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1  Introduction
Equipment developed using acoustic technology has become the ‘eyes’, ‘ears’, and 
‘mouths’ for humans to carry out underwater activities [1–3] such as resource surveying, 
environmental monitoring, meteorological observation, and ocean mapping. In recent 
years, there has been a rapid development of unmanned ships or underwater robots 
as carriers, equipped with acoustic equipment, and the use of acoustic technology to 
engage in various underwater operations [4, 5]. Nikolovska et  al. [6] used multi-beam 
water body imaging technology to image bubble groups in the Black Sea, to accurately 
locate the actual gas leakage area. Weber et al. [7] examined the near-surface layer dur-
ing a storm in order to obtain observational verification for theories on bubble cluster-
ing. Masett et al. [8] reported that divers investigated coastal waters that might pose a 
danger to seafarers and drew a map of sunken ships.

When considering the application of acoustic technology in underwater operations, it 
becomes imperative to furnish support for the following tasks:

•	 Scanning of extensive and intricate underwater environments: swiftly surveying vast 
and intricate underwater landscapes.
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This paper presents a target perception framework aimed at enhancing diver safety 
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ing targets within the underwater scenes, as well as to capture the motion trajectories 
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•	 Identification of Regions of Interest (ROI): discerning and isolating areas of signifi-
cance within these underwater environments.

•	 Verification of Targets: distinguishing between genuine and false targets.
•	 Assessment of Target Motion: determining whether the target is stationary or in 

motion. In particular, the dynamic target is usually the diver, whose movement tra-
jectory needs to be tracked to ensure safety [9].

The challenges encountered in underwater acoustic imaging within operational areas 
encompass low resolution, diminished SNR, non-uniform sound propagation, and pro-
nounced sidelobe interference [3, 10]. When interpreting targets during underwater 
operations, the ROI typically comprises a collection of weak targets that span the entire 
operational region. These targets are characterized by their small reflection cross sec-
tion and low echo intensity, rendering them challenging to discern from acoustic images 
[11, 12]. Furthermore, most of the current acoustic technology research is carried out 
according to a certain application branch [13–15], such as the detection of a specific 
underwater target, the tracking of fish or divers, and the classification of marine topog-
raphy and geomorphology. Acoustic surveillance of underwater operating scenarios 
means integrating rapid automatic detection, continuous tracking of multiple targets, 
target recognition and target classification into one system, and it is necessary to develop 
a common framework that integrates multiple technologies.

This paper conducts experimental research on acoustic surveillance of underwater 
operating scenes, focusing on identifying dynamic targets associated with divers to assist 
the operation and ensure operational safety. The diver’s operation scene in the actual 
acoustic monitoring area is simulated, and the experiments are under three fields includ-
ing the fixed view of the down-looking, fixed view of the front-looking, and mobile view 
of the side-looking. It is dedicated to exploring information including the diver, bubbles, 
and static targets quickly, accurately, and stably in a certain underwater operation area. 
A target perception framework for underwater operation is proposed, which regards the 
acoustic imaging system as a sensory organ, and comprehensively integrates the detec-
tion, recognition, classification, and tracking technology from previous studies [16–18].

The remainder of this paper is organized as follows. Section 2 introduces the under-
water target perception framework and its key technologies. Section  2 describes the 
simulation experiment of the underwater operation scene and gives the test results and 
analysis. Finally, the conclusion is given in Sect. 4.

2 � Methods
By integrating a variety of acoustic techniques, a target perception framework for the 
underwater operating scene is designed, as shown in Fig. 1. The framework uses three 
layers of processing mechanism to explore specific target information: the first layer 
carries out acoustic imaging for underwater scenes, and the system maps underwater 
scenes within a certain field of view into acoustic images; the Second layer detects the 
potential target region in the acoustic image and removes the significant non-target 
region in the entire acoustic image to obtain the ROI; the Third layer further discrimi-
nates the ROI and identifies real targets from potential targets mixed with artificial 
clutter and natural clutter false alarms. Three layers of processing including acoustic 
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imaging, ROI detection, and target identification can be regarded as progressive rela-
tionships, and at the same time, they are an organic cooperative whole. The key tech-
nologies for this framework are derived from previous research, and Table 1 lists the 
description of the main parameters.

