
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