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Abstract 

A large number of epidemics, including COVID-19 and SARS, quickly swept the world 
and claimed the precious lives of large numbers of people. Due to the concealment 
and rapid spread of the virus, it is difficult to track down individuals with mild or 
asymptomatic symptoms with limited human resources. Building a low-cost and real-
time epidemic early warning system to identify individuals who have been in contact 
with infected individuals and determine whether they need to be quarantined is an 
effective means to mitigate the spread of the epidemic. In this paper, we propose a 
smartphone-based zero-effort epidemic warning method for mitigating epidemic 
propagation. Firstly, we recognize epidemic-related voice activity relevant to epidem-
ics spread by hierarchical attention mechanism and temporal convolutional network. 
Subsequently, we estimate the social distance between users through sensors built-
in smartphone. Furthermore, we combine Wi-Fi network logs and social distance 
to comprehensively judge whether there is spatiotemporal contact between users 
and determine the duration of contact. Finally, we estimate infection risk based on 
epidemic-related vocal activity, social distance, and contact time. We conduct a large 
number of well-designed experiments in typical scenarios to fully verify the proposed 
method. The proposed method does not rely on any additional infrastructure and his-
torical training data, which is conducive to integration with epidemic prevention and 
control systems and large-scale applications.

Keywords:  COVID-19, Social distance, Contact tracing, Epidemic warning, Human 
activity recognition, Indoor positioning

1  Introduction
At the end of 2019, the new type of coronavirus pneumonia (COVID-19) caused by the 
SARS-COV-2 virus broke out in Wuhan and spread rapidly around the world, bringing 
huge impacts and challenges to the global medical and economic system. As of Decem-
ber 21, 2022, a total of 654,420,532 cases of new coronary pneumonia have been diag-
nosed worldwide, and a total of 6,624,023 cases have died [1]. Prevention and control 
measures such as rapid isolation of cases and strict restrictions on the movement and 
contact of people have effectively cut off the spread of the virus and have made impor-
tant contributions to blocking the spread of COVID-19 [2]. As shown in Fig.  1, con-
tact tracking aims to identify risk regions, and trace contacts and spreaders, which is 
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an effective strategy to control epidemic spread [3, 4]. Initially, the infected person was 
tracked by manual contact. Although effective, as the number of infected people grows, 
this manual contact tracking method has exposed many shortcomings (expensive man-
power and material resources, and tracking personnel are vulnerable to virus infection). 
On the other hand, COVID-19 has an incubation period of up to 14 days, and it is dif-
ficult to control the spread of the virus simply by quarantining the sick. It is difficult 
to track down individuals with mild or asymptomatic symptoms with limited human 
resources.

The academic community has successively tried several solutions to identify infected 
persons, track contacts, and remind users to maintain social distancing. At present, 
domestic and foreign has developed based on pseudolites, radio frequency identifica-
tion, ultra-wideband, inertial sensors, wireless local area network, ultrasonic, vis-
ible light, magnetic field, Bluetooth, computer vision and other technologies to achieve 
sub-meter to ten-meter accuracy of personnel positioning and tracking system [5]. At 
present, domestic and international solutions for close contact tracking and social dis-
tance reminding of infectious disease epidemics still have poor positioning and track-
ing accuracy, relying on additional positioning base stations and historical training data, 
requiring professional knowledge such as medical care, and failing to remind safe social 
distance in real time and many other shortcomings, and it is challenging to promote and 
apply on a large scale.

The smartphone that users carry with them has built-in GPS, accelerometer, gyro-
scope, sound, and other rich sensors and has strong computing and storage capabilities. 
It is an ideal epidemic tracking and early warning platform. This article is based on the 
built-in sensors of mobile smartphones to identify users’ talking, sneezing, coughing and 
other activities that are closely related to the spread of the epidemic, and real-time posi-
tioning and tracking of user trajectories, and building an epidemic early warning system 
to remind users to maintain social distance. The proposed method has the advantages of 

Fig. 1  The history of the infected person and all the people who met or were infected
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not relying on additional infrastructure, historical training data, and no need for profes-
sional knowledge. The key contributions of our study are as follows:

•	 We propose a zero-effort epidemic warning method based on epidemic-related voice 
activity recognition and autonomous positioning. This method comprehensively 
evaluates the infection risk from three aspects: epidemic-related vocal activity, social 
distance, and contact time.

•	 We propose an integrated data and knowledge-driven activity recognition method 
based hierarchical attention mechanism and temporal convolutional network to rec-
ognize voice activity relevant to epidemics spread. The proposed method reduces the 
number of convolutional layers and expands the receptive field by integrating hierar-
chical attention mechanisms and fully mines data dependencies to improve recogni-
tion accuracy.

•	 We propose a social distance estimation method based on pedestrian dead reckoning 
(PDR) using smartphones carried by pedestrians. This method does not rely on any 
additional infrastructure and historical training data, which is conducive to integra-
tion with epidemic prevention and control systems and large-scale application.

•	 We propose a contact time estimation method that combines Wi-Fi network logs 
and social distance to comprehensively judge whether there is spatiotemporal con-
tact between users and determine the duration of contact.

The following sections of this paper are organized as follows: Sect. 2 reviews the pre-
vious related works. Section 3 details the proposed smartphone-based zero-effort epi-
demic warning method. Section 5 thoroughly evaluates the proposed method in typical 
scenarios. Finally, Sect. 5 draws a conclusion and outlines our future work.

2 � Related work
Due to the rapid spread of COVID-19, how to assess the infection risk has become a cur-
rent research hotspot [6]. We review the previous related works of human voice activity 
recognition, social distance estimation, and contact tracing.

