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1  Introduction
The seismic signals obtained in the field are often superimposed with a variety of inter-
ference-related signals during processing. These data are not suitable to be directly used 
for geological interpretation, and the interference-related signals need to be suppressed 
to extract useful information from the seismic signals. Noise filtering is an important 
step in preprocessing seismic data as well as for conducting follow-up work, such as 
interpreting the data and extracting the attributes of the seismic signals.

The Fourier transform is among the most important methods used to filter the fun-
damental frequency domain to compare the variations between the constructive sig-
nals and the interfering signals in the frequency band. However, denoising based on 
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the Fourier transform cannot satisfy the relevant requirements when the frequency 
band of noise overlaps with that of the seismic signals.

As a common mathematical tool used for signal analysis, the wavelet transform 
can localize time–frequency signals at multiple resolutions [1]. It compensates for 
the shortcomings of the Fourier transform, which can analyze signals only in the 
frequency domain during processing. The wavelet transform has a wider range of 
applications in signal decomposition [2–4], function analysis [5], sparse signal rep-
resenting [6]. Compression, denoising, and research on wavelet analysis has yielded 
fruitful results [7–11]. Fu et al.[12] proposed a denoising method based on the quad-
ratic wavelet transform. However, this method can deal only with the first layer of the 
high-frequency wavelet coefficients of the signal. Li et al. [13] used wavelet entropy 
to obtain the variance in the noise contained in signals at different scales, and used 
correlations between the data to preserve the wavelet coefficients of useful signals. 
However, this method cannot determine the empirical conditions for retaining use-
ful signals. Liu et  al. [14, 15] combined the wavelet threshold with empirical mode 
decomposition to achieve a satisfactory denoising effect.

Crucial to wavelet threshold-based denoising algorithms for seismic signals is the 
determination of the threshold. Many researchers have resorted to transcendental 
analyses of noise-related signals to obtain their statistical properties and estimate the 
threshold, but this method is highly speculative.

Jansen et al. [16] proposed a function to determine the threshold based on gener-
alized cross-validation. It can be combined with intelligent optimization algorithms 
to identify the optimal threshold without any prior information on the wavelet coef-
ficients of noisy signals, and is more suitable for use than other methods to this end.

The fruit fly optimization algorithm (FOA) has the advantages of a small number 
of parameters of adjustment and ease of implementation [17–20]. However, it has 
shortcomings similar to those of other optimization algorithms, including suscepti-
bility to the local optimum and a low speed of convergence. In this article, we pro-
pose an improved Kent chaos-based fruit fly optimization algorithm, which optimizes 
the generalized cross-validation (GCV) as the threshold function, to develop an opti-
mal method for denoising seismic signals. The optimization enables the algorithm to 
converge quickly to the global optimal solution. This, combined with a soft threshold 
function, yields satisfactory results in terms of denoising seismic signals.

2 � Wavelet Threshold‑based Denoising Algorithm
2.1 � Basic steps of Wavelet Threshold Method

The method of thresholding proposed by Donoho [21] is commonly used in denoising 
algorithms because of its good performance and ease of implementation. This method 
consists of the following three steps:

1) Select a suitable wavelet basis for the multilevel wavelet decomposition of noisy 
signals. This yields the high-frequency and low-frequency wavelet coefficients of the 
noisy signals at various scales. Let x(n) be the original noisy seismic signal. Its wavelet 
decomposition can be expressed as follows:
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where h(n) is a low-pass filter, g(n) is a high-pass filter, j is the level of decomposition 
of the signal, a(j, k) and d(j, k) represent the low-frequency and high-frequency wave-
let coefficients at the jth scale, respectively, and k = 0, 1, 2 · · · , n are discrete sampling 
points.

2) The high-frequency wavelet coefficients obtained by decomposition are thresholded 
to eliminate the wavelet coefficients of the noisy signals while retaining those of the 
useful signals. Two types of thresholding functions are commonly used, hard and soft 
threshold functions, as shown in Eqs. (2) and (3), respectively:

where W d j, k  is the approximation of the wavelet coefficient of the useful signal after 
thresholding, sgn[] is a symbol function, and � is the threshold.

3) After thresholding, we perform an inverse wavelet transform on the wavelet coef-
ficients W

[

d
(

j, k
)]

 . We then reconstruct the denoised signal and obtain the model of the 
inverse wavelet transform as follows:

2.2 � GCV Threshold Function

Researchers have proposed a variety of methods of threshold selection [22, 23]. How-
ever, many of them require either estimating the signal-to-noise ratio (SNR) or analyzing 
the statistical properties of the signals, and their results are highly speculative. The GCV 
optimal threshold function is based on the asymptotic optimal solution that minimizes 
the mean-squared error. It avoids the problem of variance in noise to help estimate 
the statistical features of noisy signals. The optimal threshold required by the wavelet 
threshold-based method can then be obtained without prior information.

