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1  Introduction
With the rapid development of urbanization and intelligence, intelligent transportation 
system (ITS) has received increasing attention from industry and academia [1–3]. One 
of the key components of ITS is the vehicle networks [4]. In the face of exponentially 
growing data and some emerging computation-intensive in-vehicle applications such 
as autonomous driving [5], augmented reality (AR) technology [6], traditional vehicle 
networks are being severely challenged in terms of communication, computation and 
storage.

The vehicular cloud computing services, which combine cloud computing and 
vehicle networks, allow vehicles to send data to the cloud for calculation and stor-
age [7, 8]. It is undeniable that the emerging architecture fulfils the above-mentioned 
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communication and computing needs, but it also comes at the cost of non-negligible 
transmission latency.

In line with the new trend of computing moving from clouds to network edges over 
the last decade [9], vehicular edge computing (VEC) has been proposed [10]. By inte-
grating the mobile edge computing (MEC) into the vehicle networks, VEC harvests 
idle computation power and storage space distributed at the edge of the vehicle net-
works and significantly reduces communication overhead and transmission latency 
[11].

Different from traditional MEC, VEC is characterised by its highly mobile vehicles, 
which leads to more dynamic topology changes and more complex communication 
characteristics [12]. In this particular scenario, the strategies of task offloading and 
allocation of computational and communication resources become more challenging.

Although the US Federal Communications Commission (FCC) has allocated 75 
MHz of licensed spectrum in the 5.9 GHz band for dedicated short-range commu-
nications (DSRC) [13, 14], these spectrum resources will become scarce as the num-
ber of connected vehicles and the supporting infrastructure increases rapidly. On the 
basis, unlicensed spectrum resources, with the feature of free access, can be a power-
ful complement to licensed spectrum resources. Therefore, it is of practical impor-
tance for the research on employing licensed and unlicensed access in VEC networks.

In this paper, we introduce additional unlicensed spectrum to expand the spec-
trum resources available to vehicles and to provide more flexible combinations for 
offloading tasks. Besides, we develop a joint power, spectrum and computing resource 
allocation strategy to minimize the total energy consumption of all vehicles for pro-
cessing tasks. The main contributions of this paper are summarized as follows:

•	 Both licensed and unlicensed spectrums are considered in the system because of 
their advantages and disadvantages. Compared with the scarce licensed spectrum 
resources, the unlicensed spectrum can be accessed for free. However, as a cost of 
more freedom on computation offloading, vehicles need to share unlicensed chan-
nels with WiFi users and consume extra energy to sense the state of the unlicensed 
channels before transmission. As a matter of course, offloading on the unlicensed 
spectrum becomes a powerful complement to that on the licensed spectrum. Our 
novel consideration of integrating licensed and unlicensed spectrum for simulta-
neous offloading has great research value and practical significance.

•	 The system divided by small time slots effectively simulates dense small-scale 
computing scenarios under the rapidly varying channel environment over time. By 
decoupling the non-convex objective function and constraints, the optimization 
problem of minimizing total energy consumption for processing tasks is split into 
multiple sub-problems. Furthermore, a low-complexity algorithm is proposed to 
realize the optimal allocation of computing and communication resources.

•	 Extensive simulation results validate the effectiveness of the proposed scheme that 
employing licensed and unlicensed access in VEC networks can reduce the energy 
consumption of vehicles for processing tasks in comparison with baseline schemes. 
Moreover, we evaluate the impacts of different parameters and vehicular environ-
ments on the proposed scheme and offer valuable guidelines for real deployment.
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The rest of the paper is organized as follows. In Sect. 2, some related works are reviewed 
and discussed. The aim, methods and settings of the study are described in Sect. 3. In 
Sect. 4, we illustrate the system model and formulate the optimization problem. A low-
complexity algorithm is proposed to realize the optimal allocation of computing and 
communication resources in Sect. 5. In Sect. 6, simulation results are presented to verify 
the efficiency of the proposed scheme. Finally, Sect. 7 concludes the paper.

