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Deep learning based forecasting methods have become the methods of choice in many applications of time
series prediction or forecasting often outperforming other approaches. Consequently, over the last years,
these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently
ranked among the best entries in forecasting competitions (e.g., M4 and M5). This practical success has further
increased the academic interest to understand and improve deep forecasting methods. In this article we provide
an introduction and overview of the field: We present important building blocks for deep forecasting in some
depth; using these building blocks, we then survey the breadth of the recent deep forecasting literature.
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1 INTRODUCTION
Forecasting is the task of extrapolating time series into the future. It has many important appli-
cations [54] such as forecasting the demand for items sold by retailers [15, 25, 41, 136, 156, 190],
the flow of traffic [111, 118, 126], the demand and supply of energy [45, 117, 157, 170], or the
covariance matrix, volatility and long-tail distributions in finance [12, 29, 30, 124, 197]. As such, it
is a well-studied area (e.g., see [84] for an introduction) with its own dedicated research commu-
nity. The machine learning, data science, systems, and operations research communities as well
as application-specific research communities have also studied the problem intensively (e.g., see
a series of recent tutorials [55–58]). In contrast to traditional forecasting applications, modern
incarnations often exhibit large panels of related time series, all of which need to be forecasted
simultaneously [91]. Although these problem characteristics make them amenable to deep learning
or neural networks (NNs), as in many other domains over the course of history, NNs were not
always a standard tool to tackle such problems. Indeed, their effectiveness has historically been
regarded as mixed (e.g., [201]).

The history of NNs starts in 1957 [152] and in 1964 for NNs in forecasting [83]. Since then, interest
in NNs has oscillated, with upsurges in attention attributable to breakthroughs. The application of
NNs in time series forecasting has followed the general popularity, typically with a lag of a few
years. Examples of such breakthroughs include Rumelhart et al. [153, 154] that popularized the
training of multilayer perceptrons (MLPs) using back-propagation. Significant advances were made
subsequently such as the use of convolutional NNs (CNNs) [113], and Long Short Term Memory
(LSTM) [81] cells that address the issue of recurrent NNs’ (RNNs) training, just to name a few.
Despite these advances, NNs remained hard to train and difficult to work with. Methods such as
Support Vector Machines (SVMs) [26] and Random Forests [79] that were developed in the 1990s
proved to be highly effective (LeCun et al. [115] found that SVMs were as good as the best designed
NNs available at the time) and were supported by attractive theory. This shifted the interest of
researchers away from NNs. Forecasting was no exception and results obtained with NNs were
mostly mixed as reflected in a highly cited review [201]. The breakthrough that marked the dawn
of the deep learning era came in 2006 when Hinton et al. [78] showed that it was possible to train
NNs with a large number of layers (deep) if the weights are initialized appropriately. Accordingly,
deep learning has had a sizable impact on forecasting [110] and NNs have long entered the canon
of standard techniques for forecasting [84]. New models specifically designed for forecasting tasks
have been proposed, taking advantage of deep learning to supercharge classical forecasting models
or to develop entirely novel approaches. This recent burst of attention on deep forecasting models
is the latest twist in a long and rich history.
Driven by the availability of (closed-source) large time series panels, the potential of deep

forecasting models, i.e., forecasting models based on NNs, has been exploited primarily in applied
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industrial research divisions over the last years [64, 111, 156, 190].1 With the overwhelming success
of deep forecasting methods in the M4 competition [169], this has convinced also formerly skeptical
academics [128, 129]. In the most recent M5 competition, deep forecasting methods were the second
and third placed solutions [130] although the competition was otherwise dominated by tree-based
forecasting methods such as LightGBM [99] and XGBoost [33], see e.g., [92]. Modern software
frameworks [1, 34, 143] have sped up the development of NN models and dedicated forecasting
packages available [4].
While the history of NNs for forecasting is rich, the focus of this article is on more recent

developments in NN for forecasting, roughly since the time that the term “deep learning” was coined.
As such, we do not attempt to give a complete historical overview and sacrifice comprehensiveness
for recency. The main objectives of this article are to educate on, review and popularize the recent
developments in forecasting driven by NNs for a general audience. Therefore, we place emphasis on
an educational aspect via a tutorial of deep forecasting in the first part (Section 2). In the second part,
Section 3, we provide an overview of the state-of-the-art of modern deep forecasting models. Our
exposition is driven by an attempt to identify the main building blocks of modern deep forecasting
models which hopefully enables the reader to digest the rapidly increasing literature more easily.
We do not attempt a taxonomy of all existing methods and our selection of the building blocks is
opinionated, motivated by our experience of innovating in this area with a strong focus on practical
applicability. Compared with other surveys [76, 120, 201], we provide a more comprehensive
overview with a particular focus on recent, advanced topics. Finally, in Section 4, we conclude and
speculate on potentially fruitful areas for future research.

2 DEEP FORECASTING: A TUTORIAL
In the following, we formalize the forecasting problem, summarize those advances in deep learning
that we deem as the most relevant for forecasting, expose important building blocks for NNs
and discuss archetypal models in detail. For general improvements that fueled the deep learning
renaissance, like weight initialization, optimization algorithms or general-purpose components such
as activation functions, we refer to standard textbooks like [70]. We are aware to be opinionated in
both the selection of topics as well as the style of exposition. We attempt to take a perspective akin
to a deep forecasting model builder who would compose a forecasting model out of several building
blocks such as NN architectures, input transformations and output representations. Although not
all models will fit perfectly into this exposition, it is our hope that this downside is outweighed by
the benefit of allowing the inclined reader to invent new models more easily.

2.1 Notation and Formalization of the Forecasting Problem
Matrices, vectors and scalars are denoted by uppercase bold, lowercase bold and lowercase normal
letters, i.e., X, x and 𝑥 , respectively. Let Z = {z𝑖,1:𝑇𝑖 }𝑁𝑖=1 be a set of 𝑁 univariate time series, where
z𝑖,1:𝑇𝑖 = (𝑧𝑖,1, . . . , 𝑧𝑖,𝑇𝑖 ), 𝑧𝑖,𝑡 is the value of the 𝑖-th time series at time 𝑡 and Z𝑡1:𝑡2 the values of all
𝑁 time series at the time slice [𝑡1, 𝑡2]. Typical examples for the domain of the time series values
include R,N,Z, [0, 1]. The set of time series is associated with a set of covariate vectors denoted by
X = {X𝑖,1:𝑇𝑖 }𝑁𝑖=1, with x𝑖,𝑡 ∈ R𝑑𝑥 . Note that each vector x𝑖,𝑡 can include both time-varying or static
features. We denote by 𝛼 a general input in a model (that can be any combination of covariates and
lagged values of the target) and by 𝛽 a general output. Since 𝛼 and 𝛽 refer to a general case, we
always represent them with lowercase normal letters. We denote by \ the parameters of a model

1Forecasting is an example of a sub-discipline in the machine learning community where the comparatively modest attention
it receives in published research is in stark contrast to a tremendous business impact.
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(e.g., parameters of a distribution) and by Φ the learnable free parameters of the underlying NN
(e.g., the weights and biases).

In the most general form, the object of interest in forecasting is the conditional distribution

𝑝 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;\ ), (1)

where \ are the parameters of a (probabilistic) model. Eq. (1) is general in the sense that each z𝑖 ∈ Z
is multidimensional (the length of the time series), Z is multivariate (the number of time series
|Z| = 𝑁 > 1) and the forecast is multi-step (ℎ steps). Varying degrees of simplification of Eq. (1)
are considered in the literature, for example by assuming factorizations of 𝑝 and different ways of
estimating \ . In the following, we present the three archetypical models for addressing Eq. (1).
Local univariate model: A separate (local) model is trained independently for each of the 𝑁

time series, modelling the predictive distribution

𝑝 (z𝑖,𝑡+1:𝑡+ℎ |z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ ;\𝑖 ), \𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ), (2)

where Ψ is a generic function mapping input features to the parameters \𝑖 of the probabilistic
model that are local to the 𝑖-th time series. Note that one may use multidimensional covariates
x𝑖,𝑡 for each of the 𝑁 models, but they are still solving a univariate problem, i.e., forecasting only
one time series. The use of covariates common to all 𝑁 models is possible but any pattern that is
learned in one model is not used in another (unless provided explicitly which prohibits parallel
training). Many classical approaches fall into this category and traditionally NNs were employed in
this local fashion (e.g., [201]). Note that this approach is not suitable for cold start problems: i.e.,
forecasting a time series without historical values.
Global univariate model: A single, global model [90, 135] is trained using available data

from all 𝑁 time series. However, the model is still used to predict a univariate target. It does not
produce joint forecasts of all time series but forecasts of any single time series at a time. This is
also sometimes referred to as a cross-learning approach, e.g., [161]. In a more general form, global
univariate models specialize Eq. (1) to

𝑝 (z𝑖,𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;\𝑖 ), \𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ), (3)

where Φ are shared parameters among all 𝑁 time series.
In this article, Ψ in global models is usually a NN and X𝑖 include item-specific features to allow

the model to distinguish between the time series. Although the parameters \𝑖 of the probabilistic
model for each time series are different, they are still predicted using shared parameters (or weights)
Φ in Ψ. This allows for efficient learning since the model pools information from all time series
and in particular improves inference for shorter time series compared to local univariate models.
Such a model is expected to learn some advanced features (“embeddings”) exploiting information
across time series. Once these advanced features are learned via Ψ, the global model is then used
to forecast each time series independently. That is, although during training the model sees all
the related time series together, the prediction is done by looking at each time series individually.
Note that the embeddings learned in the global model are useful beyond the 𝑁 time series used
in the training. This addresses the cold start problem in the sense that the global model can be
used to provide forecasts for time series without historical values. Global models are also referred
to as cross-learning or panel models in econometrics and statistics and have been the subject of
considerable study, e.g., via dynamic factor models [66].
Multivariate model: Here, a single model is learned for all 𝑁 time series using all available

data, directly predicting the multivariate target:

𝑝 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;\ ), \ = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ). (4)
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Table 1. Summary of deep forecasting models based on forecast and model type. For one-step and multi-step
forecasting models ℎ = 1 and ℎ > 1, respectively.