2.1 � Voice activity recognition

Voice activity recognition has a wide range of applications, such as human–computer 
interaction, health monitoring, activity understanding, scene recognition, and smart 
home control. Plenty of studies on voice activity recognition have been developed. The 
key issue of recognizing different voice activities is to extract effective features from 
the acoustical signal that may contain noise. These features are mainly classified into 
time domain and frequency domain. The common time-domain features are periodic-
ity, zero-crossing rate, short-time energy, loudness, and sharpness [7]. Spectral flatness, 
frequency component, high/low-frequency rate, Mel-frequency cepstral coefficient 
(MFCC), and Log Mel Filter-bank are the most used frequency-domain features. In 
addition, various classification techniques such as clustering [8], k-nearest neighbor [9], 
support vector machine, fuzzy-rule [10], Gaussian mixture models [11], random forest, 
linear discriminant analysis, logistic regression, decision trees are used for voice activity 
recognition. Sensor noise is the main reason affecting recognition accuracy. In recent 
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years, deep learning has been widely used to solve numerous sensor noise problems. 
Lee et al. [12] proposed a spectral–temporal attention-based voice activity recognition 
method. Kim et al. [13] utilized an adversarial domain adaptation technique to perform 
robust voice activity recognition out of noisy background signals. To capture the entire 
temporal information of voice signals, Zhang et al. [14] stacked a global temporal pool-
ing layer on multiple local temporal pooling layers. Although many voice activity recog-
nition methods have been presented, there are still deficiencies in recognition accuracy, 
robustness, processing rate, or computation overhead in practical applications.

2.2 � Social distance estimation

Social distancing is a public health measure aimed at preventing close contact between 
infected person and healthy person during an infectious disease outbreak, to reduce the 
chance of disease spreading. Many technologies, such as positioning technology, wire-
less communication, artificial intelligence, and big data, have been developed to remind 
and urge people to maintain social distance [15]. Particularly the positioning systems 
effectively remind users to maintain a safe distance by measuring the distance between 
users and notifying them automatically if they are too close to each other [15].

Many wireless positioning technologies, such as GNSS, Cellular, Wi-Fi, RFID, UWB, 
and Bluetooth, are adopted to enable social distancing. Rajasekar [16] utilized cost-effec-
tive RFID tags and a smartphone as an RFID reader to identify social distance. Alsaeedy 
et al. [17] leveraged cellular networks to detect social distance. Cunha et al. [18] devel-
oped a wearable social distance monitoring system that leverages the received signal 
strength indication (RSSI) of the Wi-Fi signals emitted by devices carried by other users 
to estimates the proximity distance between the users. Lam and She [19] estimated social 
distance based on the received signal strength of the BLE beacon. To prevent the spread 
of COVID-19, Kobayashi et al. [20] constructed a social distance monitoring system that 
periodically sends and receives Bluetooth messages to students on the university cam-
pus to sense the distance between users. MySD [15] leveraged the BLE and GPS signal 
to estimate the distance between people. Abdulqader et  al. [21] and Zheng et  al. [22] 
utilized ultrasonic sensor to estimate the distance between users. Bian and colleagues 
[23] developed a social distance monitoring system based on oscillating magnetic field 
to monitor the social distances between users. However, these social distance estimation 
methods rely on additional infrastructure, and their application is limited.

On the other hand, several social distance monitoring systems based on fixed or 
mobile digital cameras have been developed. Yeshasvi et  al. [24] designed an effective 
social distancing estimation and alerting system that utilizes surveillance video as input 
to estimate humans’ social distance and urge person to maintain social distance. Ahmed 
et  al. [25] leveraged the object recognition method based on YOLO v3 to recognize 
pedestrians and estimate their mutual distance. To real-time monitor the social distance 
in low-light environments, Rahim et  al. [26] proposed an efficient solution based on 
YOLO v4 and fixed ToF camera. Al-Khazraji et al. [27] developed an intelligent moni-
toring physical distances system that not only senses the physical distance in real time, 
but also offers timely feedback to users who do not observe the social distance. Bashir 
et  al. [28] designed a cost-effective Internet of Things system to monitor physical dis-
tances and body temperatures using the Caffe model in OpenCV. Neelavathy et al. [29] 
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proposed a Bluetooth and camera-based smart social distance monitoring application 
that predict the social distances between two persons using deep learning and image 
processing techniques. However, the video-based method has the following three limita-
tions. First, this method relies on additional video surveillance equipment (e.g., camera). 
Second, surveillance video is easily affected by light, which means that this method can-
not work effectively at night or in dark environments. Third, this method cannot interact 
with the smartphone carried by the user and cannot provide the user with real-time risk 
warnings.

2.3 � Contact tracing

Contact tracing aims to track users who have encountered an infected person [30]. Con-
tact tracing has been recognized by the World Health Organization (WHO) as the most 
effective epidemic control measure [31]. Recognizing the importance of contact trac-
ing, many studies on contact tracing systems have been developed [32]. Some commer-
cial solutions conduct contact tracing with GPS [33], RFID [34], ultra-wideband [35], 
BLE [36–38], Wi-Fi [31, 39], cellular [40–42], vision [43], and other technologies. To 
sense mobile social interactions, Banerjee et  al. [44] proposed virtual compass, which 
effectively perceives the mutual distance between users, but cannot obtain direction 
information. Guo et al. [45] and Rezaei et al. [46] proposed an automatic infection risk 
assessment method that utilizes captured surveillance videos to identify potentially 
infected person by droplet-transmitted model.