2 � Related work
In recent years, many researchers have been engaged in optimizing the resource allo-
cation of MEC systems to minimize the energy consumption of task processing while 
ensuring latency requirements [15–20]. In [15], task offloading in MEC has been formu-
lated as a stochastic optimization problem, with the objective of minimizing the energy 
consumption of task offloading while guaranteeing the average queue length. An online 
joint radio and computational resource management algorithm for multi-user MEC sys-
tems has been proposed in [16], with the objective of minimizing the long-term average 
weighted sum power consumption of the mobile devices and the MEC server, subject to 
a task buffer stability constraint. Under the goal of minimizing long-term energy con-
sumption, the authors in [17] have imposed the probabilistic and statistical constraints 
task queue lengths to guarantee latency requirements at short timescales. The authors in 
[18] have decomposed the task offloading process into three phases, i.e. task uploading, 
task executing and result downloading, and have developed a low-complexity algorithm 
to solve the three-stage weighted sum energy consumption minimization problem. An 
air-ground integrated multi-access edge computing system has been studied. Then, 
an online deep reinforcement learning scheme has been proposed to approximate the 
Q-factor, which is used to maximize the average utility of mobile users in [19]. In [20], 
a reinforcement learning algorithm is based on end-edge-cloud collaboration to find 
proper routes in a proactive manner with low communication overhead.

To address the tension between computation-intensive and latency-sensitive in-vehi-
cle applications and resource-limited in-vehicle devices, a significant amount of research 
work has focused on the integration of MEC and vehicular networks in recent years 
[21–25]. The authors in [21] have proposed a solution that enables vehicles to learn the 
offloading delay performance of their neighbouring vehicles while offloading computa-
tion tasks. On the basis, a distributed adaptive learning-based task offloading (ALTO) 
algorithm based on the multi-armed bandit theory has been designed to minimize the 
average offloading delay without requiring frequent state exchange. The authors in [22] 
have estimated the transmission rates for the vehicle to vehicle and vehicle to infra-
structure communication based on practical assumptions, and have obtained the opti-
mal task allocation scheme subject to the maximum tolerable delay and vehicle’s stay 
time. In [23], both the communication and computation states have been modelled by 
finite Markov chains and the task scheduling and resource allocation strategy have been 
solved jointly to maximize users’ Quality of Experience (QoE). The authors in [24] have 
proposed a hybrid intelligent optimization algorithm, which not only determines where 
the tasks are performed, but also indicates the execution order of the tasks on the server. 
In [25], a new computing paradigm, called by Collaborative Vehicular Edge Computing 
(CVEC), has been proposed to maximize user-centric utility, which aims to incentivize 



Page 4 of 20Ji et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:8 

parked vehicles to contribute free resources to collaborate with MEC servers on com-
puting tasks.

With the rapid growth of wireless devices, the available licensed spectrum resources 
are becoming increasingly scarce. Therefore, many works are devoted to improve spec-
trum utilization [26–30]. To improve sensing and transmission performance of the cog-
nitive Industrial Internet of Things (IIoT), a cluster-based the cognitive IIoT has been 
proposed in [26] with the goal of maximizing the average total throughput wherein the 
cluster heads perform cooperative spectrum sensing to get available spectrum, and the 
nodes transmit via non-orthogonal multiple access (NOMA). In [27], a multibeam satel-
lite IIoT in Ka-band has been proposed to realize wide-area coverage and long-distance 
transmissions, which uses NOMA for each beam to improve transmission rate. The 
authors in [28] have combined Internet of Things (IoT) with fifth generation (5G) net-
work to expand the communication resources of the IoT and have explored the trade-
off between energy consumption and transmission rate in different scenarios. In [29], a 
5G-based green broadband communication system has been proposed to combine wire-
less information transfer (WIT) and wireless power transfer (WPT) and a joint optimi-
zation unit has been deployed to maximize the system throughput by jointly optimizing 
subband sets and subband powers subject to the constraints of energy requirement and 
interference. A novel market-based solution has been proposed in [30] for co-channel 
interference management in multibeam satellite systems (MSS) by introducing an elastic 
price mechanism.

In contrast to improving the efficiency of spectrum utilization in vehicular networks, 
some researchers aim to expand the available spectrum resources by utilizing unlicensed 
spectrum through spectrum sharing techniques [31–34]. In [31], a context-aware com-
munication has been proposed to approach to efficiently integrate different licensed and 
unlicensed spectrum leveraging the MEC. With the goal of maximizing the number of 
active cellular vehicle-to-everything (V2X) users, an energy sensing-based spectrum 
sharing scheme has been designed in [32], where cellular V2X users and vehicular ad hoc 
network (VANET) users are able to access the unlicensed channels fairly. The authors 
in [33] have proposed a heterogeneous vehicular network, where V2X users can share 
licensed spectrum with cellular users and unlicensed spectrum with WiFi users, and 
have formulated an optimization problem to maximize the spectrum efficiency of V2X 
communications while guaranteeing the quality of services (QoS) requirements of cel-
lular users and WiFi users. In [34], the authors have constructed an intelligent offloading 
framework for 5G-enabled vehicular networks, which allocates licensed and unlicensed 
spectrum resources to cellular vehicle-to-infrastructure (V2I) users and vehicle-to-road-
side unit (V2R) users, respectively. Then, a deep-reinforcement-learning-based method 
has been investigated to solve the cost minimization problem by considering the latency 
constraint of users.