The theoretical model of the GVC function is as follows:
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According to Eq.  (4), the wavelet threshold can be progressively optimized by con-
tinuously finding an appropriate value for it that yields the smallest possible value of � . 
Therefore, the task of finding an appropriate threshold can be considered to be an opti-
mization problem that can be solved by using an optimization algorithm to find the opti-
mal threshold �0.

3 � Proposed Method
3.1 � Standard Fruit Fly Optimization Algorithm

The FOA is a particle swarm optimization algorithm based on observations and analyses 
of the foraging behavior of fruit flies. Its basic steps [24] are as follows:

Step 1 Set the initial parameters. Let Np be the size of the fruit fly population, Maxgen 
be the maximum number of iterations of the algorithm, and X_a and Y_a represent the 
initial position of the fruit fly population.

Step 2 Obtain the random directions of the fruit flies as follows:

where Rand() is a random number in the interval [0,1], i = 1, 2, · · ·Np.
Step 3 The location of the food (the optimal solution in this case) is unknown at the 

beginning of the search. We thus estimate di , which is the distance between each fruit fly 
and the origin. Si , which is the smell concentration value, is then calculated as follows:

Step 4 By using Si in the smell concentration function, we have:

Step 5 The best position of the individual fruit fly, xi and yi , is obtained through com-
parison to identify the best smell concentration. Other fruit flies in the population 
should fly to this location as follows:

where Smellbest is the best smell concentration in the current iteration, bestIndex is the 
label of the best individual fruit fly in the population in this iteration, and X_a0 and Y_a0 
represent its position.

Step 6 If the best value of the smell concentration in the current iteration is larger than 
that in the previous one, it is set as the global best position of the individual fruit fly, and 
is otherwise kept constant.

(6)
{

xi = X_a+ Rand()

yi = Y _a+ Rand()

(7)

{

di = (x2
i
+ y2i )

1/2

Si = 1/di

(8)Smelli = f (Si)

(9)[bestSmell bestIndex] = max (Smelli)

(10)Smellbest = bestSmell

(11)
X_a0 = X(bestIndex)
Y _a0 = Y (bestIndex)
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Step 7 Repeat the above steps until the maximum number of iterations or the maximum 
value of smell concentration is reached.

3.2 � Improved Kent Chaotic search algorithm

All individuals in the fruit fly population have access to only their optimal individual smell 
concentrations during iterative optimization. If the optimal individual is at the local opti-
mal location, the speed of convergence and precision of the algorithm decrease rapidly, and 
it may converge prematurely. Therefore, we introduce chaotic search to the FOA to take 
advantage of the characteristics [25, 26] of chaotic sequences, including their ergodicity and 
randomness. In each iteration, the optimal individual is searched for to avoid the local opti-
mum and obtain the global optimal solution.

We optimize the individual fruit flies after each iteration by using Kent mapping to gener-
ate an optimized chaotic sequence that improves the capability of the algorithm for global 
search. We obtain the Kent maps as follows:

where Zk is a chaotic variable in the interval (0, 1), and α ∈ [0, 1] is the control parameter 
of the chaotic sequence.

Performing N iterations of Eq. (13) yields a chaotic sequence of length n. When α = 0.4 , 
the probability density function of the Kent mapping is uniformly distributed. Therefore, we 
set α = 0.4.

Having obtained the chaotic sequence, we assume that the optimal position of the indi-
vidual fruit fly after one iteration is represented by X∗ and Y ∗ . When loading the chaotic 
sequence into the original solution space, the chaos-based optimal search yields the new 
position of the individual fruit fly as follows:

where vx and vy are the coefficients of adjustment to the position of the fruit fly, and Z
(

j
)

 
is the chaotic variable of the sequence of fruit flies, j = 1, 2, · · ·N .

We also introduce two adjustment coefficients, vx and vy , as correction factors for the 
chaotic sequence. To enable the individual fruit fly to more quickly jump out of the local 
optimum, a large coefficient of adjustment is needed early in the iterations to prompt the 
population to search over a larger area and speed-up convergence. As the iterations pro-
gress, the range of area searched by the individual fruit flies should be gradually reduced to 
obtain an accurate solution. We thus determine the inverse relationship between the range 
of search and the number of iterations as follows:

where m is the current number of iterations and R(a) is the radius of chaotic search.

(12)Zk+1 =
{

zk
/

α 0 ≤ zk ≤ α

(1− zk)
/

(1− α) α ≤ zk ≤ 1

(13)
X
(

j
)

= X∗ + vx · z
(

j
)

Y
(

j
)

= Y ∗ + vy · z
(

j
)

(14)Vx = R(a)× 1

2m
× X∗

(15)Vy = R(a)× 1

2m
× Y ∗



Page 6 of 12Yang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:65 

We set the radius of the search to half of the absolute maximum value of the high-
frequency wavelet coefficient at each scale:

where d
(

j, k
)

 is the high-frequency wavelet coefficient at the jth scale.