At the national level, many countries have developed contact tracking systems. China 
designed a health code system [47] based on QR codes. The system pushes warning mes-
sages to users who are too close to the infected person [48]. South Korea detects the 
proximity to the infected person using the GPS data from smartphone carried by users 
[49]. Canada designed a COVID-19 exposure notification APP named COVID Alert 
[50] to track pedestrian movement trajectories and push a notification to the pedestrian 
who possibly exposes to the coronavirus. Australia designed COVIDSafe [51] that lev-
erages BLE signal to detect the proximity between persons. The United Nations Tech-
nology Innovation Laboratory (UNTIL) has developed a new social distance application 
called 1ponit5 based on Bluetooth. Switzerland designed SwissCovid APP [51] that 
detects the proximity utilizing the BLE signal on the smartphone. Singapore designed 
TraceTogether [52] that utilizes Bluetooth to discover and locally record clients in close 
proximity to a user. However, Bluetooth-based contact tracing solutions are vulnerable 
to response attacks [53]. Different from TraceTogether, the UK designed Google/Apple 
Contact Tracing system called NHS COVID-19 [54] that does not record the user’s real 
identity. In SwissCovid, a decentralized privacy protection protocol is utilized to protect 
user identity. Italy designed Immuni [55], which is a contact tracing application based on 
BLE signal and privacy-preserving method. Apple and Google have jointly developed an 
epidemic tracking tool ‘contact tracing’ [56] to help users determine whether they are in 
close contacts of patients with new coronary pneumonia. They have proved themselves 
as powerful tools, helping human beings to control the epidemic situation, but many of 
them are found to have problems of low efficiency and high cost [32].
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3 � Materials and methods
As shown in Fig. 2, we recognize epidemic-related voice activities by hierarchical atten-
tion mechanism and temporal convolutional network. Subsequently, we estimate the 
social distance between users through smartphone. Furthermore, we need to combine 
Wi-Fi network logs and social distance to comprehensively judge whether there is spa-
tiotemporal contact between users and determine the duration of contact. Finally, we 
estimate infection risk based on epidemic-related voice activities, social distance, and 
contact time.

3.1 � Integrated data and knowledge‑driven method for epidemic‑related voice activity 

recognition

When infected individual talks, coughs, or sneezes, the droplets are sprayed from the 
mouth or nose into the air. These fine droplets may be inhaled by others. Droplets con-
taining pathogens become the main medium for virus transmission. In this paper, we 
recognize human vocal activity, especially sneezes and coughs, through the microphone 
built-in smartphone. As shown in Fig. 2, we propose an integrated data and knowledge-
driven voice activity recognition method based on time series deep learning, which con-
verts sound signals into time–frequency series and uses hierarchical attention-based 
temporal convolutional network (HA-TCN) as the basis to recognize speaking, sneezing, 
coughing, and other voice activity that is closely related to the spread of epidemics.

The method is mainly composed of three parts: sound signal preprocessing, sound 
wave feature extraction, and classification model. The sound signal preprocessing part 
takes the sound wave data collected by the mobile phone microphone as input and 
uses the short-term logarithmic energy to accurately intercept the effective sound 

Fig. 2  The system architecture of the proposed epidemic warning method based on epidemic-related voice 
activity recognition and spatiotemporal information
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wave signal after noise reduction by the band-pass filter; the sound wave feature 
extraction part is used to extract and process the domain knowledge feature of the 
acoustic signal further improves the accuracy of the classification model. The classifi-
cation model part takes the preprocessed effective acoustic signal and domain knowl-
edge features as input, extracts the hidden feature representation in the input from 
the encoder layer, and then inputs it to the HA-TCN, and finally represents the fea-
ture through the linear layer Converted into activity classification results as output.

3.1.1 � Preprocessing and feature extraction

The pronunciation of the experimenter, the acquisition equipment, and the surround-
ing environment will affect the quality of the audio signal, resulting in the occurrence 
of mute, aliasing, noise, distortion, and other phenomena. Due to the presence of 
environmental noise in the original sound wave signals collected by smartphones, it 
is often impossible to obtain good classification results by directly inputting the raw 
sound data collected by the mobile phone microphone into the neural network for 
classification tasks. Therefore, preprocessing the collected sound signals is a neces-
sary means to obtain good classification results. This paper uses band-pass filtering to 
eliminate environmental noises, so as to effectively improve the signal-to-interference 
plus noise ratio (SINR) of the collected acoustic signals.

Manual segmentation cannot accurately find the start and end of the sound. The 
purpose of endpoint detection is to remove the silent part and finally get effective 
sound content. This paper uses the double-threshold algorithm of short-term energy 
and the short-term average zero-crossing rate for voice endpoint detection. The algo-
rithm can accurately determine the start and end positions of the effective signal in 
the sound sample and separate the effective sound signal from the ambient noise.

Sensor feature extraction is a critical step in recognizing activity patterns. To 
accelerate the speed of model convergence and effectively improve model classifica-
tion accuracy, we extract time-domain and frequency-domain features based on the 
acoustic domain knowledge.

In the short-term energy calculation, we use the hamming window with a length 
of S1 to subframe the acoustic signal x(t) collected by the microphone and then use 
Eq. (1) to calculate the short-term logarithmic energy of each frame, and the calcula-
tion equation for the average logarithmic short-term energy STEp

(

j
)

 of the jth frame 
is shown in Eq. (2).
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In addition to short-term energy features, we also choose energy entropy features as 
the model input. The energy entropy feature mainly describes the distribution of the 
sound signal in the time domain and reflects the continuity of the sound wave signal. 
The energy entropy feature is computed as follows:

where K is the number of the subframe; ej represents the ratio of the total energy of the 
jth subframe to the total energy of a frame in the entire signal frame; Eframei is the total 
energy of the i-th frame signal; and EsubFramej is the energy of the jth subframe.

Short-time zero-crossing rate Zn indicates the number of times the signal amplitude 
passes through the zero point in each frame of signal, reflecting the frequency character-
istics of the frame signal. The short-time zero-crossing rate Zn of the ith frame signal is 
as follows,

where the sign(x) function represents the sample position of the zero point in the signal 
segment x.