However, the advantages and disadvantages of licensed and unlicensed spectrum in 
VEC networks have not been adequately addressed in the related works. On the other 
hand, as in-vehicle devices continue to evolve, employing licensed and unlicensed access 
in VEC networks can be expected. Based on this, the research on simultaneous offload-
ing via licensed and unlicensed spectrum in VEC networks is still lacking, which is the 
contribution of this work.
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3 � Methods
In this paper, we study a single-cell multi-vehicle time-division VEC system, in which 
one road-side unit (RSU) is linked to one MEC server through the fibre-wired link and 
provides computing services for the vehicles within its coverage area. Considering the 
dynamic topological changes resulting from the high mobility of the vehicles, we parti-
tion the system into small time slots. Based on the assumption that vehicles are running 
independent and fine-grained tasks, small-scale computational tasks arrive at the begin-
ning of each time slot and are processed within the current time slot. Moreover, vehi-
cles are free to allocate the proportions of three types of task processing, including local 
computing, offloading via licensed channels and offloading via unlicensed channels.

By decoupling the non-convex objective function and constraints, the optimiza-
tion problem of minimizing total energy consumption for processing tasks is split into 
multiple sub-problems. Ultimately, a joint power, spectrum and computing resource 
allocation strategy with low complexity has been devised to minimize the total energy 
consumption of all vehicles for processing tasks within each time slot.

The effectiveness of the proposed scheme is supported by the experimental evaluation, 
while all experiments are performed on MATLAB R2020a running on a Windows 64 
machine with 2.9 GHz CPU and 16 GB RAM.

4 � System model and problem formulation
4.1 � System model

As depicted in Fig. 1 we consider a single-cell multi-vehicle VEC system, where one 
RSU is linked to one MEC server through the fibre-wired link and provides comput-
ing services for the vehicles within its coverage area. Each resource-limited vehicle 
often needs to offload computational tasks to the MEC server, in order to reduce the 

RSU

Vehicle

WiFi users

Offloading on licensed channels

Offloading on unlicensed channels

MEC server

Unlicensed spectrum sharing

Fiber-wired link

Fig. 1  System model
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cost of processing computation-intensive tasks, such as latency or energy consump-
tion. The set of vehicles can be denoted as K = {1, 2, . . . ,K } . As computing resources 
are plentiful on the MEC server, we ignore the cost of processing tasks from the 
vehicles on the MEC server and focus on the trade-off between local computing and 
offloading to the MEC server.

Considering the scarcity of licensed spectrum resources, the vehicles can com-
municate wirelessly with the RSU and transmit computational tasks via unlicensed 
spectrum. On the one hand, unlicensed spectrum can be accessed for free, which 
brings more freedom for offloading. In the VEC systems without unlicensed spec-
trum, vehicles have to cope with the pressure of computing tasks by increasing the 
transmit power and the local CPU frequency, which results in significant energy 
consumption. On the other hand, the feature of free-to-use on unlicensed spectrum 
may cause serious channel collision. On this basis, access by vehicles will have an 
impact on the rest of the users of the unlicensed band, such as WiFi users. To miti-
gate this collision, vehicles need to consume extra energy to sense the state of the 
unlicensed channels before transmission. Moreover, when the licensed band is allo-
cated orthogonally to the vehicles using frequency division multiple access (FDMA), 
the duty-cycle muting (DCM) mechanism allows vehicles and WiFi users to share 
unlicensed bands in the time division multiple access (TDMA) manner.

The system operates in a time-division manner. The length of each time slot is 
denoted as τ and let T = {1, 2, . . .} be the set of time slot indices. In the paper, we 
assume that vehicles are running independent and fine-grained tasks. The number 
of bits on the task arriving and being processed at time slot t is denoted by Ak(t) . 
Without loss of generality, we assume that Ak(t) in different time slots are inde-
pendent and identically distributed (i.i.d.) and uniformly distributed in the interval 
[

0,Amax
k

]

 , ∀k ∈ K.