3.3 � Steps of the Algorithm

The main steps of the proposed Kent chaotic mapping-based wavelet thresholding algo-
rithm inspired by fruit fly optimization are as follows:

Step 1 Select a suitable wavelet basis, and decompose the wavelets of the noisy seismic 
signal at scale J  to obtain the high-frequency and low-frequency wavelet coefficients.

Step 2 Initialize the size of the fruit fly population, the maximum number of iterations 
Maxgen, the original position of the individual fruit fly X_a , Y _a , and the number of 
iterations of chaotic search N .

Step 3 Set the GCV threshold function as the function of smell concentration. Obtain 
the current best smell concentration and the optimal position of the individual fruit fly 
through steps 2–5 of the standard fruit fly optimization algorithm.

Step 4 Perform a chaotic search for the optimal position of the individual fruit flies 
according to Eqs. (12)–(16). Following this, obtain the optimal smell concentration and 
the optimal individual fruit fly in the chaotic search sequence according to steps 3–5 of 
the standard fruit fly optimization algorithm, and update the original values.

Step 5 Determine whether the termination condition is met. If so, output the optimal 
threshold, and otherwise return to step 2.

Step 6 Combine the optimal threshold in step 5 with the soft threshold to denoise 
the high-frequency wavelet coefficients. Reconstruct the final wavelet coefficients and 
obtain the signal after denoising.

4 � Experiments and results
4.1 � Processing synthetic seismic records

To analyze the effect of the proposed algorithm in terms of denoising seismic signals, we 
constructed two Ricker wavelets at a sampling rate of 1 ms and main frequencies of 30 
and 45 Hz. We synthesized them into a seismic record with 50 gathers and 512 sampling 
points, as shown in Fig. 1a. Random noise with an SNR of − 1 dB was added to the seis-
mic records, as shown in Fig. 1b.

We compared the capabilities of denoising of the Daubechies, Symlet, and Coiflet 
wavelets in our experiments. All of them are commonly used for denoising, and the 
results are shown in Fig. 2. All three types of wavelets improved the SNR of the seismic 
signals. The Daubechies wavelet and the Symlet wavelet yielded the best effects at orders 
4 and 3, respectively, while the Coiflet wavelet delivered poor results.

Because the phase values obtained by denoising based on the Daubechies wavelet were 
very close to the those of seismic signals over a long period, we chose the Daubechies 
wavelet of order 4 (db4) as the wavelet basis, and decomposed four layers while balanc-
ing computational complexity with signal smoothness.

(16)R(a) =
∣

∣d
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j, k
)∣
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max

2
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We compared the proposed method with classical wavelet threshold-based denoising 
algorithms. The algorithms and their parameters are as follows:

1.	 Donoho universal threshold method. The threshold was Thr = σ
√
2 ln (N ) . The 

variance in the noise, σ , was calculated as the median of the first layer of the high-
frequency wavelet coefficients divided by 0.6745.

2.	 SureShrink thresholding method [27].
3.	 Standard fruit fly optimization-based method of wavelet thresholding. We set the 

population of fruit flies to 20 and the maximum number of iterations to 50.

It is clear from the results of denoising obtained by the Donoho universal and Sure-
Shrink thresholding methods, shown in Fig. 3, which the main and side lobes of each 
seismic signal were distorted, and the in-phase axis was not clear. A large number of 
burrs were observed in the smooth waveform of the seismic record.

Figure 4 shows the results of denoising of the standard fruit fly optimization algorithm 
and the proposed method. The standard fruit fly optimization algorithm reduced the 
degree of signal distortion such that the synthetic signals and their phase axis became 
clearer. However, glitches and jitters were still notable in the stationary waveform of the 
entire seismic record. The proposed method yielded signals containing mild distortion, 

Fig. 1  a Using two Ricker wavelets, with frequencies of 30 Hz and 45 Hz, and a sampling rate of 1 ms to 
construct a seismic record with 50 gathers and 512 samples. b The seismic record obtained by adding 
random noise with an SNR of −1 dB

Fig. 2  Comparison of the denoising performance of different wavelets
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the smooth main, and side lobes of which were nearly free of burrs and jitter. The signals 
were also in phase on the same axis. In general, the proposed method had a much better 
denoising effect than the other methods considered here.