The spectrum centroid reflects the main concentrated area of the spectrum energy in 
the frequency band. The smaller the value of the spectrum centroid, the more spectrum 
energy is concentrated in the low-frequency range. The spectral centroid of the ith frame 
signal is as follows,

where Xk is the kth spectral line of the ith frame signal and f is the signal length of one 
frame.

The spectrum extension mainly describes the distribution of the acoustic signal around 
the centroid of its spectrum.

Spectral entropy reflects the uniformity of the acoustic signal in the frequency domain.
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The spectrum flux represents the change of the spectrum between two adjacent frames. 
It is equivalent to calculating the sum of squares of the difference between the two frames 
of the spectrum after normalization. The calculation equation is:

The short-term power spectral density is a time–frequency characteristic that reflects the 
strength of each frequency band in the period corresponding to each frame. It can simulta-
neously reflect the time-domain and frequency-domain characteristics of reflected acoustic 
wave signals at different positions and is very suitable for analyzing time-varying and non-
static reflected acoustic wave signals.

3.1.2 � Hierarchical attention‑based temporal convolutional network for epidemic‑related voice 

activity recognition

In the HA-TCN architecture, the convolution window between each hidden layer increases 
layer by layer. This dilated convolution structure can make each hidden layer consistent 
with the size of the input sequence. The dilated convolution structure allows the model to 
obtain a sufficiently large receptive field with only a shallow layer.

In this paper, the time–frequency sequence feature output by the preprocessing module 
is used as the input of the HA-TCN model. As shown in Fig. 3, for each time step, a one-
dimensional time–frequency sequence is first extracted through a sub-network composed 
of Ns convolutional layers, and the network output is a one-dimensional feature repre-
sentation. After the spatial feature extraction is completed, the one-dimensional feature is 
used as input through the main network composed of three layers of Temporal Block. Each 
layer of the Temporal Block includes a CNN layer, a causal convolution layer, an optional 
dropout layer and batch normalization (Batch Normalization) layer, and uses ReLU as the 
activation function. The expansion coefficient d of the cavity convolution between different 
layers is set to 1, 2, or 4 exponential growths according to the depth increase of the number 
of layers. The convolution kernel size between each convolution layer is 2 × 1. In the TCN 
model, the dilated convolution operation F on elements end with index s of the sequence X 
is defined as:

(9)Hi = −
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∑
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nk log2
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where k is the convolution kernel size, d is the dilation factor, and each (s − d · i) is the 
index of an element from the ‘past’ part in the input x.

The entire end-to-end classification model takes a 40 × 3 × 1 time–frequency fea-
ture vector as input and outputs a 4 × 1 classification result.

To reduce the convolutional layers required to expand the receptive field, dilated 
convolutions are used in TCN. In the convolution kernel of dilated convolution, there 
is a certain gap between adjacent nodes, which allows dilated convolution to obtain 
a broader range of information without changing the convolution kernel size. The 
receptive field size is expressed as:

where di is the dilation factor of the ith layer causal convolution. When using dilated 
convolution, let di = bi to make the receptive field grow exponentially with the depth of 
the network. b is the expansion coefficient.

Residual blocks [57] help to solve the gradient instability problem and are widely 
used in deep networks. In the residual block, the output of the multi-layer network f  
is added to the original input x and output through the activation function G.

(14)F(s) =
(

X∗df
)

(s) =

k−1
∑

f (i) · Xs−d·i

i=0

(15)Output(i) = TCN (Xi)

(16)RFL = 1+ (k − 1) ·
∑L−1

i=0
di

Fig. 3  Architecture of hierarchical attention-based temporal convolutional network
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As shown in Fig.  4, the residual block of TCN contains two convolution mod-
ules. Each convolution module consists of dilated causal convolution, weight 
normalization, activation function, and dropout. H (i) = {h

(i)
0 , h

(i)
1 , · · · , h

(i)
T } and 

H (i+1) = {h
(i+1)
0 , h

(i+1)
1 , · · · , h

(i+1)
T } are the outputs of the ith and i + 1 th residual 

blocks in TCN, respectively. In the residual block, the dilation factor of the two-layer 
causal convolution remains unchanged. If the dimensions of the original input and 
that of the convolutional layer output are different, the addition operation can be per-
formed after dimension transformation by 1 × 1 convolution.

The attention mechanism [58] is a simulation of the attention of the human brain. 
The attention mechanism highlights vital features and improves model performance by 
weighing different features. It has been widely used in machine translation and computer 
vision. We utilize a hierarchical attention mechanism across network layers [59] to refine 
the temporal dependencies and extract significant features. The HA-TCN contains K  
hidden layers. The within-layer attention weight αi is calculated as follows:

where Hi is the matrix consisting of convolutional activations at layer i , i = 0, 1, . . . ,K  ; 
wi is a trained parameter vector; and (·)T denotes the transpose operation.

The combination γi of convolutional activations for layer i is calculated as:

(17)y = G(x + f (x))

(18)αi = softmax(tanh(wT
i Hi))

(19)Hi = [hi0, h
i
1, . . . , h

i
T ]

(20)γi = ReLU(Hiα
T
i )

Fig. 4  Residual unit in the TCN
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After executing each within-layer attention layer, the convolutional activations are 
transformed as follows:

Similarly, the across-layer attention layer takes M as the input to calculate the final 
sequence representation used for classification:

3.2 � Social distance estimation based on pedestrian dead reckoning

Close contact provides conditions for droplet transmission. When people talk, droplets 
are ejected from the mouth. These fine droplets may be inhaled by others. Droplets con-
taining pathogens become the main medium for virus transmission. Therefore, effective 
estimation of social distance is crucial to determine whether a person is highly likely to 
be infected during social interaction activities.