Forecast type Model type Formulation

Point
Local univariate ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ)
Global univariate ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ)

Multivariate Ẑ𝑡+1:𝑡+ℎ = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ)

Probabilistic
Local univariate 𝑃 (z𝑖,𝑡+1:𝑡+ℎ |z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ ;\𝑖 ), \𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ)
Global univariate 𝑃 (z𝑖,𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;\𝑖 ), \𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ)

Multivariate 𝑃 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;\ ), \ = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ)

Note that the model also learns the dependency structure among the time series. Technically
speaking, Eq. (4) is a global multivariate model and a further distinction from local multivariate
models, such as VARMA [125], is possible.

Remarks. Note that in Eq. (1) and in the following model-specific cases we have chosen the multi-
step ahead predictive distribution. We can always obtain a multi-step predictive distribution via a
rolling one-step predictive distribution. In our discussion so far, we presented probabilistic forecast
models that learn the entire distribution of the future values. However, it may be desirable to model
specific values such as the mean, median or some other quantile, instead of the whole probability
distribution. These are called point-forecast models and the optimal choice of the summary statistics
to turn a probabilistic forecast into a point forecast depends on the metric used to judge the quality
of the point forecast [104]. More concretely, a point-forecast global univariate model learns a
quantity ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ), where ẑ𝑖,𝑡+1:𝑡+ℎ is some point estimate of the future values
of the time series. Table 1 summarizes the various modelling option based on the forecast and
model types.

2.2 Neural Network Architectures
NNs are compositions of differentiable functions formed from simple building blocks to learn an
approximation of some unknown function from data. An NN is commonly represented as a directed
acyclic graph consisting of nodes and edges. The edges between the nodes contain weights (also
called parameters) that are learned from the data. The basic unit of every NN is a neuron (illustrated
in Fig. 1a), consisting of an input, an affine transformation with learnable weights and (optionally)
a nonlinear activation function. Different types of NNs arrange these components in different ways.
We refer to other reviews [120] for more details on the main architectures. Here, we only offer a
high-level summary for completeness, focusing instead on forecasting specific ingredients for NNs
such as input processing and loss functions.

2.2.1 Multilayer perceptron. In multilayer perceptrons (MLPs) or synonymously feedforward NNs,
layers of neurons are stacked on top of each other to learn more complex nonlinear representations
of the data. An MLP consists of an input and an output layer, while the intermediate layers are called
hidden. The nodes in each layer of the network are fully connected to all the nodes in the previous
layer. The output of the last hidden layer can be seen as some nonlinear feature representation
(also called an embedding) obtained from the inputs of the network. The output layer then learns
a mapping from these nonlinear features to the actual target. Learning with MLPs, and more
generally with NNs, can be thought of as the process of learning a nonlinear feature map of the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Benidis et al.

𝛼1

Inputs

𝑤1
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𝛼2 𝑤2 Σ 𝑓 (·)

Activation
function

𝛽

Output

𝛼3 𝑤3

Bias
𝑏

(a) Single node

𝛼1

𝛼2

𝛼3

𝛼4

𝛽1

𝛽2

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

(b) MLP

Fig. 1. (a) Structure of a single node or neuron. An affine transformation is applied to the input followed by
an activation function, i.e., 𝛽 = 𝑓 (∑𝛼𝑖𝑤𝑖 + 𝑏). The weights and bias parameters are learned during training.
(b) Illustration of the MLP structure. Each circle in the hidden and output layers is a node, i.e., it applies an
affine transformation followed by a nonlinear activation to the set of its inputs.

inputs and the relationship between this feature map and the actual target. Figure 1b illustrates the
structure of an MLP with two hidden layers. Modern incarnations of the MLP have added important
details to alleviate problems like vanishing gradients [80]. For example, ResNet [75], contains direct
connections between hidden layers ℓ − 1 and ℓ + 1, skipping over the hidden layer ℓ .
One of the main limitations of MLPs is that they do not exploit the structure often present in

the data in applications such as computer vision, natural language processing and forecasting.
Moreover, the number of inputs and outputs is fixed making them inapplicable to problems with
varying input and output sizes as in forecasting. Next, we discuss more complex architectures that
overcome these limitations, for which MLPs are often used as the basic building blocks.

2.2.2 Convolutional neural networks. Convolutional neural networks (CNNs) [112] are a special
class of NNs that are designed for applications where inputs have a known ordinal structure such
as images and time series [70]. CNNs are locally connected NNs that use convolutional layers
to exploit the structure present in the input data by applying a convolution function to smaller
neighborhoods of the input data. Convolution here refers to the process of computing moving
weighted sums by sliding the so-called filter or kernel over different parts of the input data. The size
of the filter as well as how the filter is slid across the input are part of the hyperparameters of the
model. A nonlinear activation, typically ReLU [68], is then applied to the output of the convolution
operation.

In addition to convolutional layers, CNNs also typically use a pooling layer to reduce the size of
the feature representation as well as to make the features extracted from the convolutional layer
more robust. For example, a commonly used max-pooling layer, which is applied to the output of
convolutional layers, extracts the maximum value of the features in a given neighborhood. Similarly
to the convolution operation, the pooling operation is applied to smaller neighborhoods by sliding
the corresponding filter over the input. A pooling layer, however, does not have any learnable
weights and hence both the convolution and the pooling layer are counted as one layer in CNNs.

Of particular importance for forecasting are the so-called causal convolutions, defined as

ℎ 𝑗 =
∑︁
𝑑∈D

𝑤𝑑𝛼 𝑗−𝑑 ,
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𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

(a) CNN

𝛼1 𝛼2 𝛼3

h0 h1 h2 h3 h4

𝛽1 𝛽2 𝛽3

(b) RNN

Fig. 2. (a) Structure of a CNN consisting of a stack of three causal convolution layer. The input layer (green)
is non-dilated and the other two are dilated. (b) Structure of an unrolled RNN. At each timestep 𝑡 the network
receives an external input 𝛼𝑡 and the output of the hidden units from the previous time step h𝑡−1. The hidden
units all share the same weights. The internal state of the network is updated to h𝑡 that is going to play the
role of the previous state in the next timestep 𝑡 + 1. Finally, the network outputs 𝛽𝑡 which is a function of 𝛼𝑡
and h𝑡 .

where ℎ 𝑗 is the output of a hidden node, 𝛼 denotes the input, D = {1, . . . , 𝑛} for some 𝑛, |D| is
the width of the causal convolution (or also called the receptive field) and w are the learnable
parameters. In other words, causal convolutions are weighted moving averages which only take
inputs into account which are before 𝑗 hence the reference to causality in its name. A variation are
dilated causal convolutions where we vary the index set D, e.g., such that it does not necessarily
contain consecutive values, but only every 𝑘-th value. Typically, these dilated causal convolutions
are stacked on top of each other where the output of one layer of dilated causal convolutions is the
input of another layer of causal convolution and the dilation grows by the depth of the NN. Figure
2a illustrates the general structure of a CNN with dilated causal convolutions.

2.2.3 Recurrent neural networks. Recurrent neural networks (RNNs) are NNs specifically designed
to handle sequential data that arise in applications such as time series, natural language processing
and speech recognition. The core idea consists of connecting recurrently the NNs’ hidden units
back to themselves with a time delay [94, 95]. Since hidden units learn some kind of feature
representations of the raw input, feeding them back to themselves can be interpreted as providing
the network with a dynamic memory. One crucial detail here is that the same network is used for
all timesteps, i.e., the weights of the network are shared across timesteps. This weight-sharing idea
is similar to that in CNNs where the same filter is used across different parts of the input. This
allows the RNNs to handle sequences of varying length during training and, more importantly,
generalize to sequence lengths not seen during training. Figure 2b illustrates the general structure
of an (unrolled) RNN.
Although RNNs have been widely used in practice, training them is difficult given that they

are typically applied to long sequences of data. A common issue while training very deep NNs by
gradient-based methods using back-propagation is that of vanishing or exploding gradients [142]
which renders learning challenging. Hochreiter and Schmidhuber [81] proposed Long short-term
memory networks (LSTM) to address this problem. Similar to Resnet, via the skip-connections,
LSTMs (and a simplified version Gated recurrent units (GRU) [36]) always offer a path where the
gradient does not vanish or explode.