Figure 5a shows the local enlargement in the single-channel seismic signals mixed with 
− 1 dB of noise after they had been denoised by each of the above algorithms. The 18th 
channel of the signals was randomly selected as the observed signal, and a comparison 

Fig. 3  The results of denoising of the Donoho universal threshold method (a) and SureShrink threshold 
method (b)

Fig. 4  The results of denoising when using the standard fruit fly optimization algorithm (a) and the 
proposed method (b)

Fig. 5  a Local enlargement of the ideal signal, noisy signal, and denoised signals obtained by the Donoho 
threshold, standard FOA, and the proposed method. b The corresponding amplitudes of the spectra of the 
ideal signal, noisy signal, and signals denoised by all methods
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of the amplitudes of its spectra obtained by the different methods is shown in Fig. 5b. It 
is clear that the proposed method was able to eliminate random noise from the seismic 
signals, and could process both high-frequency and low-frequency noisy signals.

To further verify the effectiveness of the proposed method, we analyzed its denoising 
effect by using the quantization method. We added three types of noise, with intensities 
of − 5, − 1, and 4 dB, respectively, and different SNRs, to the synthetic seismograms. We 
compared the proposed method with the three methods mentioned above in terms of 
denoising the synthetic record, and calculated the SNRs and mean-squared error (MSE) 
of the signals obtained after denoising. The SNR and MSE were calculated as follows 
[28]:

where f (n) is the original noisy seismic signal, 
∧
f (n) is the signal obtained after denois-

ing, and N  is the total number of signals. The SNR and MSE of the denoised signals 
obtained by different methods are shown in Table  1, and the best results are given in 
bold. The SNR and MSE of signals obtained by the proposed method were clearly better 
than those of the other algorithms under different noise-related conditions.

4.2 � Effect of signal denoising

We also conducted comparative experiments on empirically acquired seismic records of 
explosives detonated in a test field. The sampling rate was 1 ms and the number of chan-
nels was 115, as shown in Fig. 6a. The seismic record contained a large amount of ran-
dom noise. The noise had a significant influence on the signals in channels 35, 89, 110, 
and 112, and this significantly affected seismic data processing.

The results of denoising of the SureShrink and Donoho threshold methods are 
shown in Fig.  6c, d, respectively. It is evident that they were able to remove some 
random noise given a prior estimate of the signal. However, severe random noise per-
sisted in channels 35, 89, 110, and 112 of the measured data after denoising, which 

(17)SNR = 10 log10

N
∑

n−1

f 2(n)

N
∑

n−1

∣

∣

∣

∣

f (n)−
∧
f (n)

∣

∣

∣

∣

2

(18)MSE = 1

N

N
∑

n−1

(

f (n)−
∧
f (n)

)2

Table 1  SNR and MSE of denoised seismic signals obtained by different methods

Before denoising Donoho threshold SUREshrink 
threshold

Standard fruit fly 
threshold method

The proposed 
method in this 
article

SNR SNR MSE SNR MSE SNR MSE SNR MSE

−5 dB 3.52 0.0132 3.34 0.0140 4.47 0.0114 7.12 0.0060

−1 dB 6.52 0.0071 5.75 0.0083 7.64 0.0064 10.04 0.0031

4 dB 10.34 0.0029 9.13 0.0037 12.39 0.0018 14.26 0.0012
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means that these two methods delivered unsatisfactory performance. The results of 
denoising of the standard fruit fly optimization algorithm and the proposed method 
are shown in Fig.  6b, e, respectively. Their denoising effects were much better than 
those of the SureShrink and Donoho threshold methods, and they were able to 
remove strong noise from the signals. Moreover, the proposed method was better 
able to eliminate noise from the background than the standard fruit fly optimization 
algorithm.

We can conclude from the above that the denoising effect of the proposed method 
was superior to that of the other methods. The phase axis obtained by it was clearer, 
and it was able to retain useful information in the seismic data.

Fig. 6  Measured seismic record (a) of an explosive source in a test field. Results of denoising obtained by 
using the standard fruit fly optimization algorithm (b) and the SureShrink threshold method. c Results of 
denoising obtained by the Donoho threshold method (d) and the proposed method (e)
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5 � Conclusions
The conventional method of wavelet thresholding requires analyzing prior information 
on the signal and a statistical model to determine the threshold. In this article, we pro-
posed a wavelet threshold-based method of denoising seismic signals based on improved 
chaotic fruit fly optimization. The conclusions are as follows:

(1)	 We analyzed variations in the solution space during optimization to propose a cha-
otic adjustment factor to optimize the chaotic sequence.

(2)	 We introduced improved the chaotic Kent map to the fruit fly optimization algo-
rithm, optimized the positions of individual fruit flies in each iteration, and 
improved the algorithm such that it searched over a larger space and obtained a 
more accurate solution to minimize the negative effect of the local optimum.

(3)	 Using the GCV threshold function to select the optimal wavelet threshold helped 
avoid the difficult task of obtaining prior information on the signal when selecting 
the threshold. The SNR of the proposed method was considerably superior to that 
of classical wavelet threshold-based algorithms, and it was able to retain more use-
ful information in the seismic signals.
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