4.2 � Computing model

For local computing, the required CPU cycles to process one bit of computation task 
input from vehicle k can be given as Mk(t) . Note that Mk(t) depends on the types of 
applications and can be obtained by off-line measurements. Hence, the number of 
tasks, which can be calculated locally by vehicle k at time slot t, is given by

where fk(t) is the CPU frequency of vehicle k at time slot t which cannot exceed its max-
imum value Fk.

According to circuit theories [35, 36], the energy consumption for local computa-
tion at vehicle k is given by

where µk is the effective switched capacitance of the CPU at vehicle k, and it is related to 
the chip architecture [35].

(1)Dlocal
k (t) = τ fk(t)[Mk(t)]

−1,

(2)Elocal
k (t) = τµk

(

fk(t)
)3
,
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4.3 � Communication model

4.3.1 � Communication model on licensed channel

To avoid co-channel interference, the licensed spectrum is allocated orthogonally to the 
vehicles via FDMA. According to the Shannon–Hartley formula [37], the offloaded bits 
at vehicle k on the licensed channel are given by

where ψk(t) is the proportion of licensed bandwidth allocated to vehicle k under the 
constraint of 0 ≤

∑K
k=1 ψk(t) ≤ 1 , pLk (t) denotes the transmit power of vehicle k which 

cannot exceed its maximum value PL
k  , BL is the bandwidth of the licensed channel, NL

0  is 
the power spectrum density of the noise on the licensed channel, and hLk (t) is the chan-
nel gain between vehicle k and the RSU in time slot t.

The energy consumption of vehicle k on task offloading via licensed channel is given by

4.3.2 � Communication model on unlicensed channel

Although unlicensed spectrum provides additional spectrum resources and more flex-
ible options for offloading computing tasks, it introduces more severe channel collisions. 
In this case, the DCM mechanism allows each vehicle to compete with the surrounding 
WiFi users for the utilization of unlicensed spectrum resource in a TDMA manner [38, 
39]. Furthermore, based on the novel WiFi traffic load definition proposed in [40], each 
vehicle can estimate the maximum proportion of time it can use by sensing the state of 
the unlicensed channel before transmission to ensure fair co-existence with WiFi users.

Accordingly, the offloaded bits from vehicle k on the unlicensed channel at time slot t 
are given by

where sk(t) is the time fraction occupied by vehicle k on the unlicensed channel in time 
slot t and pUk (t) denotes the transmit power on the unlicensed channel, which cannot 
exceed their maximum values, Sk and PU

k  , respectively; BU
k  is the bandwidth of the unli-

censed channel associated with vehicle k, NU
0  is the noise power spectrum density on the 

unlicensed channel, and hUk (t) is the unlicensed channel power gain between vehicle k 
and the RSU.

According to the regulatory rules of unlicensed channels, to avoid the collision, all 
users need to sense the state of the unlicensed channels before using them. Therefore, 
the energy consumption for channel sensing and task offloading on the unlicensed chan-
nel is given by

(3)DL
k (t) = ψk(t)B

Lτ log2

(

1+
pLk (t)h

L
k (t)

NL
0 ψk(t)BL

)

,

(4)EL
k (t) = pLk (t)τ .

(5)DU
k (t) = sk(t)B

U
k τ log2

(

1+
pUk (t)h

U
k (t)

NU
0 BU

k

)

,

(6)EU
k (t) = pUk (t)sk(t)τ + pSk(1− sk(t))τ ,
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where pSk is the power consumption of vehicle k on sensing the unlicensed channel dur-
ing the “off” period, which is a constant related to the device sensor architecture.

4.4 � Problem formulation

In this sub-section, the optimization problem of computation offloading and resource 
allocation is designed for the novel VEC system with licensed and unlicensed access. 
This problem seeks to minimize the total energy consumption of all vehicles for process-
ing tasks, under the constraints of limited computing and communication resources.

We denote the system operation as X(t) �
{

f(t),pL(t),pU(t), s(t),ψ(t)
}

 , 
where f(t) �

{

f1(t), f2(t), . . . , fK (t)
}

 , pL(t) �
{

pL1(t), p
L
2(t), . . . , p

L
K (t)

}

 , 
pU(t) �

{

pU1 (t), p
U
2 (t), . . . , p

U
K (t)

}

 , s(t) � {s1(t), s2(t), . . . , sK (t)} , and 
ψ(t) � {ψ1(t),ψ2(t), . . . ,ψK (t)} . The sum energy consumption minimization problem 
can be formulated as follows:

 where (7a) is the local CPU frequency constraint, (7b) and (7c) are the transmit power 
constraints on licensed and unlicensed channels, (7d) is the bandwidth-utilization con-
straint of the licensed channel, (7e) is to ensure the harmonious coexistence of vehicles 
and the WiFi users on the unlicensed channels, and (7f ) is to ensure that tasks can be 
processed in a timely manner within the time slot in which they arrive.