2.2.4 Transformer. A more recent architecture is based on the attention mechanism which has
received increased interest in other sequence learning tasks [37, 38, 116, 184] for its ability to
improve on long sequence prediction tasks over RNNs. One natural way to address this issue is to
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learn more than one feature representation (contrary to RNNs), e.g., one for each time step of the
input sequence and decide which of these representations are useful to predict the current element
of the target sequence. Bahdanau et al. [10] suggest using a weighted sum of the representations
where the weights are jointly learned along with the feature representation learning and the
prediction. Note that at each time step in the prediction, one needs to learn a separate set of weights
for the representations. This is essentially training the predictor to learn to which parts of the
input sequence it should pay attention to produce a prediction. This attention mechanism has been
shown to be instrumental for the state of the art in speech recognition and machine translations
tasks [37, 38]. Inspired by the success of attention models, Vaswani et al. [184] developed the
so-called Transformer model and showed that attention alone is sufficient, thus making the training
amenable for parallelization and large number of parameters [28, 44]. In the literature, the term
Transformer can refer to both the specific model and to the overall architecture as well.

2.3 Input Transformations
The careful handling of the input (parameters 𝛼𝑡 in Fig. 1 and 2) is a practically important ingredient
for deep learning models in general and deep forecasting models in particular. Deep forecasting
models are most commonly deployed as so-called global models (see Section 2.1), which means that
the weights of the NN are trained across the panel of time series. Hence, it is important that the
scale of the input is comparable. Standard techniques such as mean-variance scaling carry over to
the forecasting setting. In practice, it is important to avoid leakage of future values in normalization
schemes, so that mean and variance are taken over past windows (similar to causal convolutions).

Traditionally, the forecasting literature has used transformations such as the Box-Cox, i.e.,

ℎ =
𝑧_ − 1
_

, (5)

where 𝑧 is the input of the transformation, ℎ is the output and _ is a free parameter. Box-Cox
is a popular heuristic to have the input data more closely resemble the Gaussian distribution. A
Box-Cox transformation can be readily integrated into an NN, with the free parameter _ optimized
as part of the training process jointly with the other parameters of the network. More sophisticated
approaches based on probability integral transformation (PIT) or Copulas are similarly possible,
see e.g., [88] (and references therein) for a recent example.
A further standard technique is the discretization of input into categorical values or bins, for

example by choosing the number and borders of bins such that each bins contains equal mass, see
e.g., [145] for an example in forecasting.
We note that any input transformation must be reversed also to obtain values in the actual

domain of interest. It is a choice for the modeller where/when to apply this reversal. Two extreme
choices are to have transformation of the input and output fully outside the NN or have the input
transformations as part of the NN and hence be subjected to learning.

2.4 Output Models and Loss Functions
Similar to the input, the output (𝛽𝑡 in Fig. 1 and 2) deserve a special discussion. Closely related is
the question on the choice of loss function which we use to train a NN. The simplest form of an
output is a single value, also referred to as a point forecast. For this case, the output 𝑧𝑖,𝑡 is the best
(w.r.t. the chosen loss function) estimate for the true value 𝑧𝑖,𝑡 . Standard regression loss functions
(like ℓ𝑝 losses with their regularized modifications) can be used or more sophistication accuracy
metrics specifically geared towards forecasting such as the MASE, sMAPE or others [85].
As remarked in Section 2.1, a point estimate 𝑧𝑖,𝑡 can be seen as a particular realization from a

probabilistic estimate of 𝑝 (𝑧𝑖,𝑡 ). Depending on the accuracy metric used in forecasting, a different

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:9

Fig. 3. For a Gaussian distribution, its density function 𝑓 is on the left-hand panel, the corresponding
cumulative density function 𝐹 (the primitive integral of 𝑓 ) in the central panel and the quantile function 𝐹−1

on the right-hand panel.

realization may be appropriate [104]. So, even for obtaining point forecasts, probabilistic forecasts
are important. More importantly, forecasts are often used in downstream optimization problem
where some form of expected cost is to be minimized and for this, an estimate of the entire
probability distribution is required. The probability distribution can be represented equivalently by
its probability density function (PDF), the cumulative density function (CDF) or its inverse, the
quantile function. Fig. 3 contains a visualization of the different representations for the Gaussian
distribution. Across the deep forecasting landscape, most approaches (e.g., [64, 146, 148, 151, 156]),
have chosen the PDF and quantile function to represent 𝑝 (𝑧𝑖,𝑡 ) and we will discuss general recipes
next. Since the CDF has typically not been chosen to represent 𝑝 (𝑧𝑖,𝑡 ), we do not discuss it further.

2.4.1 PDF. Arguably the most common way to represent a probability distribution in forecasting
is via its PDF. The literature contains examples of using the standard parametric distribution
families to represent probabilistic forecasts. For example, the output layer of an NN may produce
the mean and variance parameter of a Gaussian distribution. So, the parameter 𝛽𝑡 in Fig. 1 and 2 is a
two-dimensional vector corresponding to `𝑡 and 𝜎𝑡 of a Gaussian distribution. We typically achieve
𝜎𝑡 ≥ 0 by mapping the corresponding parameter through a softplus function. For the loss function,
a natural choice is the negative log-likelihood (NLL) since a PDF allows to readily compute the
likelihood of a point under it.

Beyond Gaussian likelihood, a number of differentiable parametric distributions have been used
in the literature depending on the nature of the forecasting problem, e.g., the student-t distribution
or the Tweedie distribution for continuous data, the negative binomial distribution for count data
and more flexible approaches via mixtures of Gaussian. Although forecasting is most commonly
done for domains of numerical values (i.e., we assume 𝑧𝑖,𝑡 to be in R or N), other distributions such
as the multinomial have also been employed successfully in forecasting even though they have no
notion of the order on the domain [145]. The deployment of a multinomial distribution requires a
binning of the input values (see Section 2.3). An alternative approach is to cut the output space in
bins and treat each of them as a uniform distribution, while modelling the tails with a parametric
distribution [50], this results in a piecewise linear CDF.

2.4.2 Quantile function. Another representation of 𝑝 (𝑧𝑖,𝑡 ) is via the quantile function which has
a particular importance for forecasting. Often, a particular quantile is of practical interest. For
example, in a simplified supply chain scenario for inventory control, there is a direct correspondence
between the chosen quantile and a safety stock level in the newsvendor problem [54].
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Fig. 4. An illustration how a quantile function parametrized by linear splines (left panel) corresponds to a
piece-wise linear CDF (middle) which in turn corresponds to a piece-wise constant PDF as assumed in an
adaptive binning strategy (right panel).

So naturally, estimating the quantiles directly via quantile regression approaches [103] is a
common choice in forecasting either via choosing a single quantile (in a point-forecasting approach)
or multiple quantiles simultaneously [51, 190]. Essentially, this discretizes the quantile function
and estimates specific points only. A common choice for the loss function is the quantile loss or
pinball loss. For the 𝑞-th quantile and 𝐹−1 the quantile function, the quantile loss is defined as

QS𝑞
(
𝐹−1𝑖,𝑡 (𝑞), 𝑧𝑖,𝑡

)
:= 2

(
1{𝑧𝑖,𝑡 ≤𝐹−1𝑖,𝑡

(𝑞) } − 𝑞
) (
𝐹−1𝑖,𝑡 (𝑞) − 𝑧𝑖,𝑡

)
, (6)

where 1{cond } is the indicator function that is equal to 1 if cond is true and 0 otherwise. The output
of the NN is 𝐹−1𝑖,𝑡 (𝑞), i.e., the estimated value of the 𝑞-th quantile. For 𝑞 = 0.5 this reduces to the
median of the forecast distribution and is a common choice of point forecasts.

As an alternative to a quantile regression approach, we can make a parametric assumption on the
quantile function and estimate it directly. The main requirements for modelling a quantile function
are that its domain should be constrained to [0, 1] and the function should be monotonically
increasing. This can be achieved easily via linear splines for example, so the output of the NN’s
last layers are the corresponding free parameters. For the loss function, a rich theory around the
continuous ranked probability score (CRPS) exists [69, 132] and CRPS can be used as a loss function
directly. CRPS can be defined [108] to summarize all possible quantile losses as

CRPS(𝐹𝑖,𝑡 , 𝑧𝑖,𝑡 ) :=
∫ 1

0
QS𝑞

(
𝐹−1𝑖,𝑡 (𝑞), 𝑧𝑖,𝑡

)
𝑑𝑞. (7)

Multivariate extensions such as the energy score [69] exist.
Interestingly, a popular discretization strategy, adaptive binning, used with multinomial distribu-

tions corresponds to quantile functions parametrized by piece-wise linear splines, see Fig. 4.