2.1 � Water column imaging technology

Water Column Imaging (WCI) records the scattered signals emitted by acoustic 
pulses to the water column and was first used in marine fisheries to study fish habits. 
With the rapid development of multi-beam sonar systems and corresponding imaging 
technology, WCI has been widely used in many fields [19, 20], including seabed gas 

Fig. 1  Underwater target perception framework

Table 1  Parameter description

Parameter Description

Pfa False alarm probability

T Threshold

C Shape parameter

B Scale parameter

nr Reference cells length

ng Guard cells length

A Accumulated matrix

X(m,n) m row and n column pixels of the acoustic image

R(1.2.3) Remaining subsets

Ii The ith frame in the acoustic image sequence

Di Feature set of the ith frame

M Feature set template

Fj The jth feature in the feature set

K Continuous unmatched frame threshold
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leakage, suspended sediment, archaeological oceanography, seaweed ecosystem, and 
aquaculture. The backscattered signal can be described by the sonar equation:

where EL is the echo signal level, SL is the acoustic source level, TL is the propagation 
loss that describes the attenuation of echo strength, and TS is the scattering strength of 
the target.

The receiving system undergoes a sequence of operations, including time-varying gain 
adjustment, A/D conversion, and beamforming, to transform the received backscattering 
signals into directional beam signals. These beam signals are subsequently mapped to the 
appropriate acoustic image resolution unit, with their placement determined by factors 
such as acoustic wave propagation distance and the opening angle between the beams. This 
paper improves the quality of acoustic imaging through the utilization of virtual beam inter-
polation and dynamic brightness allocation. Additionally, we employ an algorithm based on 
background estimation to suppress sidelobe interference, especially in high SNR case.

2.2 � Constant false alarm rate detection technology

The Constant False Alarm Rate (CFAR) algorithm is widely used in adaptive target detec-
tion [21]. Under the condition of a given false alarm probability Pfa, the threshold T is auto-
matically set according to the statistical distribution of the local background, and the pixel 
to be detected is compared with the adaptive threshold to determine whether it belongs to 
the target or the clutter. By traversing the whole image with the reference window, all pixels 
in the image can be detected automatically.

To achieve accurate ROI detection, the previously proposed Subset Censored-Constant 
False Alarm Rate (SC-CFAR) detection method is adopted. This strategy involves partition-
ing the reference window into multiple subsets, where the subset with the highest echo 
intensity has the greatest potential for containing interference targets. Consequently, this 
specific subset is excluded, and the remaining subsets are employed for background param-
eter estimation, thus mitigating the risk of spurious local detection threshold increases. The 
overview of the 2D Subset Censored CFAR method is exhibited in Fig. 2, which mainly con-
sists of five steps:

(1) calculate the shape parameter C, select the length of reference cells nr and the guard cells ng, and set the 
false alarm probability Pfa;

(2) compute the accumulated matrix A;

(3) perform an initial search of potential targets with the threshold Tp;

(4) estimate the scale parameter B using the fast algorithm based on the integral image;

(5) compare the test cell with the local threshold Tmn, then label the x(m,n) as an object or clutter.

Taking an example of SC-CFAR with a sliding window of four subsets, the expression of 
the local detection threshold is:

(1)EL = SL− 2TL+ TS

(2)T = P
−

4
3nr

fa
− 1 (R1 + R2 + R3)

1
B
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where R1, R2, and R3 are the remaining subsets used for background parameter estima-
tion after the largest subset is censored.

2.3 � Local analysis techniques

A local feature is an image pattern that differs from the nearest neighbor, implying a 
change in image properties [22]. The local analysis regards each detected ROI as one or 
multiple potential targets. Initially, it seeks out local invariant features suitable for repre-
senting these potential targets, and subsequently identifies the potential targets through 
the tracking of these local invariant features.