As the objective function and constraint (7f) are non-convex, the problem cannot be 
solved directly using some conventional convex optimisation methods. In the next section, 
we transform this problem into a convex optimisation problem and then propose a low-com-
plexity lightweight algorithm to obtain optimal offloading and resource allocation scheme.

5 � Joint resource allocation scheme of computing and communication
5.1 � Problem reformulation

Although task offloading over unlicensed spectrum is a powerful complement to that via 
licensed spectrum, the consideration of offloading on unlicensed spectrum introduces 

(7)min
X(t)

∑

k∈K

(

Elocal
k (t)+ EL

k (t)+ EU
k (t)

)

(7a)s.t. 0 ≤ fk(t) ≤ Fk ,∀t ∈ T , k ∈ K,

(7b)0 ≤ pLk (t) ≤ PL
k , ∀t ∈ T , k ∈ K,

(7c)0 ≤ pUk (t) ≤ PU
k , ∀t ∈ T , k ∈ K,

(7d)0 ≤
∑

k∈K

ψk(t) ≤ 1, ∀t ∈ T ,

(7e)0 ≤ sk(t) ≤ Sk , ∀t ∈ T , k ∈ K,

(7f )Dk(t) ≥ Ak(t), ∀t ∈ T , k ∈ K,
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additional optimization variables, such as the time fraction occupied by each vehicle 
and the transmit power on unlicensed channels. As a result, the wireless communica-
tion scenario considered becomes complex and the corresponding problem becomes 
non-convex.

To break this barrier, we introduce a new variable γk(t) defined as γk(t) = pUk (t)sk(t) . 
By replacing pUk (t) with γk (t)sk (t)

 , problem (7) turns out to be convex, as described in the fol-
lowing process.

Firstly, based on the above replacement, the objective function of problem (20) 
becomes linear. Secondly, we define a function as

where C1 and C2 are constants. Through the positive definiteness of the Hessian matrix, 
it has been proved to be a convex one. Then, by replacing pUk (t) with γk (t)sk (t)

 , (5) and (7f ) 
are transformed separately into

It is not difficult to identify that DU
k (t) can be expressed as

Therefore, constraints in (7) comprise a convex set and the problem now becomes a con-
vex one, which can be solved by Lagrangian dual method [41].

The Lagrange dual function of (7) at time slot t can be written as

where η(t), �k(t) are the Lagrangian multipliers associated with constraint (7d) and 
(7f ), respectively, and �(t) is the corresponding Lagrange multiplier vector. Thus, the 
Lagrange dual problem can be expressed as

 where � is the feasible region of X(t) under the constraints from (7a) to (7f ).

(8)f
(

x, y
)

= −C1y log2

(

1+
C2x

y

)

,

(9)DU
k (t) = sk(t)B

U
k τ log2

(

1+
γk(t)h

U
k (t)

NU
0 sk(t)B

U
k

)

,

(10)0 ≤ γk(t) ≤ PU
k Sk .

(11)DU
k (t) = −f (γk(t), sk(t)).

(12)

L(X(t), �(t), η(t)) =
∑

k∈K

(

Elocal
k (t)+ EL

k (t)+ EU
k (t)

)

+ η(t)

(

∑

k∈K

ψk(t)− 1

)

+
∑

k∈K

�k(t)(Ak(t)− Dk(t)),

(13)max
�(t),η(t)

inf
X(t)∈�(t)

L(X(t), �(t), η(t))

(13a)s.t. �k(t) ≥ 0, ∀t ∈ T , k ∈ K,

(13b)η(t) ≥ 0, ∀t ∈ T ,
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5.2 � A low‑complexity lightweight algorithm

Lagrange duality offers an effective method to decouple constraint (7f ) and divide prob-
lem (7). The Lagrangian dual problem in (13) can be solved optimally by solving the fol-
lowing sub-problems.