2.4.3 Further approaches. The recent deep learning literature contains more advanced examples
for density estimation, most prominently via Generalized Adversarial Networks (GANs). We discuss
them in Section 3.8 and discuss normalizing flows here which have arguably resonated more strongly
in forecasting. Normalizing flows are invertible NNs that transform a simple distribution to a more
complex output distribution. Invertibility guarantees the conservation of probability mass and
allows the evaluation of the associated density function everywhere. The key observation is that the
probability density of an observation 𝑧𝑖,𝑡 can be computed using the change of variables formula:

𝑝 (𝑧𝑖,𝑡 ) = 𝑝𝑦𝑖,𝑡 (𝑓 −1 (𝑧𝑖,𝑡 )) |det[Jac𝑓 −1𝑖,𝑡 𝑧𝑖,𝑡 ] |, (8)
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Canonical (One-to-One) Seq2Seq (Many-to-Many)

Fig. 5. Canonical versus sequence-to-sequence models.

where the first term 𝑝𝑦𝑖,𝑡 (𝑓 −1 (𝑧𝑖,𝑡 )) is the (in general simple) density of a variable 𝑦𝑖,𝑡 , and the
second is the absolute value of the determinant of the Jacobian of 𝑓 −1𝑖,𝑡 , evaluated at 𝑧𝑖,𝑡 .
The invertible function 𝑓 is typically parametrized by an NN. A particular instantiation is the

Box-Cox transformation, Eq. (5). The field of normalizing flows (e.g., [46, 101, 137]) studies invertible
NNs that typically transform isotropic Gaussians to more complex data distributions. The choice of
a particular instantiation of 𝑓 can facilitate the computation of the likelihood of a given point when
the NLL is amenable as a loss function. Alternatively, generating samples may be computationally
more viable for other instantiations (this is typically the cases with generative adversarial networks
as well). In this case, the NLL can be replaced by other loss functions such as CRPS.

A number of extensions are possible. For example, more complex models for 𝑝 (𝑧𝑖,𝑡 ) are possible
such as HiddenMarkovModels or Linear Dynamical Systems. NNs can output the free parameters of
these models but then need to be combined with the learning and inference schemes associated with
these models, such as Kalman Filtering/Smoothing in the case of Linear Dynamical System [42, 146]
or the Forward/Backward Algorithm in the case of Hidden Markov Models [5]. Another avenue is to
relax constraints on the representation of 𝑝 (𝑧𝑖,𝑡 ) to obtain closely related objects withmore favorable
computational properties. For example, energy based models (EBMs) approximate the unnormalized
log-probability [77, 114]. EBMs perform well in learning high dimensional distributions at the cost
of being difficult to train [174] and have been employed in forecasting [150].

2.5 Archetypical Architectures
With all key components in place, in this section we present in more details popular forecasting
architectures. In particular we focus on the widely-used RNN-based architecture that takes as
input its previous hidden state, the currently available information and produces an one-step ahead
estimate of the target time series. There are subtle details on how to handle a multi-step unrolled
model during training (e.g., [109]), which we will skip over. We further examine the sequence-to-
sequence (seq2seq) modelling approach where the model takes an encoding sequence as input and
maps it to a decoding sequence (of predetermined length) on which the loss is computed against
the actual values z during training. A typical instance in the training set in this approach consists
of the target and covariate values up to a certain point in time 𝑡 as the encoding sequence and the
outputs of the NN are a predetermined number of target values after time 𝑡 . Figure 5 contrasts
both approaches. In the following we present two popular deep forecasting models, DeepAR and
MQRNN/MQCNN, in some details to illustrate the core concepts. They represent the one-step-ahead
RNN-based and seq2seq approach, respectively.
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𝛼𝑡−1 𝛼𝑡 𝛼𝑡+1

h𝑡−2 h𝑡−1 h𝑡 h𝑡+1 h𝑡+2

( ˆ̀𝑡 , �̂�𝑡 ) ( ˆ̀𝑡+1, �̂�𝑡+1) ( ˆ̀𝑡+2, �̂�𝑡+2)

Fig. 6. DeepAR: The model outputs parameters of a
previously chosen family of distributions. Samples from
this distribution can be fed back into the model during
prediction (dotted lines) or in case of 𝛼𝑡 being missing.

2.5.1 DeepAR. Among the first of the mod-
ern deep forecasting models is DeepAR [156], a
global univariate model (see Table 1) that con-
sists of an RNN backbone (typically an LSTM).2
The input of the model is a combination of
lagged target values and relevant covariates.
The output is either a point forecast with a
standard loss function or, in the basic variant,
a probabilistic forecast via the parameters of a
PDF (e.g., ` and 𝜎 of a Gaussian distribution),
where the loss function is then the NLL. The
output modelling of DeepAR has been the sub-
ject of follow-upwork, e.g., Jeon and Seong [93]
propose a Tweedie loss, Mukherjee et al. [136] propose a mixture of Gaussians as the distribution
and domain specific feature processing blocks. Figure 6 summarizes the architecture. The dotted
arrows in the picture correspond to drawing a sample that can be used as alternative input (as
a lagged target) during training (even though 𝛼𝑡 may be available or in the case where an 𝛼𝑡 is
missing) and during prediction to obtain multi-step ahead forecasts.

It is also possible to change the output of DeepAR to model the quantile function and use CRPS,
Eq. (7), as the loss function [64, 72, 96]. While this in general computationally challenging, special
cases are amendable for practical computation. For example, we can assume a parametrization of
the quantile function by linear isotonic regression splines:

𝑠 (𝑞;𝛾, 𝑏, 𝑑) = 𝛾 +
𝐿∑︁
ℓ=0

𝑏ℓ (𝑞 − 𝑑ℓ )+ (9)

where 𝑞 ∈ [0, 1] is the quantile level, 𝛾 ∈ R is the intercept term, 𝑏 ∈ R𝐿+1 are weights describing
the slopes of the function pieces, 𝑑 ∈ R𝐿+1 is a vector of knot positions, 𝐿 the number of pieces
of the spline and (𝑥)+ = max(𝑥, 0) is the ReLU function. In order for 𝑠 (·) to represent a quantile
function we need to guarantee its monotonicity and restrict its domain to [0, 1]. Both of these
constraints can readily be achieved using standard NN tooling using a reparametrization of Eq. (9),
while CRPS can be solved in closed form for linear splines (see [64]).

Bag of tricks. While the general setup of DeepAR is straightforward, a number of algorithmic
optimizations turn it into a robust, general-purpose forecasting model. The handling of missing
values via sample replacement from the probability distribution is one such example. Another one
is oversampling of “important” training examples during training, where importance typically
corresponds to time series with larger absolute values. Adding lagged values further help improve
predictive accuracy. Lags can be chosen heuristically based on the frequency of the time series. For
example, in a time series with daily frequency, a lag of 7 days often helps. Similarly, covariates
corresponding to calendar events (e.g., indicator variables for weekends or holidays) can help
further.

2.5.2 MQRNN/MQCNN. As an example for another type of deep forecasting model, we discuss the
multi-horizon quantile recurrent forecaster (MQRNN) [190] next which was conceived concurrently
to DeepAR. Contrary to DeepAR, it is most naturally deployed as a discriminative, seq2seq model
in a quantile regression setting. For each time point 𝑡 in the forecast horizon, MQRNN outputs a

2Hewamalage et al. [76] provide an overview specifically targeted at RNNs for forecasting.
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chosen number of estimates for corresponding quantiles and the loss function in MQRNN is Eq. (6),
i.e., the pinball loss summed over all quantiles and time points.
While MQRNN can use multiple configurations, often a CNN-based architecture is chosen in

practice in the encoder (MQCNN) for computational efficiency reasons over RNN-based methods
and two MLPs in the decoder. The first MLP captures all inputs during the forecast horizon and the
context provided by the encoder. A second, local MLP applies only to specific horizons for which it
uses the corresponding available input and the output of the MLP. A further innovation provided
by MQCNN is the training scheme via the so-called forking sequences where the model forecasts
by placing a series of decoders with shared parameters at each timestep in the encoder. Thus, the
model can structurally forecast at each timestep, while the optimization process is stabilized by
updating the gradients from the sequences together. An additional component of MQRNN is a local
MLP component that aims to model spikes and events specifically.

3 LITERATURE REVIEW
In the prior section, we provided an in-depth introduction to selected, basic topics. Building on
these topics, we survey the literature on modern deep forecasting models more broadly in this
section. Given the breadth of the literature available, our selection is necessarily subjective.

We proceed as follows. In Section 3.1 we present probabilistic forecasting models, both one-step
and multi-step. Similarly, in Section 3.2 we summarize point forecast models. We remark that, after
Section 2, we have recipes at hand to turn an one-step ahead forecasting model into a multi-step
forecasting model and a point forecasting model into a probabilistic model. We discuss hybrids
of deep learning with state space models in Section 3.3, multivariate forecasting in Section 3.4,
physics-based model in Section 3.5, global-local models in Section 3.6, models for intermittent time
series in Section 3.7 and generative adversarial networks for forecasting in Section 3.8. We close
this section with an overview of the large number of available models in Section 3.9 where we also
provide guidelines on where to start the journey with deep forecasting models.

3.1 Probabilistic Forecast Models
3.1.1 One-step forecast. The DeepAR model presented in Sec. 2.5.1, is an example of one-step
canonical forecasting model. In its base variant, DeepAR is a global univariate model which learns
a univariate distribution; we discuss multivariate extensions in Sec. 3.4. DeepAR can be equipped
with outputs representing a parametrized PDF including Gaussian Mixture Distributions Mukherjee
et al. [136] or quantile functions Gasthaus et al. [64].