Local feature extraction includes two parts: keypoint detection and feature descrip-
tion. Based on previous studies, this paper adopts Hessian keypoints to represent poten-
tial targets in acoustic images, and the matching of SURF descriptors measures the 

Input image 
X
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A

Compute a  initial 
threshold
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Read a test cell 
x(m,n)

Is x(m,n) > Tp?
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and nr, set Pfa 
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fast algorithm based 

on integral image
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threshold Tmn
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Result

Yes
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Fig. 2  Overview of the 2D subset censored CFAR
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relevance of potential targets between frames. For the acoustic image I(x,y), the Hessian 
matrix of any point (x,y) is defined as:

where σ is the scale space factor and G(σ) is the Gaussian kernel function.
To generate SURF feature vectors, the square area is divided into 4 × 4 sub-areas along 

the main direction with key points as the center, and the sub-block vector is obtained by 
calculating the sub-window response values using the wavelet template:

Since there is a 4 × 4 sub-block, each sub-block has 4 vectors, forming 64-dimensional 
SURF feature vectors.

Following the extraction of local ROI features, the strategy of tracking before detection 
(TBD) is adopted to simultaneously track multiple local features. The potential target 
can be classified as a static target, dynamic target, or false target based on criteria such 
as mean offset, start and end offset, and the continuity of its characteristic trajectory. 
The overview of feature tracking is shown in Fig. 3, which comprises five main stages:

(1) Input the first frame I1, obtain the feature set D1, and save it as a template M;

(2) Read the subsequent frame Ii and acquire the feature set Di, match the extracted feature Fj from M;

(3) Make the matching feature Fj as potential targets, and update the corresponding feature in Fj from M;

(4) Remove the mismatching feature Fj of consecutive k frames from M (Considering that acoustic imaging 
is susceptible to environmental interference resulting in insufficient stability, k is rounded to 10% of the total 
number of frames);

(5) After traversing the entire image sequence, determine whether the remaining feature Fj represents the real 
target, then obtain the feature trajectory.

3 � Experiment results
In the experiment, the underwater operation scene of the diver is simulated, and the 
sonar system is installed on a boat or a robot for target monitoring and positioning to 
assist the diver and ensure safety. The experiments are designed under three fields of 
view: fixed view of the down-looking, fixed view of the front-looking, and mobile view of 
the side-looking, and the target information in underwater operation scenes is explored 
by the proposed target perception framework. The relevant system parameters are as 
follows: The operating frequency is 200  kHz, the pulse width of the transmitting CW 
pulse is 0.1 ms, the sampling frequency is 88 kHz, the ping rate is 0.25 frame per second, 
and the receiving array has 100 elements, the number of beams is 512, and the beam 
coverage is 160° × 1° in the horizontal direction.

3.1 � Fixed view of the down‑looking

In the fixed downward view, the simulated underwater operational scenario involves 
the sonar system, placed on the underwater vessel or Autonomous Underwater Vehi-
cle (AUV), monitoring the activities of a diver engaged in various tasks. The layout of 
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the sonar system is shown in Fig.  4, the receiving and transmitting arrays are placed 
along the x-axis and the y-axis to form a T-shaped plane perpendicular to the z-axis, 
and the beam sector is perpendicular to the water surface. Taking the center position of 
the sonar system as the origin of the motion coordinates, the diver’s motion along the 
z-axis is specified as the vertical direction, the x-axis as the horizontal direction, and the 
y-axis as the trajectory direction. The diver moves in the horizontal direction, first from 
x = −6 m to x = 6 m (part-I), and then back to the starting point (part II).

In the first layer, water column imaging processing of the first layer is used to gener-
ate a sequence of 49 acoustic images. The acoustic image has a size of 1341 × 881 pixels, 
reflecting an underwater scene of 13.3 × 8.9m2 with a resolution grid of 0.01 × 0.01m2. 