5.2.1 � Local computing resource allocation

Given the fixed �(t) , the first sub-problem is to minimize the total energy consumption 
of all vehicles for local computing in time slot t, which can be mathematically written as

 Each vehicle only needs to use its local computing resources wisely, without sharing 
local computing information from other vehicles. Hence, the optimisation problem is 
split up again. The optimal frequency f ∗k (t) for the local CPU of vehicle k in time slot t 
can be obtained by solving the following sub-problem :

 Problem (15) is a convex optimization problem, and thus, the Karush–Kuhn–Tucker 
(KKT) conditions can be used to find the optimal solution. In this problem, we can 
obtain the first-order derivative with respect to local frequency as

Setting ∂L
∂fk (t)

= 0 , we obtain the optimal CPU frequency of vehicle k in time slot t as

where [a]yx = min
(

y, max (a, x)
)

.

5.2.2 � Licensed communication resource allocation

Given the fixed �(t) and η(t) , the second sub-problem is to minimize the total energy 
consumption of all vehicles for offloading through the licensed channels. Therefore, the 
optimal transmit power pL∗k (t) and proportion of licensed bandwidth ψ∗

k (t) in time slot t 
can be obtained by solving the following sub-problem:

(14)min
f(t)

∑

k∈K

(

Elocal
k (t)− �k(t)D

local
k (t)

)

,

(14a)s.t. 0 ≤ fk(t) ≤ Fk , ∀k ∈ K.

(15)min
fk (t)

Elocal
k (t)− �k(t)D

local
k (t),

(15a)s.t. 0 ≤ fk(t) ≤ Fk .

(16)
∂L

∂fk(t)
= 3τµk

(

fk(t)
)2

−
�k(t)τ

Mk(t)
.

(17)f ∗k (t) =

[
√

�k(t)

3µkMk(t)

]Fk

0

,

(18)min
pL(t),ψ(t),

∑

k∈K

(

EL
k (t)− �k(t)D

L
k (t)

)

+ η(t)

(

∑

k∈K

ψk(t)− 1

)

,
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 Considering the high complexity of general convex optimization algorithms, we solve 
(18) by optimizing the transmit power and the bandwidth allocation in an alternating 
manner, which is guaranteed to converge to the global optimal solution with a sublinear 
convergence rate [42]. Hence, we take the first-order derivatives of Lagrange dual func-
tion with respect to pLk (t) and ψk(t) as

In each iteration, the optimal transmit power and bandwidth allocated to vehicle k are 
achieved at either the stationary point of (19) and (20) or one of the boundary points, 
which are given by

where ψ̃∗
k (t) satisfies the following equation.

where X =
ψ̃∗
k (t)N

L
0 B

L

hLk (t)p
L
k (t)

.

5.2.3 � Unlicensed communication resource allocation

Given the fixed �(t) and η(t) , the third sub-problem is to minimize the total energy con-
sumption of all vehicles for offloading through the unlicensed channels in time slot t, 
which can be mathematically written as

 where γ (t) � {γ1(t), γ2(t), . . . , γK (t)}.
As each vehicle only needs to share an unlicensed channel with nearby WiFi users 

without competing with other vehicles, the problem can be also split into a per-vehicle 

(18a)s.t. 0 ≤ pLk (t) ≤ PL
k ,∀k ∈ K.

(19)
∂L

∂pLk (t)
= τ −

τ�k(t)h
L
k (t)B

Lψk(t)

ln 2
(

NL
0 B

Lψk(t)+ pLk (t)h
L
k (t)

) ,

(20)
∂L

∂ψk(t)
= η(t)− �k(t)

[

DL
k (t)

ψk(t)
−

τpLk (t)h
L
k (t)B

L

ln 2
(

NL
0 B

Lψk(t)+ pLk (t)h
L
k (t)

)

]

.

(21)pL∗k (t) =

[

ψk(t)B
L

(

�k(t)

ln 2
−

NL
0

hLk (t)

)]PL
k

0

,

(22)ψ∗
k (t) =

[

ψ̃∗
k (t)

]1

0
,

(23)log2

(

1+
1

X

)

−
1

(1+ X) ln 2
=

η(t)

�k(t)BLτ
,

(24)min
γ (t),s(t),

∑

k∈K

(

EU
k (t)− �k(t)D

U
k (t)

)

,

(24a)s.t. 0 ≤ γk(t) ≤ PU
k Sk , ∀k ∈ K,

(24b)0 ≤ sk(t) ≤ Sk , ∀k ∈ K,
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optimisation sub-problem. On the basis, the optimal transmit power pU∗
k (t) and the 

optimal time fraction s∗k(t) on the unlicensed channel can be obtained by solving the fol-
lowing sub-problem:

 Since the objective function of (25) is non-increasing with respect to sk(t) , for any 
k ∈ K , the optimal time fraction occupied by vehicle k on unlicensed channel is equal to 
the maximum value, i.e. s∗k(t) = Sk.