Rasul et al. [150] propose TimeGrad which, like DeepAR, is an RNN model using LSTM or GRU
cells for which samples are drawn from the data distribution at each time step, with the difference
that in TimeGrad the RNN conditions a diffusion probabilistic model [172] which allows the model
to easily scale to multivariate time series and accurately use the dependencies between dimensions.
Replacing the RNN-backbone of DeepAR with dilated causal convolutions has been proposed as
both point and probabilistic forecasting models [4, 20, 183].

3.1.2 Multi-step forecast. Contrary to the some of the models in Section 3.1.1 which produce
one-step ahead forecasts, multi-step forecasts can be obtained directly with a seq2seq architecture.
In Section 2.5.2, we reviewed the MQRNN/MQCNN architecture [190] as a seq2seq architecture for
probabilistic forecasting. The main advantage of seq2seq over one-step ahead forecast models is that
the decoder architecture can be chosen to output all future target values at once. This removes the
need to unroll over the forecast horizon which can lead to error accumulation since early forecast
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errors propagate through the forecast horizon. Thus, the decoder of seq2seq forecasting models is
typically an MLP while other architectures are also used for the encoder [138, 190].

Wen and Torkkola [189] extended the MQCNN model with a generative quantile copula. This
model learns the conditional quantile function that maps the quantile index, which is a uniform
random variable conditioned on the covariates, to the target. During training, the model draws the
quantile index from a uniform distribution. This turns MQCNN into a generative, marginal quantile
model. The authors combine this approach with a Gaussian copula to draw correlated marginal
quantile index random values. They show that the Gaussian copula component improves the
forecast at the distribution tails. Chen et al. [35] proposed DeepTCN, another seq2seq model where
the encoder is the dilated causal convolution with residual blocks, and the decoder is simply an
MLP with residual connections. Structure-wise, DeepTCN is almost the same as the basic structure
of MQCNN [190], i.e., without the local MLP component that aims to model spikes and events.
Park et al. [141] propose the incremental quantile functions (IQF), a flexible and efficient

distribution-free quantile estimation framework that resolves quantile crossing with a simple
NN layer. A seq2seq encoder-decoder structure is used although the method can be readily applied
to recurrent models with one-step ahead forecasts [156]. IQF is trained using the CRPS loss (Eq. (7))
similar to [64].

A combination of recurrent and encoder-decoder structures has also been explored. In [205], the
authors use an LSTM with Monte Carlo dropout as both the encoder and decoder. However, unlike
other models that directly use RNNs to generate forecasts, the learned embedding at the end of the
decoding step is fed into an MLP prediction network and is combined with other external features
to generate the forecast. Along a similar line, Laptev et al. [111] employ an LSTM as a feature
extractor (LSTM autoencoder), and use the extracted features, combined with external inputs to
generate the forecasts with another LSTM.
Van Den Oord et al. [183] introduced the WaveNet architecture, a generative model for speech

synthesis, which uses dilated causal convolutions to learn the long range dependencies important
for audio signals. Since this architecture is based on convolutions, training is very efficient on GPUs
– prediction is still sequential and further changes are necessary for fast inference. Adaptations of
WaveNet for forecasting are available [4].

3.2 Point Forecast Models
Point forecast models do not model the probability distribution of the future values of a time series
but rather output directly a point forecast that typically corresponds to a summary statistic of the
predictive distribution. We have discussed generic recipes on how to turn a point forecasting model
into a probabilistic forecasting model in Section 2.4 and the literature contains further examples
(see e.g., [74, 175] for recent complementary approaches).

3.2.1 One-step forecast. A considerable amount of attention of the community is dedicated to
one-step forecasting. LSTNet [107] is a model using a combination of a CNN and an RNN. Targeting
multivariate time series, LSTNet uses a convolution network (without pooling) to extract short-term
temporal patterns as well as correlations among variables. The output of the convolution network
is fed into a recurrent layer and a temporal attention layer which, combined with the autoregressive
component, generates the final point forecast. While LSTNet uses a standard point forecast loss
function, it can readily be turned into a probabilistic forecast model using the components described
in Sec. 2, e.g., by modifying LSTNet to output the parameters of a probability distribution and using
NLL as a loss function. Qiu et al. [144] proposed an ensemble of deep belief networks for forecasting.
The outputs of all the networks is concatenated and fed into a support vector regression model
(SVR) that gives the final prediction. The NNs and the SVR are not trained jointly though. Hsu [82]
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proposed an augmented LSTM model which combines autoencoders with LSTM cells. The input
observations are first encoded to latent variables, which is equivalent to feature extraction, and are
fed into the LSTM cells. The decoder is an MLP which maps the LSTM output into the predicted
values. For point forecast multivariate forecasting, Yoo and Kang [198] proposed time-invariant
attention to learn the dependencies between the dimensions of the time series and use them with a
convolution architecture to model the time series.

Building upon the success of CNNs in other application domains, Borovykh et al. [24] proposed
an adjustment to WaveNet [183] that makes it applicable to conditional forecasting. They evaluated
their model on various datasets with mixed results, concluding that it can serve as a strong baseline
and that various improvements could be made. In a similar vein, inspired by the Transformer
architecture [184] Song et al. [173] proposed an adjustment that makes the architecture applicable
to time series. Their method is applied to both regression and classification tasks.

3.2.2 Multi-step forecast. N-BEATS [138] is an NN architecture purpose-built for the forecasting
task that relies on a deep, residual stack of MLP layers to obtain point forecasts. The basic building
block in this architecture is a forked MLP stack that takes the block input and feeds the intermediate
representation into separateMLPs to learn the parameters of the context (the authors call it backcast)
and forecast time series models. The residual architecture removes the part of the context signal
it can explain well before passing to the next block and adds up the forecasts. The learned time
series model can have free parameters or be constrained to follow a particular, functional form.
Constraining the model to trend and seasonality functional forms does not have a big impact on
the error and generates models whose stacks are interpretable since the trend and seasonality
components of the model can be separated and analyzed. N-BEATS has also been interpreted as a
meta-learning model [139], where the repeated application of residual blocks can be seen as an
inner optimization loop. N-BEATS generalizes better than other architectures when trained on a
source dataset (e.g., M4-monthly) and applied to a different target datasets (e.g., M3-monthly).
Lv et al. [126] propose a stacked autoencoder (SAE) architecture to learn features from spatio-

temporal traffic flow data. On top of the autoencoder, a logistic regression layer is used to output
predictions of the traffic flow at all locations in a future time window. The resulting architec-
ture is trained layer-wise in a greedy manner. The experimental results show that the method
significantly improves over other shallow architectures, suggesting that the SAE is capable of
extracting latent features regarding the spatio-temporal correlations of the data. In the same con-
text of spatio-temporal forecasting and under the seq2seq framework, Li et al. [118] proposed the
Diffusion Convolutional Recurrent NN (DCRNN). Diffusion convolution is employed to capture the
dependencies on the spatial domain, while an RNN is utilized to model the temporal dependencies.
Finally, Asadi and Regan [6] proposed a framework where the time series are decomposed in
an initial preprocessing step to separately feed short-term, long-term, and spatial patterns into
different components of a NN. Neighbouring time series are clustered based on their similarity of
the residuals as there can be meaningful short-term patterns for spatial time series. Then, in a CNN
based architecture, each kernel of a multi-kernel convolution layer is applied to a cluster of time
series to extract short-term features in neighbouring areas. The output of the convolution layer is
concatenated by trends and is followed by a convolution-LSTM layer to capture long-term patterns
in larger regional areas.

Bandara et al. [14] addressed the problem of predicting a set of disparate time series, which may
not be well captured by a single global model. For this reason, the authors propose to cluster the
time series according to a vector of features extracted using the technique from [87] and the Snob
clustering algorithm [186]. Only then, an RNN is trained per cluster, after having decomposed the
series into trend, seasonality and residual components. The RNN is followed by an affine neural
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layer to project the cell outputs to the dimension of the intended forecast horizon. This approach is
applied to publicly available datasets from time series competitions, and appears to consistently
improve against learning a single global model. In subsequent work, Bandara et al. [13] continued
to mix heuristics, in this instance seasonality decomposition techniques, known from classical
forecasting methods with standard NN techniques. Their aim is to improve on scenarios with
multiple seasonalities such as inter and intra daily. The findings are that for panels of somewhat
unrelated time series, such decomposition techniques help global models whereas for panels of
related or homogeneous time series this may be harmful. The authors do not attempt to integrate
these steps into the NN architecture itself, which would allow for end-to-end learning.