Read Ii
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Fig. 3  Overview of the feature tracking
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The 3rd frame, the 26th frame, and the 39th frame of the acoustic image sequence are 
shown in Fig. 5. In Fig. 5a, the diver is at x = −4.7 m and begins to move to the right. 
In Fig. 5b, the diver is at x = 6.9 m, near the far-right end of the field of view. In Fig. 5c, 
the diver is at x = −0.4 m, returning to the left. The diver is equipped with open breath-
ing apparatus, which produced many bubbles. The bottom-up bubble swarm follows 
the frogman’s moving slowly. Although a series of image processing is performed on the 
acoustic image, the noise and side lobes in the image still make the image resolution low 
and the target blurry.

In the second layer, the SC-CFAR algorithm is used to detect ROIs from the acous-
tic image sequence, setting Pfa = 0.1, Nr = 5, and Ng = 12. The results of the previous 
three frames are shown in Fig. 6a–c respectively, which displays that numerous ROIs 
are extracted from the underwater scene. Relative to the preceding layer, this layer’s 
processing involves the interpretation of more explicit information within the under-
water scene, specifically pertaining to the identification of potential targets through 

Fig. 4  Layout of the sonar system

(a) The 3rd frame (b) The 26th frame

(c) The 39th frame
Fig. 5  Water column imaging
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ROI extraction. Given the continuous fluctuations in environmental reverberation 
and noise, it remains challenging to entirely detect the area occupied by the under-
water diver and the bubble clusters. Especially in Fig. 6b, most of the real targets are 
missed, due to insufficient SNR. It seems that the traditional method cannot complete 
the detection task well in some low SNR frames.

In the third layer, the continuous identification of the actual target within the 
sequence is achieved through feature tracking implemented in accordance with the 
TBD strategy. According to Eq.  (3) and Eq.  (4), local features composed of Hessian 
keypoints and SURF descriptors are extracted in the ROI. The statistics of feature 
tracking are shown in Table 2. In part-I, three features are successfully tracked in 17 
frames, 16 frames, and 13 frames, respectively, which can be judged according to the 
moving distance and the average offset, two of which are dynamic targets and the 
other is a static target. In part II, two features are consistently tracked over 15 frames 

(a) The 3rd frame (b) The 26th frame

(c) The 39th frame
Fig. 6  ROI detection results

Table 2  Statistical information on feature tracking

Motion Tracking 
frames

Tracking rate (%) Moving distance 
(m)

Average offset 
(m)

Type

Part-I 17 65.38 0.46 0.17 Static

16 61.54 11.74 0.92 Dynamic

13 50.00 11.62 0.90 Dynamic

Part-II 15 71.43 9.65 0.96 Dynamic

12 57.14 10.77 1.11 Dynamic
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and 13 frames, respectively. Due to the relatively substantial displacement of these 
two features, it enables the determination of the associated dynamic target.

As illustrated in Fig. 7, the coordinates of these matched features are delineated on the 
respective acoustic image. It is evident that the dynamic target corresponds to the bub-
bles generated by the diver; while, the static target denotes stationary objects near the 
pool’s bottom. By connecting the dynamic target features, an approximate trajectory of 
the diver can be derived.

3.2 � Fixed view of the front‑looking

In the fixed frontal view, the simulated underwater scenario involves a sonar system 
securely positioned within the operational area to monitor the long-distance movements 
of the diver for safety. The layout of the sonar system is shown in Fig.  8. The receiv-
ing array and the transmitting array are placed along the x-axis and z-axis, forming a 
T-shape perpendicular to the y-axis, and the beam sector is parallel to the water surface. 
The diver moves along the y-axis direction and approaches the origin of coordinates 
from a distance by straight, diagonal, and curve motions, respectively.

The sonar system collected the underwater scene of the diver in three motion modes. 
The acoustic image has a size of 401 × 776 pixels, reflecting an 8 × 15.5m2 scene parallel 
to the water surface, with a resolution grid of 0.02 × 0.02m2. Through processing by the 
first layer, Fig. 9 displays typical acoustic images of the diver captured at various posi-
tions. The strips at x = −3 m and x = 3 m are the left and right walls of the pool, with 
the diver in the far center (x = 0 m, y = 13.3 m), the left side of the pool wall (x = −2.1 m, 
y = 13 m), the center of the pool (x = −0.4 m, y = 8.8 m) and near the origin (x = −0.3 m, 

(a) Part-I (b) Part-II

Fig. 7  Feature tracking results and trajectories

Fig. 8  Deployment of the sonar system
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y = 1.9 m). Obviously, the SNR, shape, and size of the highlighted area change dramati-
cally during the diver’s movement.