Similarly, for offloading tasks on unlicensed channels, we have

Therefore, the optimal transmit power pU∗
k (t) is achieved at either the stationary point of 

(25) or one of the boundary points, which is given by

5.2.4 � Optimal Lagrange multiplier

Once the optimal resource allocation is achieved by (17), (21), (22), (27), the solution 
of dual problem (13) can be determined by a subgradient method as follows [43]:

where i is the iteration index, and ς� and ςη are the positive step sizes.
The Lagrange multipliers �(t) and η(t) can be independently updated by (28) and 

(29), respectively. The update process will be repeated until convergence, indicating 
that the dual optimal point has been reached. Since the joint power, spectrum and 
computing resource allocation problem proves to be convex, the duality gap can be 
guaranteed to zero according to [43, 44]. Algorithm  1 briefly summarizes the pro-
posed algorithm.

(25)min
γk (t),sk (t),

EU
k (t)− �k(t)D

U
k (t)

(25a)s.t. 0 ≤ γk(t) ≤ PU
k Sk ,

(25b)0 ≤ sk(t) ≤ Sk .

(26)γ ∗
k (t) =

[

SkB
U
k

(

�k(t)

ln 2
−

NU
0

hUk (t)

)]PU
k Sk

0

.

(27)pU∗
k (t) =

γ ∗
k (t)

s∗k(t)
=

[

BU
k

(

�k(t)

ln 2
−

NU
0

hUk (t)

)]PU
k

0

.

(28)�
(i+1)
k (t) =

[

�
(i)
k (t)+ ς�(Ak(t)− Dk(t))

]+

,

(29)η(i+1)(t) =

[

η(i)(t)+ ςη

(

∑

k∈K

ψk(t)− 1

)]+

,
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5.3 � Algorithm complexity analysis

In each time slot, the computational complexity of the proposed scheme mainly lies 
in both loops shown in Algorithm 1. For the inner loop that determines the propor-
tion of tasks offloaded on the licensed channels, alternately updating the transmit 
power and proportion of licensed bandwidth has been shown in [42] to converge to 
the optimal solution with a sublinear convergence rate. Besides, the outer loop is a 
standard convex optimization and a fast convergence speed can be guaranteed for the 
subgradient method. As will be demonstrated in the simulation, only 6–9 iterations 
are required for the Lagrange multipliers to converge. Therefore, we can qualitatively 
conclude that the computational complexity of the proposed algorithm is low and 
acceptable.

6 � Simulation results and discussion
In this section, simulation results are presented to verify the efficiency of the pro-
posed algorithm. We consider a single-cell system with a radius of 200 m, where the 
RSU is located at the centre of the cell and vehicles are uniformly distributed in the 
cell. The distance between vehicle k and the RSU is denoted by Dk . In addition, there 
are a certain number of WiFi users distributed around each vehicle. Each vehicle 
adopts the DCM mechanism to share the unlicensed channel with the associated WiFi 
users. In the simulations, the channels between vehicles and the RSU are assumed to 
be frequency-flat. The major parameters used in our simulation are listed in Table 1.

6.1 � System performance

To demonstrate the necessity of offloading on unlicensed spectrum, we set the simula-
tion environment to three scenarios, including a VEC network that only uses licensed 
access, a VEC network that only uses unlicensed access and a VEC network that 
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employs licensed and unlicensed access jointly. Corresponding to the first two sce-
narios, we use the following two schemes as baselines. The first baseline is a central-
ized Lyapunov optimisation (LO)-based algorithm, which is applied to the scenario 
that vehicles can only process tasks through local computing and offloading to the 
RSU through licensed channels. Considering the novelty of introducing unlicensed 
spectrum to the VEC networks, we use the centralized interior point (IP) method as 
the second baseline. The IP algorithm is applied under the scenario, where vehicles 
can only process tasks through local computing and offloading to the RSU through 
unlicensed channels.