Cinar et al. [39] proposed a content attention mechanism that seats on top of any seq2seq RNN.
The idea is to select a combination of the hidden states from the history and combine them using a
pseudo-period vector of weights to the predicted output step.
Li et al. [116] introduce two modifications to the Transformer architecture to improve its per-

formance for forecasting. First, they include causal convolutions in the attention to make the key
and query context dependent, which makes the model more sensitive to local contexts. Second,
they introduce a sparse attention, meaning the model cannot attend to all points in the history,
but only to selected points. Through exponentially increasing distances between these points,
the memory complexity can be reduced from quadratic to 𝑂 (𝑇 (log𝑇 )2), where 𝑇 is the sequence
length, which is important for long sequences that occur frequently in forecasting. Other archi-
tectural improvements to the Transformer model have also been used more recently to improve
accuracy and computational complexity in forecasting applications. For example, Lim et al. [119]
introduce the Temporal Fusion Transformer (TFT), which incorporates novel model components
for embedding static covariates, performing “variable selection”, and gating components that skip
over irrelevant parts of the context. The TFT is trained to predict forecast quantiles, and promotes
forecast interpretability by modifying self-attention and learning input variable importance. Eise-
nach et al. [51] propose MQ-Transformer, a Transformer architecture that employs novel attention
mechanisms in the encoder and decoder separately, and consider learning positional embeddings
from event indicators. The authors discuss the improvements not only on forecast accuracy, but also
on excess forecast volatility where their model improves over the state of the art. Finally, Zhou et al.
[204] recently proposed the Informer, a computationally efficient Transformer architecture, that
specifically targets applications with long forecast horizons. The Informer introduces a ProbSparse
attention layer and a distilling mechanism to reduce both the time complexity and memory usage
of learning to 𝑂 (𝑇 log𝑇 ), while improving forecast performance over deep forecasting benchmark.

3.3 Deep State Space Models
In contrast to pure deep learning methods for time series forecasting introduced in Section 2,
Rangapuram et al. [146] propose to combine classical state space models (SSM) [49, 86] with
deep learning. The main motivation is to bridge the gap between SSMs that provide a principled
framework for incorporating structural assumptions but fail to learn patterns across a collection of
time series, and NNs that are capable of extracting higher order features but results inmodels that are
hard to interpret. Their method parametrizes a linear Gaussian SSM using an RNN. The parameters
of the RNN are learned jointly from a dataset of raw time series and associated covariates. Instead of
learning the SSM parameters \𝑖,1:𝑇𝑖 for the 𝑖-th time series individually or locally in the terminology
of Section 2.1), the model is global and learns a shared mapping from the covariates associated
with each target time series to the parameters of a linear SSM. This mapping \𝑖,𝑡 = 𝑓 (x𝑖,1:𝑡 ;Φ), for
𝑖 = 1, . . . , 𝑁 and 𝑡 = 1, . . . ,𝑇𝑖 +ℎ, is implemented by an RNN with weights Φwhich are shared across
different time series as well as different time steps. Note that 𝑓 depends on the entire covariate
time series up to time 𝑡 as well as the set of shared parameters Φ. Since each individual time series
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𝑖 is modelled using an SSM with parameters Θ𝑖 , assumptions such as temporal smoothness in
the forecasts are easily enforced. The shared model parameters Φ are learned by maximizing the
likelihood given the observations Z = {z𝑖,1:𝑇𝑖 }𝑁𝑖=1. The likelihood terms for each time series reduce
to the standard likelihood computation under the linear-Gaussian SSM, which can be carried out
efficiently via Kalman filtering [16]. Once the parameters Φ are learned, it is straightforward to
obtain the forecast distribution via the SSM parameters \𝑖,𝑇𝑖+1:𝑇𝑖+ℎ .
There are two major limitations of the method proposed in Rangapuram et al. [146]: first, the

observations are assumed to follow a Gaussian distribution and second, the underlying latent
process that generates observations is assumed to evolve linearly. de Bézenac et al. [42] address
the first limitation via Normalizing Kalman Filters (NKF) by augmenting SSMs with normalizing
flows [46, 101, 137] thereby giving them the flexibility to model non-Gaussian, multimodal data.
Their main idea is to map the non-Gaussian observations {z𝑖,1:𝑇𝑖 } to more Gaussian-like observations
via a sequence of learnable, nonlinear transformations (e.g., a normalizing flow) so that the method
in [146] can then be applied on the transformed observations. While being more flexible, their
method still retains attractive properties of linear Gaussian SSMs, namely, tractability of exact
inference and likelihood computation, efficient sampling, and robustness to noise.

In a concurrent work to [42], Kurle et al. [106] improve the method in [146] by addressing both
limitations. In particular, to model nonlinear latent dynamics, they propose a recurrent switching
Gaussian SSM, which uses additional latent variables to switch between different linear dynamics.
Moreover, to handle non-Gaussian observations, they propose a nonlinear emission model via a
decoder-type NN [61]. Although the exact inference is no longer tractable with these improvements,
they show that the approximate inference and likelihood estimation can be Rao-Blackwellised; i.e.,
the inference for the Gaussian latent states can be done exactly while the inference for the switch
variables needs to be approximated.

Finally, Ansari et al. [5] propose to extend [146] via incorporating switching dynamics. The
recurrent explicit duration switching dynamical system (RED-SDS) is a flexible model that is
capable of identifying both state- and time-dependent switching dynamics of a time series. State-
dependent switching is enabled by a recurrent state-to-switch connection and an explicit duration
count variable is used to improve the time-dependent switching behavior. A hybrid algorithm that
approximates the posterior of the continuous states via an inference network and performs exact
inference for the discrete switches and counts provides efficient inference. The method is able to
infer meaningful switching patterns from the data and extrapolate the learned patterns into the
forecast horizon.

3.4 Multivariate Forecasting
The models presented up to this point are mainly global univariate models, i.e., they are trained on
all time series but they are still used to predict a univariate target. When dealing with multivariate
time series, one should be able to exploit the dependency structure between the different time
series in the panel in a generalization of Eq. (3) to Eq. (4).
Toubeau et al. [179] and Salinas et al. [155] combined RNN-based models with copulas to

model multivariate distributions. The model in [179] uses a nonparametric copula to capture
the multivariate dependence structure. In contrast, the work in [155] uses a Gaussian copula
process approach. Salinas et al. [155] use a low-rank covariance matrix approximation to scale to
thousands of dimensions. Additionally, the model implements a non-parametric transformation of
the marginals to deal with varying scales in the dimensions and non-Gaussian data. More recently,
Rasul et al. [151] proposed to represent the data distribution with a type of normalizing flows called
Masked Autoregressive Flows [140] while using either an RNN or a Transformer [184] to model
the multivariate temporal dynamics of time series. Normalizing flows were also used to bring deep
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SSMs [146] to a flexible, multivariate scenario [42]. Rasul et al. [150] propose TimeGrad which,
like DeepAR, is an RNN model for which samples are drawn from the data distribution at each
time step, with the difference that in TimeGrad the RNN conditions a diffusion probabilistic model
[172] which allows the model to easily scale to multivariate time series and accurately use the
dependencies between dimensions.
A recent application of global multivariate models is for hierarchical forecasting problems [7,

17, 176, 191]. Typically, in such problems an aggregation structure is defined (e.g., via a product
hierarchy) and a trade-off between forecast accuracy and forecast coherency with respect to the
aggregation structure must be managed. Here, forecast coherency or consistency means that the
forecasts conforms to the aggregation structure, so that aggregated forecasts are the same as
forecasts of aggregated time series. This aggregation structure is typically encoded via linear
constraints where the aggregation structure is captured in a matrix 𝑆 . Rangapuram et al. [148]
propose to use a multivariate model such as [155] and enforce consistency of forecast samples via
incorporation of a projection of the samples with 𝑆 into the learning problem. Dedicated work
exists for aggregation along the time dimension [8, 147, 178].
In some multivariate forecasting settings the different dimensions are tied together by some

interpretable connections other than a hierarchy and this can be modelled as part of the input
layer rather than the output as discussed so far. One can for example think of forecasting the traffic
network of a city where the traffic at each of the location in the city is mostly influenced by the
traffic at the neighboring locations, like in PEMS-BAY and METR-LA [118]. Graph Neural Networks
(GNN) have been used in this forecasting setting [43, 63, 102, 163, 193, 206] where, in addition to
the forecasting task, the challenge is to best use the graph information that is provided or even
learn the graph if none is available. The methods that propose to learn the graph do so by looking
for the graph that allows to produce the most accurate forecasts. An embedding is learned for
each dimension, and similarity scores are computed between every two dimension using these
embeddings from which the adjacency matrix is obtained, either by taking the K-top edges [43, 193]
or sampling from them [102, 163]. As of now, two main strategies have been proposed to learn the
node embeddings, either simply by gradient descent [43, 193] or by taking representation from the
time series [102, 163], with the latter approach to seemingly yielding better results. While these
methods were all presented as point forecasting method, one could obtain probabilistic forecasts
by training these models to parametrize a predictive distribution as explained in Section 2.4.