The second layer of processing is applied to the acoustic image sequence with param-
eters set at Pfa = 0.1, Nr = 6 and Ng = 10. The detection outcomes are depicted in Fig. 10, 
demonstrating accurate identification of the diver with minimal instances of false alarms.

The third layer of processing involves the tracking of Hessian + SURF features within 
the ROI region, and the corresponding statistical data are presented in Table 3. By ana-
lyzing the start and end offsets as well as the average offsets, it can be discerned that 
one of the tracked features, following a linear path, corresponds to the dynamic target, 
whereas the other three correspond to static targets. Similarly, the feature tracked with 
diagonal motion aligns with the dynamic target, and two features traced through curved 
motion correspond to the dynamic and static targets, respectively.

Fig. 9  Water column imaging

Fig. 10  ROI detection results

Table 3  Statistical information on feature tracking

Motion mode Tracking 
frames

Tracking rate (%) Moving distance 
(m)

Average offset 
(m)

Type

Straight 22 73.23 0.33 11.54 Diver

0 0.00 0.05 0.05 False

0 0.00 0.02 0.14 False

0 0.00 0.05 0.08 False

Diagonal 13 61.90 0.34 7.59 Diver

Curve 20 71.43 0.41 10.70 Diver

0 0.00 0.06 0.07 False
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As shown in Fig. 11, the initial coordinates of the tracked features are annotated on 
the acoustic images, revealing that the dynamic target corresponds to a diver; while, the 
static targets lack distinct counterparts and are considered as false alarms. By linking 
the feature coordinates across each frame, the motion trajectory is determined to follow 
three distinct patterns: straight motion, diagonal motion, and an S-shaped curve.

3.3 � Mobile view of the side‑looking

In the mobile side-looking perspective, the simulated scene encompasses the deploy-
ment of sonar systems within harbor areas, underwater vessels, or Autonomous Under-
water Vehicles (AUVs) for the purpose of monitoring underwater operations, which 
can involve both fixed and mobile surveillance modes. The layout of the sonar system is 
shown in Fig. 12a. The sonar system relates to the rotating axis of the traveling crane, the 
beam sector is vertically forward with the water surface, and the side scan is achieved 
by rotating the traveling crane clockwise at a speed of 0.2°/s. The uplook of the beam 

(a) straight forward (b) diagonal forward (c) curve forward
Fig. 11  Feature tracking results and trajectories

Fig. 12  Deployment of the sonar system
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covering plane during the scanning process is shown in Fig. 12b. The coverage range of 
the beam sector is − 9.6° ~ 9.6°, and the angle interval between the two frames is 0.8°.

The sonar system rotates 19.2° clockwise to scan the underwater operation scene, and 
the acoustic image size is 601 × 851 pixels, reflecting a 12 × 17m2 underwater scene, with 
a resolution grid of 0.02 × 0.02m2. Figure 13 shows the acoustic images when the beam 
sector is rotated to 0°, − 3.2°, and 3.3°. The horizontal highlight area located in the vertical 
direction z = −5 m and z = 5 m is the water surface and the bottom of the pool respec-
tively, while the vertical highlight area located in the navigational direction y = 16 m is 
the front pool wall. As can be seen from Fig. 13a, when the fan surface coincides with 
the y-axis, the highlighted area in the center of the red box (z = 1.6 m, y = 8.6 m) is the 
section of the diver, while the highlighted area in the red box directly above it is the sec-
tion of the bubble group generated by the diver. Combined with Fig. 13b, c, when the fan 
surface is on both sides of the y-axis, the highlighted area of the section of the diver and 
the bubble group is significantly weakened, and the size changed, and the position of the 
center area also fluctuated slightly.