Figure 2 shows the energy consumption performance of three algorithms with varying 
number of vehicles. We can observe that the energy consumption in the third scenario 
is always lower than that in the first two scenarios. The reason is that joint employing 

Table 1  Simulation parameter setting

Parameter Value

Radius of the cell 200 m

Time slot 1 ms

Pass loss model (licensed, unlicensed) 15.3+ 10σ log10 (Dk),

σ = 3.75, 5

Noise power spectral density NL
0,N

U
0

− 174 dBm/Hz

Maximum transmit power on licensed channels PL
k

500 mW

Maximum transmit power on unlicensed channels PU
k

200 mW

Effective switched capacitance of CPU µk 10−27

Processing density request Mk 100 cycles/bit

Maximum CPU frequency Fk 1 GHz

Fig. 2  The total energy consumption of all vehicles versus the number of vehicles, BL = 20 MHz, Sk = 0.5, and 
B
U

k
 = 20 MHz for all k ∈ K
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licensed and unlicensed access in the VEC network lead to the expansion of the spec-
trum resources available. At the same data rate, more spectrum resources will result in 
less transmit power. In particular, the gap in energy consumption between the scenario 
only with licensed spectrum and the scenario with two spectrums widens as the number 
of vehicles increases. When the licensed spectrum is not enough to offload the tasks of 
vehicles, the tasks have to be processed locally by the LO algorithm, which consumes 
more energy.

6.2 � The convergence of the proposed algorithm

Figure  3 shows the convergence on the energy consumption of the vehicles when the 
proposed algorithm is applied. The iterative process illustrated in the figure is consistent 
with the update process of the Lagrange multipliers in the outer loop in Algorithm 1. 
Obviously, the proposed algorithm requires only 6–9 external iterations to obtain the 
optimal Lagrange multipliers. This finding provides the proof for the theoretical analysis 
about the algorithm complexity in Sect. 5.3. For actual road sections with different traffic 
volumes, we can set different step sizes to ensure the fastest convergence rate.

6.3 � The impact of licensed spectrum resource

Figure  4a shows the impact of licensed spectrum bandwidth on the amount of 
offloaded tasks. Obviously, numerous vehicles and low licensed bandwidth imply 
that the licensed spectrum resource is scarce. In this case, tasks that would have been 
offloaded via licensed channels are transferred to unlicensed channels. In contrast, 
when the licensed spectrum resources are enough, task offloading would be only per-
formed on the licensed channel since it does not need to consume energy for sense 
the channel state. Besides, an increase on spectrum resources will result in a decrease 

Fig. 3  Convergence behaviour for the total energy consumption of all vehicles versus the number of 
vehicles, BL = 20 MHz, Sk = 0.5, and BU

k
 = 20 MHz for all k ∈ K
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on energy consumption as demonstrated in Fig.  4b since more task bits can be 
offloaded to the MEC server via the licensed channels. Due to the lower path loss on 
licensed channels, the energy can be used more efficiently on the licensed spectrum. 
Therefore, the trends in these two subplots are partially approximately linear.

Fig. 4  The impact of licensed spectrum bandwidth, Sk = 0.5, and BU
k
 = 20 MHz for all k ∈ K : a the effect on 

task offloading from one vehicle; b the effect on energy consumption of one vehicle
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6.4 � The impact of unlicensed spectrum resource

Figure 5 shows the impact of the available time fraction of unlicensed channel at vehi-
cle k, Sk , on the task offloading and energy consumption with different unlicensed 
bandwidths. As shown in Fig.  5a, the amount of tasks offloaded on the unlicensed 
channel increases as the available unlicensed spectrum resource increases. However, 

Fig. 5  The effect of available time fraction on unlicensed channels on the task offloading and energy 
consumption at the vehicle, K = 40, BL = 20 MHz: a the impact on task offloading from one vehicle; b the 
impact on energy consumption of one vehicle
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when licensed spectrum resources are relatively plentiful, the change in the strategy 
of offloading tasks is relatively flat. On the other hand, Fig.  5b shows the dramatic 
impact on energy consumption despite the slight change in task allocation ratio, dem-
onstrating the important role of unlicensed spectrum in VEC networks.

7 � Conclusion
In this paper, employing licensed and unlicensed access in the VEC networks makes 
the strategies for offloading tasks more complicated. To solve the joint power, spec-
trum and computing resource allocation problem, we propose a low-complexity algo-
rithm to minimize the total energy consumption of all vehicles for processing tasks. 
Theoretical analysis and simulation results validate the effectiveness of the proposed 
scheme that the additional introduction of unlicensed spectrum effectively can effec-
tively reduce the energy consumption in comparison with baseline schemes. In future 
works, we will extend the findings in this work to multi-RSU multi-cell VEC scenarios 
and explore distributed implementation methods.
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