According to the characteristics of pedestrians’ periodic motions, pedestrian dead 
reckoning uses inertial sensor data to identify step events and estimate step lengths and 
uses a magnetometer to estimate pedestrian heading, thereby realizing position estima-
tion. Step detection, step length estimation, and heading estimation are closely linked 
and affect each other. The step detection result is used for sensor data segmentation. The 
accuracy and real-time performance of step detection directly determine the accuracy 
of heading and step length estimation. PDR calculates the pedestrian position (x1, y1) at 
moment t1 based on the inertial movement distance d0 , inertial heading θ0, and initial 
position (x0, y0).

Likewise, pedestrian position (x2, y2) at moment t2 is calculated (with distance, head-
ing, and last position) as follows:

More generally, pedestrian position (xk , yk) at moment tk is calculated as follows:

where θi and li are pedestrian heading and movement distance from ti−1 to ti , respectively.

(21)M = [γ0, γ1, . . . , γi, . . . , γK ]

(22)α = softmax(tanh(wTM))

(23)γ = ReLU(MαT )

(24)
{

x1 = x0 + l0cosθ0
y1 = y0 + l0sinθ0

(25)
{

x2 = x1 + l1cosθ1 = x0 + l0cosθ0 + l1cosθ1
y2 = y1 + l1sinθ1 = y0 + l0sinθ0 + l1sinθ1

(26)

{

xk = x0 +
∑k−1

i=0 licosθi

yk = y0 +
∑k−1

i=0 lisinθi
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3.2.1 � Magnetic‑aided step detection

Step detection is the basis of PDR algorithms. As shown in Fig. 5, considering complex 
pedestrian activities, such as shaking smartphone phone or rotating smartphone caused 
by actions such as calling, texting, and playing games, a large error will be generated 
for the traditional step detection method based on the acceleration modulus threshold. 
Based on the characteristics that the intensity of the geomagnetic signal changes less 
at the same location and greatly changes at different locations, this paper applies mag-
netic data to pedestrian step detection to improve the accuracy and robustness of step 
detection.

This paper utilizes the sliding window mechanism to analyze and count the acceleration, 
gyroscope, and magnetic data and calculate the mean value of the acceleration and variance 
of the gyroscope and magnetic data in the sliding window. When the acceleration mean 
value, gyroscope and magnetic variance are greater than each predetermined threshold. It 
is determined that the pedestrian has a new step.

where

where the acceleration mean threshold Ath ; the gyro variance threshold Gδ ; and the mag-
netic data variance threshold Mδ are obtained by experiments.

3.2.2 � Adaptive step length estimation

Traditional step length estimation methods cannot adapt to the dynamic changes of pedes-
trian walking patterns. Considering that pedestrian step length is related to walking speed, 

(27)if
(

(am > Ath) ∩ (δg > Gδ) ∩ (δm > Mδ)
)

(28)















am = 1
N

�N
t=1at

δg =

�

1
N

�N
t=1(gt −

1
N

�N
t=1gt)

2

δm =

�

1
N

�N
t=1(mt −

1
N

�N
t=1mt)

2

Fig. 5  Acceleration, gyroscope, and magnetic signal changes under pedestrian complex walking modes
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step frequency, and other factors, this paper constructs a binary linear step length model 
based on step frequency and exercise intensity as follows.

where α and β are the linear regression coefficients of step frequency fi and acceleration 
variance δai  ; γ is constant; and ak is the kth acceleration amplitude in the sliding window.

3.2.3 � Robust heading estimation based on multi‑source fusion

The gyroscope can only estimate the amount of attitude change but cannot give absolute 
heading information, and the attitude estimation error continues to accumulate over time. 
Although the heading estimation based on magnetic sensors can give an absolute heading 
estimate, it is susceptible to the surrounding ferromagnetic materials and other electromag-
netic interference in a complex indoor environment, leading to deviations in the heading 
estimation. The fusion of the heading given by the gyroscope and magnetic data effectively 
enhances the accuracy and robustness of heading estimation.

The heading angle based on the magnetic field is calculated as follows.

where mhx and mhy are the projections of the magnetism on the horizontal plane of the 
local navigation coordinate system, respectively.

where mc
x , mc

y and mc
z , are the magnetic observations on the X-, Y-, and Z-axes in the 

carrier coordinate system; the roll angle θ and pitch angle � are directly obtained by the 
Android API.

The heading estimation based on magnetic field provides initial heading information for 
the heading estimation based on the gyroscope. Using the correlation between the heading 
of magnetic field and the heading of gyroscope can not only effectively eliminate the head-
ing estimation error caused by indoor magnetic interference, but also calibrate the accu-
mulated error of the gyroscope. This paper uses the following fusion strategy to perform 
a weighted fusion of the previous heading, magnetic heading, and gyroscope heading to 
obtain accurate and robust heading estimation �k of current step.

(29)Li = α · fi + β · δai + γ

(30)fi = 1/(tk − tk−1)

(31)δai =

√

∑n
i=1(ai − a)2

n

(32)































� = 180−
�

arctan
�

mhy

mhx

�

∗ 180
π

�

mhx < 0

� = −

�

arctan
�

mhy

mhx

�

∗ 180
π

�

mhx > 0,mhy < 0

� = 360−
�

arctan
�

mhy

mhx

�

∗ 180
π

�

� = 90
� = 270

mhx > 0,mhy > 0
mhx = 0,mhy < 0
mhx = 0,mhy > 0

(33)
{

mhx = mc
xcos(�)+mc

ysin(θ)sin(�)−mc
zcos(θ)sin(�)

mhy = mc
ycos(θ)+mc

zsin(θ)
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where �k represents the current step heading; �k−1 represents the previous step head-
ing; �m,k represents the magnetic-based heading of current step; �g ,k represents the 
gyroscope-based heading of current step; ��,c is the absolute value of the difference 
between �m,k and �g ,k ; ��,m is the absolute value of the difference between �m,k and 
�m,k−1 ; ��,g is the absolute value of the difference between �g ,k and �g ,k−1 ; �τ ,c , �τ ,m 
and �τ ,g are the thresholds of ��,c , ��,m , and ��,g , respectively; these three thresh-
old parameters are obtained based on experiments; αi,βi, and γi (i = 1, 2, 3, 4, 5) are the 
weights of �k−1 , �m,k , and �g ,k , respectively. These three parameters are also obtained 
based on experiments.