3.5 Physics-based Models
In physics-based models, deep forecasting methods have been proposed that model the underlying
dynamics in sophisticated ways. Chen et al. [32] proposed the Neural ODE (NODE) model, where
an ordinary differential equation (ODE) is solved forward in time, and the adjoint equation is solved
backwards in time using backpropagation. One limitation of the Neural ODE model is that the
unknown parameters \ are assumed to be constant in time. Other limitations such as computational
complexity have been addressed in follow-up work, e.g., [18]. Vialard et al. [185] extends the NODE
model to allow the parameters \ (𝑡) to be time-varying by introducing a shooting formulation. In
the shooting formulation, the optimal \ is determined by minimizing a regularized loss function.
Vialard et al. [185] also shows that a residual network (ResNet) can be expressed as the Forward
Euler discretization of an ODE with time step Δ𝑡 = 1. Wang et al. [187] compares successful time
series deep sequence models, such as [146, 156] to NODE and other hybrid deep learning models to
model COVID-19 dynamics, as well as the population dynamics using the Lotka-Volterra equations.
Through their benchmarking study, the authors show that distribution shifts can pose problems
for deep sequence models on these tasks, and propose a hybrid model AutoODE to model the
underlying dynamics.
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3.6 Global-local
With local models, the free parameters of the model are learned individually for each series in a
collection, see Section 2.1. Classical local time series models such as SSMs, ARIMA, and exponential
smoothing (ETS) [84] excel at modelling the complex dynamics of individual time series given a
sufficiently long history. Other local models include Gaussian SSMs, which are computationally
efficient, e.g., via a Kalman filter, and Gaussian Processes (GPs) [27, 67, 149, 159]. These methods
provide uncertainty estimates, which are critical for optimal downstream decision making. Since
these methods are local, they learn one model per time series and cannot effectively extract
information across multiple time series. These methods are unable to address cold-start problems
where there is a need to generate predictions for a time series with little or no observed history.

Conversely, recall that in global models, their free parameters are learned jointly on every series
in a collection of time series. NNs have proven particularly well suited as global models [64, 111,
146, 156, 190]. Global methods can extract patterns from collections of irregular time series even
when these patterns would not be distinguishable using a single series.

Global-local models have been proposed to combine the advantages of both global and local mod-
els. Examples include mixed effect models [40], which consist of two kinds of effects: fixed (global)
effects that describe the whole population, and random (local) effects that capture the idiosyncratic
of individuals or subgroups. A similar mixed approach is used in hierarchical Bayesian [65] methods,
which combine global and local models to jointly model a population of related statistical problems.
In an early example of hierarchical Bayesian models, [31] combined global and local features for
intermittent demand forecasting in retail planning. In [3, 123], other combined global and local
models are detailed.

A recent global-local family of models, Deep Factors [188] provide an alternative way to combine
the expressive power of NNs with the data efficiency and uncertainty estimation abilities of
classical probabilistic local models. Each time series, or its latent function for non-Gaussian data, is
represented as the weighted sum of a global time series and a local model. The global part is given by
a linear combination of a set of deep dynamic factors, where the loading is temporally determined
by attentions. The local model is stochastic. Typical choices include white noise processes, linear
dynamical systems, GPs [127] or RNNs. The stochastic local component allows for the uncertainty
to propagate forward in time, while the global NN model is capable of extracting complex nonlinear
patterns across multiple time series. The global-local structure extracts complex nonlinear patterns
globally while capturing individual random effects for each time series locally.
The Deep Global Local Forecaster (DeepGLO) [162] is a method that “thinks globally and acts

locally” to forecast collections of up to millions of time series. It crucially relies on a type of temporal
convolution (a so-called leveled network), that can be trained across a large amount time series
with different scales without the need for normalization or rescaling. DeepGLO is a hybrid model
that uses a global matrix factorization model [200] regularized by a temporal deep leveled network
and a local temporal deep level network to capture patterns specific to each time series. Each time
series is represented by a linear combination of 𝑘 basis time series, where 𝑘 ≪ 𝑁 , with 𝑁 the total
number of time series. The global and local models are combined through data-driven attention for
each time series.

A further example in the global-local model class is the ES-RNN model proposed by Smyl [169]
that has recently attracted attention by winning the M4 competition [128] by a large margin on
both evaluation settings. In the ES-RNN model, locally estimated level and trend components
are multiplicatively combined with an RNN model. Apart from its global-local nature, it also
integrates aspects of different model classes into a a single model similar to Deep State Space models
(Section 3.3). In particular, the ℎ-step ahead prediction ẑ𝑖,𝑡+1:𝑡+ℎ = 𝑙𝑖,𝑡 · s𝑖,𝑡+1:𝑡+ℎ · exp(RNN(x𝑖,𝑡 ))
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consists of a level 𝑙𝑖,𝑡 and a seasonal component 𝑠𝑖,𝑡 obtained through local exponential smoothing,
and the output of a global RNN model RNN(x𝑖,𝑡 ), where x𝑖,𝑡 is a vector of preprocessed data
extracted from deseasonalized and normalized time series x𝑖,𝑡 = log(z𝑖,𝑡−𝐾 :𝑡/(s𝑖,𝑡−𝐾 :𝑡𝑙𝑖,𝑡 )) cut in a
window of length 𝐾 + 1. The RNN models are composed of dilated LSTM layers with additional
residual connections. The M4-winning entry used slightly different architectures for the different
type of time series in the competition.

3.7 Intermittent Time Series
We noted in the introduction that deep forecasting models had a major impact on operational
forecasting problems. In these large-scale problem, intermittent time series occur regularly [25].
Accordingly, research on NNs for intermittent time series forecasting has been an active area.
Salinas et al. [156] propose a standard RNN architecture with a negative binomial likelihood to
handle intermittent demand similar to [171] in classical methods. To the best of our knowledge,
other likelihoods that have been proposed for intermittent time series in classical models, e.g.,
by [160], have not yet been carried over to NNs. However, some initial work is available via more
standard likelihoods [93, 156].
In the seminal paper on intermittent demand forecasting [41], Croston separates the data in a

sequence of observed non-zero demands and a sequence of time intervals between positive demand
observations, and runs exponential smoothing separately on both series. A comparison of NNs to
classical models for intermittent demand first appeared in Gutierrez et al. [73], where the authors
compare the performance of a shallow and narrow MLP with Croston’s method. They find NNs to
outperform classical methods by a significant margin.

Kourentzes [105] proposes two MLP architectures for intermittent demand, taking demand sizes
and intervals as inputs. As in Gutierrez et al. [73], the networks are shallow and narrow by modern
standards, with only a single hidden layer and three hidden units. The difference between the
two architectures is in the output. In one case interval times and non-zero occurrences are output
separately, while in the other a ratio of the two is computed. The approach proposed by Kourentzes
[105] outperforms other approaches primarily with respect to inventory metrics, but not forecasting
accuracy metrics, challenging previous results in [73]. It is unclear whether the models are used as
global or local. However, given the concern around overfitting and regularization, we assume that
these models were primarily used as local models in the experiments.
Both approaches of [73, 105] only offer point forecasts. This shortcoming is addressed by [180,

181], where the authors propose renewal processes as natural models for intermittent demand
forecasting. Specifically, they use RNNs to modulate both discrete time and continuous time renewal
processes, using the simple analogy that RNNs can replace exponential smoothing in [41].

Finally, a recent trend in sequence modelling employs NNs in modelling discrete event sequences
observed in continuous time [48, 133, 164, 165, 182, 194] and [166] for an overview. Notably, Xiao
et al. [195] use two RNNs to parametrize a probabilistic “point process” model. These networks
consume data from asynchronous event sequences and uniformly sampled time series observations
respectively. Their model can be used in forecasting tasks where time series data can be enriched
with discrete event observations in continuous time.

3.8 Generalized Adversarial Networks
Additionally to the approaches mentioned in Sections 2.4 and 2.4.3, the recent literature contains
further examples for density estimation, most prominently via Generalized Adversarial Networks
(GANs) [71]. While GANs have received much attention in the overall deep learning literature [52,
53, 98, 121, 199], this has not been reflected in forecasting. We speculate that this is because a
discriminator network can be replaced by metrics such as CRPS which measure the quality of
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generated samples. We therefore only provide a brief overview here and mention that, while they
rely on the buildings blocks discussed in Section 2, they typically require architectures that are
more complex than then ones discussed here and lead to involved optimization problems.
Despite the comparably less attention that GANs have received in forecasting, they have been

recently applied to the time series domain [53, 199] to synthesize data [53, 177] or to employ
an adversarial loss in forecasting tasks [192]. Many time series GAN architectures use recurrent
networks to model temporal dynamics [53, 134, 199]. Modelling long-range dependencies and
scaling recurrent networks to higher lengths is inherently difficult and limits the application of
time series GANs to short sequence lengths [53, 199]. One way to achieve longer realistic synthetic
time series is by employing convolutional [11, 62, 183] and self-attention architectures [184].

Convolutional architectures are able to learn relevant features from the raw time series data [11,
62, 183], but are ultimately limited to local receptive fields and can only capture long-range
dependencies via many stacks of convolutional layers. Self-attention can bridge this gap and
allow for modelling long-range dependencies from convolutional feature maps, which has been a
successful approach in the image [203] and time series forecasting domain [116]. Another technique
to achieve long sample sizes is progressive growing, which successively increases the resolution by
adding layers to a GAN generator and discriminator during training [97]. A recent proposal [21]
synthesizes progressive growing with convolutions and self-attention into a novel architecture
particularly geared towards time series.

3.9 Summary and Practical Guidelines
In Section 2 and this section, we introduced a large number of deep forecasting models. We
summarize the main approaches in Table 2. The list below provide keys to reading the table.

• Forecast distinguishes between probabilistic (Prob) and Point forecasts.
• Horizon indicates whether the model does one-step predictions (noted 1) in which case
multi-step forecasts are obtained recursively, or if it directly predicts a whole sequence
(≥ 1).