The acoustic image sequence’s slice data are fused along the three dotted lines in the 
vertical direction, as illustrated in Fig. 13, resulting in the creation of the mosaic map 
presented in Fig.  14. Figure  14a shows the section splicing in the vertical direction 
z = 1.6 m. The section splicing of the diver is mainly distributed in the red box and the 
scattered bright spots in the lower right corner of the box are caused by the fluctuation 
of the position of the diver. Figure 14b shows the section splicing in the vertical direction 
z = 0.8 m. Most of the splicing of the bubble group is in the red box, which is close to the 

(a) beam sector is 0° (b) beam sector is -3.2°

(c) beam sector is 3.3°
Fig. 13  Imaging with different rotation angle of beam sectors
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diver and at the bottom of the bubble group. Figure 14c shows the section splicing in the 
vertical direction z = −3 m. This splicing is far away from the diver and is the upper part 
of the bubble group. The bubble group gradually spreads and the section splicing area 
gradually expands.

3D reconstruction is carried out for the collected underwater operation scene, and 
multiple slices are spliced to form 3D volume data (x, y, z, v). The x-axis represents the 
horizontal direction, the y-axis represents the navigational direction, the z-axis repre-
sents the vertical direction, and v represents the echo intensity of the coordinate point. 
A box filter with a size of 5 × 5 × 5 is used to conduct 3D smoothing of the data, extract 
the isosurface and connect it. The effect of 3D reconstruction is shown in Fig. 15. The 
approximate stereoscopic profiles of the diver and the bubble group are plotted, and 
their distribution is consistent with the front view shown in Fig. 13 and the side view 
shown in Fig.  14. In summary, intensity and positional data of the beam are acquired 
through side view rotational scanning, and the beam’s approximate contour is deter-
mined via three-dimensional reconstruction.

4 � Conclusion
In order to facilitate underwater operations, we have developed an underwater tar-
get perception framework. This framework employs a layered processing approach, 
encompassing acoustic imaging, Region of Interest (ROI) detection, and target identi-
fication, which collectively extract information from the underwater operational envi-
ronment to support tasks and ensure safety. To simulate diverse underwater working 
scenarios that could be encountered during underwater operations, three sets of 
experiments were designed, each with a different field of view: a fixed down-looking 

Fig. 14  Slice mosaic along different vertical directions
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view, a fixed front-looking view, and a mobile side-looking view. The results of these 
experiments are as follows:

1.	 The proposed framework can autonomously capture ROIs within underwater opera-
tional scenes, and the differentiation between static and dynamic targets is based on 
feature offset analysis from the acoustic image sequence. Notably, it does not rely on 
individual frame-level target presence assessment but makes decisions based on the 
continuity and consistency of feature trajectories, thereby enhancing target recogni-
tion performance in underwater operational scenarios.

2.	 In the fixed down-looking perspective, most acoustic images exhibit a blend of the 
diver and bubbles, making their distinction challenging. Given the intrinsic corre-
lation between these elements, the diver’s trajectory can be indirectly inferred by 
tracking bubble characteristics.

3.	 Under the fixed front-looking view, factors such as noise, scene reverberation, beam 
widening, and others introduce dramatic changes in the SNR, shape, and size of the 
highlighted area as the diver moves closer along the navigation path. Connecting 
the tracked dynamic feature coordinates and overlaying them on the acoustic image 
reveals a motion trajectory consistent with the actual diver’s movement mode.

4.	 In the mobile side-looking view, acoustic image sequences from different positions 
are fused to obtain cross sectional slices of the diver and bubble group. Through 3D 
reconstruction of the underwater scene data, an approximate stereoscopic contour of 
the diver and bubble group can be generated.

It is important to note that the experiments conducted in this study were carried 
out in a controlled pool environment, where water conditions were relatively calm. In 
real-world underwater operational scenarios, wave action can be more pronounced, 
resulting in lower SNR for acoustic imaging and potential deviations in the posi-
tions of static targets. In the future, the detection and tracking algorithms within the 
framework need further refinement based on experimental outcomes. Consideration 

Fig. 15  3D reconstruction of the underwater scene
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should also be given to the integration of cutting-edge technologies such as deep 
learning to enhance the framework’s performance in target recognition."
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