3.3 � Contact time estimation based on Wi‑Fi network logs and social distance

The smartphones carried by pedestrians are usually turned on and connected to Wi-Fi. 
Therefore, the Wi-Fi network log is an effective way to judge the intersection of time. 
Figure 6 indicates an example of Wi-Fi log information. From the figure, we can find that 
user 1 connects to Wi-Fi access point 1(AP1), during the 9:00 a.m.–11:20 a.m. period 
and 3:10 p.m.–5:30 p.m. period, with the association duration is 280 min. According to 
WHO’s COVID-19 guidelines [60], close contact is defined as two people staying within 
1  m for 15  min or more. User 1 and User 2 are simultaneously connected to Ap1 for 
90  min. User 2 was connected to Ap2 at the same time as User 3 for 10  min. There-
fore, we preliminarily conclude that there is temporal contact between user 1 and user 
2 (duration > 15 min). We also preliminarily conclude that there is no temporal contact 
between user 2 and user 3 (duration ≤ 15  min). However, Wi-Fi network logs cannot 
accurately reflect the physical distance between users. Therefore, we need to combine 
Wi-Fi network logs and social distance to comprehensively judge whether there is spati-
otemporal contact between users and determine the duration of contact.

(34)


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



















�k = α1�k−1 + β1�m,k + γ1�g ,k ��,c ≤ �τ ,c ,��,m ≤ �τ ,m

�k = α2�k−1 + β2�m,k + γ2�g ,k ��,c ≤ �τ ,c ,��,m > �τ ,m

�k = α3�k−1 + β3�m,k + γ3�g ,k

�k = α4�k−1 + β4�m,k + γ4�g ,k

�k = α5�k−1 + β5�m,k + γ5�g ,k

�k = �g ,k

��,c > �τ ,c ,��,m ≤ �τ ,m,��,g < �τ ,g

��,c > �τ ,c ,��,m ≤ �τ ,m,��,g ≥ �τ ,g

��,c > �τ ,c ,��,m > �τ ,m,��,g < �τ ,g

��,m > �τ ,m,��,g ≥ �τ ,g

Fig. 6  Wi-Fi network logs
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3.4 � Infection risk estimation

When an infected person talks, coughs, or sneezes, the virus is sprayed into the air 
along with droplets from the mouth or nose. According to [61], the respiratory air-
flow of an infected person can be modeled as a turbulent jet model, as shown in 
Fig.  7. The turbulent jet model consists of a large droplet route and a short-range 
airborne route. The left person is identified as the infection source, and the other 
is identified as the target (susceptible). The large droplets are deposited directly on 
the facial membranes (eyes, nostrils, and mouth) of susceptible persons, while short-
range airborne is directly inhaled by the mouth. When the droplet is larger than 100 
microns, the spray distance of speaking is less than 0.2 m, and the spray distance of 
coughing is less than 0.5  m. The short-range airborne route usually predominates. 
The smaller the exhaled droplets, the farther they travel [61]. Direct face-to-face 
contact of a susceptible person with a source is the most dangerous situation.

According to the turbulent jet model, orientation is a key factor in determining the 
infection risk. As shown in Fig. 8, pedestrians B and C are talking face to face. If B is 
a virus carrier, then the probability of C being infected is extremely high. Although 
pedestrian A is very close to virus carrier B, the probability of A being infected is 
low. This is because A and B are in a back-to-back relationship. Since pedestrian D 
keeps a safe distance from virus carrier B, the probability of D being infected is low.

Fig. 7  Turbulent jet model

Fig. 8  Effect of orientation on the risk of infection
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In addition to voice activity, contact distance and time are also critical factors 
in determining infection risk. In terms of the distance and duration of interaction 
between the user and the infected person, the possible infection risk is shown in 
Fig. 9. Although the possibility of infection is greater when the user is in close con-
tact with an infected person, the infection risk is relatively low if the user is in close 
contact with the infected person for less than 1 s. On the other hand, if a user spends 
an extended period with an infected person, even if they maintain enough social 
distance from each other, the risk of exposure is high. Even if the distance from an 
infected person is greater than the safe threshold, close contact with an infected per-
son or being with an infected person in a confined space for a long time is consid-
ered a high infection risk.

4 � Experimentation and evaluation
In this section, we fully evaluate the proposed method. The performance measures and 
experimental setup are first described. Section 4.2 verifies the performance of the epi-
demic-related voice activity recognition method. Section 4.3 verifies the performance of 
the social distance estimation method based on pedestrian dead reckoning.

4.1 � Performance measures and experimental setup

Epidemic-related voice activity recognition is a typical multi-classification problem. We 
use the confusion matrix (CM), accuracy, precision, recall, and weighted F-measure ( Fw ) 
as classification metrics to evaluate the actual performance of the proposed epidemic-
related voice activity recognition method in this paper. The calculation of these indica-
tors can be represented by Eqs. (35)–(38).

(35)Accuracy =
TP + TN

TP + TN + FP + FN

(36)Precision =
TP

TP + TN

Fig. 9  Infection risk versus distance and time
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where TP , TN  , FP, and FN  represent the number of true positives, true negatives, false 
positives, and false negatives, respectively.

Due to the class imbalance problem, we consider the proportion of samples to the F1 
score by weighting. This evaluation metric is called the weighted F-measure ( Fw).

where i is the class index, and wi =
ni
N  with samples’ number of ith class ni , the total 

number of samples N .
A foot-mounted inertial navigation system (INS) provides high-frequency positioning 

results and controls the positioning error within 0.3% of the total traveled distance [62]. 
Therefore, we construct the localization performance evaluation system, as shown in 
Fig. 10, to evaluate the proposed method. The evaluation system consists of an Android 
smartphone and a foot-mounted INS module. The precise pedestrian position from the 
foot-mounted INS module is sent to the smartphone via Bluetooth low energy (Ble) and 
synchronizes with the measurements of smartphone-embedded MEMS sensors. We use 
the final position error over total traveled distance (ε/TTD), step detection rate (SDR), 

(37)Recall =
TP

TP + FN

(38)Fw =
∑

i

2× ωi ×
Precisioni · Recalli

Precisioni + Recalli

Fig. 10  The devices used in experiments

Table 1  Description of volunteers

Volunteers Gender Age Height (cm) Weight (kg)

V1 M 28 174 74

V2 M 27 164 67

V3 F 24 165 48

V4 M 36 192 81

V5 F 26 171 52

V6 F 28 158 49

V7 M 32 165 73
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step length error (SLE), and circular error probability (CEP) as metrics to quantify the 
performance of the proposed positioning method.

To verify the localization accuracy and robustness of the proposed method, we invited 
a group of heterogeneous volunteers with different body shapes to evaluate the proposed 
method. The experiment was conducted by four males and three females, ranging from 
18 to 45  years old. The data collection devices included six smartphones of different 
brands. Tables 1 and 2 provide a detailed explanation of the subjects and devices.

4.2 � Epidemic‑related voice activity recognition in typical scenarios

We collected voice samples in rooms, offices, corridors, metro, and outdoor and shop-
ping malls to verify the classification performance of the epidemic-related voice activ-
ity recognition model. Smartphones sample the voice data at a frequency of 44,100 Hz. 
The distributions for the four voice activities are shown in Fig. 11. We randomly divided 
the collected samples into training (70%) and testing (30%) sets. To train the HA-TCN-
based voice recognition method, we use the RMSprop algorithm to optimize and update 
network parameters. If the learning rate is not set to an appropriate value after several 
epochs, the loss value tends to change little or no longer. To solve this problem, we 
adopt a learning rate decay strategy. After every 15 epochs, the learning rate is set to 
0.1 times the original value, which can make the loss continue to decrease and reach a 
very low value. To prevent overfitting, we adopt a dynamic stopping criterion for model 

Table 2  Description of devices

Devices Phone OS Version Inertial sensor

D1 Huawei Mate 20 Harmony 10.0 Icm20690

D2 Huawei P9 Android 7.0 LSM330

D3 Honor V30 pro Harmony 2.0 Lsm6dsm

D4 Samsung Galaxy S6 Android 6.0 MPU6500

D5 OnePlus 8T Android 11.0 Bmi26x

D6 Mi 9 pro MIUI 12.5.1 Lsm6ds3c

Fig. 11  The distribution of samples
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Fig. 12  Loss curve

(a) Room (b) Office

(c) Corridor (d) Metro

(e) Outdoor (f) Shopping mall

Fig. 13  Epidemic-related voice activity recognition results in typical scenarios
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training. When the loss function value does not decrease within 50 epochs, the system 
automatically stops iterations. The loss curve of the training and testing sets is presented 
in Fig. 12. It can be seen from Fig. 12 that when the number of epochs is less than 70, 
the loss value decreases faster. After 70 epochs, the loss value changes little. Finally, it 
stabilizes below 0.14, indicating that the robustness of the model is strong. In this work, 
we train the epidemic-related vocal activity recognition model on the PC with python 
language and PyTorch deep learning platform and transfer the trained model to smart-
phone side to recognize activity recognition model, which is a low-overhead process that 
can meet real-time requirements.

The experimental results are shown in Fig. 13 and Table 3. The scene with the lowest 
recognition accuracy is metro and shopping mall, which are 95.35% and 94.79%, respec-
tively; from the confusion matrix in Fig. 13, it can be seen that speaking is easily mis-
judged as other voice, and other voice is easily misjudged as speaking. From an audio 
point of view, metro and shopping malls are noisy and contain some announcements, 
causing confusion. The scene with the highest classification accuracy is room, which is 
99.2%, which is relatively closed and lacks noise. As shown in Table 3, the recognition 
accuracy of room, office, corridor, metro, outdoor, and shopping mall is 99.20%, 98.99%, 
98.94%, 95.35%, 94.79%, and 98.58%, respectively. The average recognition accuracy of 
six scenes is 97.64%.

We also compare the proposed method with CNN, LSTM, and TCN-based activity 
recognition methods. We compare the four methods in terms of accuracy, precision, 
recall, and Fw Score. The experimental results are shown in Table 4. TCN uses the depth 
of the network to store historical information and simultaneously adds dilated convo-
lutions to replace the input gate, forget gate, and output gate in the recurrent neural 
network. Compared with LSTM and CNN, TCN can better extract effective informa-
tion while reducing parameters and enhancing model performance. Compared with 

Table 3  Epidemic-related voice activity recognition results in typical scenarios

Scenarios Accuracy (%) Precision (%) Recall (%) Fw score (%)

Room 99.20 98.89 99.18 99.03

Office 98.99 98.97 98.96 98.97

Corridor 98.94 98.78 98.98 98.88

Metro 95.35 94.96 96.72 95.83

Shopping mall 94.79 95.16 95.853 95.51

Outdoor 98.58 98.41 98.64 98.52

Average 97.64 97.50 98.06 97.77

Table 4  Comparison with other methods

Methods Accuracy (%) Precision (%) Recall (%) Fw score (%)

CNN 93.96 93.96 92.57 93.26

LSTM 95.20 95.21 95.20 95.17

TCN 96.79 96.77 96.46 96.61

HA-TCN 97.64 97.50 98.06 97.77
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TCN, the HA-TCN method reduces the number of convolutional layers and expands the 
receptive field by integrating hierarchical attention mechanisms and thoroughly mines 
data dependencies to improve recognition accuracy. As shown in Table 4, the proposed 
method has an accuracy rate of more than 97.64% for recognizing epidemic-related 
voice activities, which is significantly better than other compared methods.

(a) (b)

(c) (d)
Fig. 14  Walking trajectories and CDF in three typical scenarios. a Rectangular. b Stadium. c Intricate path. d 
CDF of three scenarios

Table 5  Positioning results of three typical scenarios

Scenarios Length (m) SDR (%) SLE (cm) CEP 50% (m) CEP 75% (m) CEP 95% (m) ε/TTD (%)

Rectangular 228 99.39 4.4 0.71 1.16 2.11 1.57

Stadium 400 99.53 4.3 0.69 1.28 4.21 1.94

Intricate path 210 99.13 4.6 0.73 1.26 2.48 2.38

Mean 279.33 99.35 4.4 0.71 1.23 2.93 1.96
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4.3 � Positioning accuracy in typical scenarios

To evaluate the proposed social distance estimation method, we conduct well-
designed and extensive experiments in three typical navigation scenarios: rectangular 
(Walk 100 m in a reinforced concrete office building), stadium (Take a walk around 
the outdoor stadium), and intricate path (Walk 210  m casually in a reinforced con-
crete office building). We invite multiple volunteers with noticeable physical differ-
ences to conduct multiple experiments along the planned path using heterogeneous 
equipment. Figure 14 shows some walking estimated trajectories and the cumulative 
distribution function (CDF) of the proposed method. In addition to step detection 
accuracy and step length estimation error, we also count the circular error probabil-
ity (CEP) by calculating the distances between the estimated and actual positions. 
As shown in Table 5, the statistical results show that the SDR, SLE, CEP (50%), CEP 
(75%), and CEP (95%) of the proposed method are 99.35%, 4.4  cm, 0.71  m, 1.23  m, 
and 2.93  m, respectively. The ε/TTD of closed rectangular, outdoor stadium, and 
intricate path is 1.57%, 1.94%, and 2.38%, respectively. The localization performance 
of the three scenarios is very similar, which proves that the proposed method has sat-
isfactory universality and robustness.

To justify the superiority of the proposed method, we compared the proposed method 
with the following PDR methods.

•	 Traditional PDR leverages step detection based on acceleration zero-crossing, fixed 
step length, and the heading from Android’s compass to reckon pedestrian locations.

•	 SmartPDR [63] detects step events, estimates step length with a three-axis accel-
erometer, and determines heading direction with a three-axis magnetometer and a 
three-axis gyroscope.

Many factors, such as different devices, different pedestrians, different walking pat-
terns, and different terminal attitudes, etc., will affect positioning accuracy. To make a 
fair comparison, we build an offline dataset containing four typical positioning scenarios 
of office, metro station, shopping mall, and outdoor stadium and compare the proposed 
method and above compared methods on the same offline dataset to evaluate the posi-
tioning accuracy of different methods. The experimental results are shown in Table  6 
and Fig.  15. As shown in Table  6, thanks to the assistance of magnetic field informa-
tion, the step detection accuracy of the proposed method significantly outperforms that 
of the traditional PDR and SmartPDR. Adaptive step length estimation accuracy is sig-
nificantly better than fixed threshold-based step length estimation accuracy. ε/TTD of 
the proposed method is 2.03%, while those of Traditional PDR and SmartPDR are 4.60% 
and 2.46%, respectively. Figure 15 shows the cumulative error distribution of different 

Table 6  Comparative experiments

Methods SDR (%) SLE (cm) CEP 50% (m) CEP 75% (m) CEP 95% (m) ε/TTD (%)

Traditional PDR 93.29 6.8 1.30 2.41 5.01 4.60

SmartPDR 98.83 4.8 0.87 1.56 2.68 2.46

Proposed 99.13 4.6 0.69 1.23 2.21 2.03
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methods. As shown in Fig. 15, the red line of the proposed method is steeper than the 
other plots, indicating that our proposed method’s overall error is significantly lower 
than those of the compared methods.

5 � Conclusion
Keeping controlled activities and safe social distancing (at least 6 feet) is an effective 
non-pharmacological approach for limiting epidemic spread. In this paper, we pro-
pose a zero-effort epidemic warning method based on epidemic-related voice activity 
recognition and autonomous positioning using smartphones carried by pedestrians. 
The proposed method does not rely on any additional infrastructure and historical 
training data, which is conducive to integration with epidemic prevention and con-
trol systems and large-scale applications. We conduct many experiments in typical 
scenarios to verify the performance of epidemic-related voice activity recognition 
and social distance estimation methods. Due to the lack of real epidemic transmis-
sion data, it is difficult to complete the infection risk assessment experiment in this 
paper. In future work, we seek to cooperate with the epidemic prevention and control 
department to improve the proposed warning system. In addition, user privacy is an 
issue that must be considered in future research.

(a) (b)

(c) (d)

Fig. 15  Comparative experiments in four typical scenarios. a Office. b Metro station. c Shopping mall. d 
Outdoor stadium
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