• Loss and Metrics specifies the loss used for training and metrics used for evaluation. Here,
we only provide an explanation of the acronyms and not the definition of each metric
which can be easily found in the corresponding papers: negative log-likelihood (NLL),
quantile loss (QL), continuous ranked probability score (CRPS), (normalized) (root) mean
squared error (NRMSE, RMSE, MSE), root relative squared error (RRSE), relative geometric
RMSE (RGRMSE), weighted absolute percentage error (WAPE), normalized deviation (ND),
mean absolute deviation (MAD), mean absolute error (MAE), mean relative error (MRE),
(weighted) mean absolute percentage error (wMAPE, MAPE), mean absolute scaled error
(MASE), overall weighted average (OWA), mean scaled interval score (MSIS), Kullback-
Leibler divergence (KL), Value-at-Risk (VaR), expected shortfall (ES), empirical correlation
coefficient (CORR), area under the receiver operating characteristic (AUROC), percentage
best (PB).

While Table 2 serves to illustrate thewealth of deep forecastingmethods now available, their sheer
number may be slightly overwhelming. Furthermore, empirical evidence on the effectiveness of the
different architectures has so far not revealed a clearly superior approach [4]. In this, forecasting
differs from other domains, e.g., natural language processing where Transformer-basedmodels [184]
dominate overall. Also, deep forecasting methods seem to differ from other model families, such
as tree-based methods where LightGBM [99] or XGBoost [33] dominate (as in the recent M5
forecasting competition [92]). We speculate that this diffuse picture is in part due to the practical
reasons, the relative immaturity of the field and the corresponding software implementations and in
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part due to fundamental reason as a natural consequence of the breadth and diversity of forecasting
problems.
So, choosing the appropriate architecture for a problem at hand can be a daunting task. In the

following, we therefore attempt to provide guidelines for a more informed deep forecasting model
selection. These are largely based on our own experience in working with practical forecasting
problem and they should primarily be taken as a non-exhaustive guidance on where to start model
exploration.

3.9.1 Baseline methods and standard mode of deployment. At the start of any in-depth model
exploration, considering a baseline model is commonly accepted best practice. To the best of our
knowledge, the most mature deep forecasting models are DeepAR [156] and MQCNN [190] which
exist in a number of open-source and commercial implementations.3 As a practical guideline, we
recommend to start model exploration using at least these methods as baselines. Other candidates
we would consider are N-BEATS [138], WaveNet [183] and a Transformer-based model. The relative
performance of these methods compared with other methods should give reasonable, directional
evidence whether the problem at hand is amenable to deep forecasting methods. We note that
AutoML approaches for forecasting are available4 but while promising are in their infancy. At least
in the M5 competition, they are still outperformed by the aforementioned more specialized deep
forecasting models.
Our typical suggestion is to employ NNs as global models since, given enough data, global

methods outperform classical local methods when dealing with groups of similar time series.5
Interestingly, recent empirical evidence have shown that global models can achieve a state-of-the-
art performance even in heterogeneous groups of time series. This is supported by the M4 [128]
and M5 competitions where the top performing models had some form of globality. This suggests a
more general applicability of global methods with a high impact on practical application where a
general automated forecasting mechanism is required.

3.9.2 Data characteristics. The amount of data available is among the easiest dimensions in choos-
ing a deep forecasting model. First, NNs require a minimum amount of data to be effective in
comparison to other, more parsimoniously parametrized models. This is perhaps the most im-
portant factor in successful applications of NNs in forecasting. How much data does one need
for a given application? Several important points should be discussed on this question. First, the
amount of data is often misunderstood as the number of time series but in reality the amount of
data typically relates to the number of observations. For instance, one may have only one time
series but many thousands of observations, as in the case of a time series from a real-time sensor
where measurements happen every second for a year, allowing to fit a complex NN [2]. Second,
it is probably better to see the amount of data in terms of information quantity. For instance, in
finance the amount of information of many millions of hourly transactions is limited given the
very low signal-to-noise ratio in contrast to a retailer whose products follow clear seasonality and
patterns, making it easier to apply deep learning methods. The more structured the data is (e.g., via
strong seasonality or knowledge about the underlying process) the better deep forecasting models
that incorporate these structures will fare. On the contrary, if the time series are more irregular or
short, a more data-driven approach (e.g., via Transformer-based models) will often be preferable.
The importance of covariate information for the forecasting problem at hand can further help
3https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-
accurate-time-series-forecasting/
4http://ai.googleblog.com/2020/12/using-automl-for-time-series-forecasting.html
5This is a more generally applicable fact beyond NN. Montero-Manso and Hyndman [135] show favorable theoretical and
empirical properties for global over local models.
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Study Structure Forecast Horizon Loss Metrics Data Types Comments

DeepAR [156] RNN Prob 1 NLL Coverage, QL, ND,
NRMSE

demand, traffic,
electricity

Learns parametric distributions

Toubeau et al. [179] RNN/CNN Prob 1 NLL/QL RMSE, price electricity Nonparametric copula to
capture multivariate

dependence

Salinas et al. [155] RNN Prob 1 NLL QL, MSE electricity, traffic,
exchange rate, solar,

taxi, wiki

Learns multivariate model via
low-rank Gaussian copula

processes

ARMDN [136] RNN Prob 1 NLL wMAPE demand Like [156], but using mixture
of Gaussian’s and domain
specific feature processing

QARNN [196] MLP Prob 1 QL VaR, ES finance Conditional quantile function
estimation

SQF-RNN [64] RNN Prob 1 CRPS QL, MSIS, NRMSE,
OWA

demand, traffic, count
data, finance, M4

Models non-parametric
distributions with splines

LSTNet [107] CNN + RNN + MLP Point 1 ℓ1 RRSE, CORR traffic, solar,
electricity, exchange

rate

Extracts short and long
temporal patterns with a CNN

and RNN, respectively

Zhu and Laptev
[205]

RNN + MLP Prob 1 - sMAPE, calibration daily trips Fits an encoder (RNN) that
constructs an embedding state,
which is fed to a prediction

network (MLP)

Laptev et al. [111] RNN Prob 1 MSE sMAPE traffic, M3 LSTM as feature extractor

Qiu et al. [144] MLP + SVR Point 1 ℓ2 for MLP, SVR
objective

RMSE, MAPE energy, housing Ensemble of DBNs where their
output is fed to an SVR

A-LSTM [82] RNN + MLP Point 1 ℓ2 , ℓ2 regularizer RMSE electricity
consumption

Combination of LSTM with
autoencoders
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Borovykh et al. [24] CNN Point 1 ℓ1 , ℓ2 regularizer RMSE, MASE,
HITS

index forecasting,
exchange rate

WaveNet [183] based model
adjusted for time series

forecasting

SAnD [173] MLP + Attention Point 1 ℓ2 , cross-entropy,
multi-label

classification loss

AUROC, MASE,
MSE

clinical Transformer [116] based model
adjusted for time series

forecasting

Zhang [202] MLP Point 1 MSE MSE, MAD sunspot, lynx,
exchange rate

Hybrid local model that uses
ARIMA to capture the linear
component and a NN for the

nonlinear residuals

Khashei and Bijari
[100]

MLP Point 1 MSE MAE, MSE sunspot, lynx,
exchange rate

Hybrid local model that uses
ARIMA and a NN for trend

correction

Deep State Space
[146]

RNN + State Space Prob ≥ 1 NLL P50, P90 quantile
loss

traffic, electricity,
tourism, M4

RNN parametrized linear
Gaussian SSM

NKF [42] RNN + State Space +
Normalizing Flow (NF)

Prob ≥ 1 NLL QL traffic, electricity,
exchange rate, solar,

wiki

RNN parametrized linear
Gaussian SSM combined with
normalizing flow, which acts as
an emission model to handle

non-Gaussian data

ARSGLS [106] Recurrent Switching
State Space + NN

Prob ≥ 1 NLL QL traffic, electricity,
exchange rate, solar,

wiki

Recurrent Switching State
Space combined with

decoder-type NN, which acts
as an emission model to handle

non-Gaussian data

MQ-RNN/CNN
[190]

RNN/CNN + MLP Prob ≥1 QL QL, calibration,
sharpness

demand Learns pre-specified grid of
quantiles

Wen and Torkkola
[189]

CNN + MLP Prob ≥1 QL, inverse
reconstruction loss,

NLL

QL, quantile
crossing, QL over
sum of future
intervals

demand Combines model in [190] with
Gaussian copula

DeepTCN [35] CNN + MLP Prob ≥1 QL QL retail demand Learns pre-specified grid of
quantiles

J.A
CM

,Vol.37,N
o.4,A

rticle
111.Publication

date:A
ugust2018.



1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

D
eep

Learning
for

Tim
e
Series

Forecasting:Tutorialand
Literature

Survey
111:25

N-BEATS [138] MLP Point ≥ 1 sMAPE, MASE,
MAPE

sMAPE, MASE,
OWA

M4 Deep, residual MLP that learns
interpretable trend and
seasonality function

Lv et al. [126] Stacked autoencoder Point ≥ 1 MSE, KL sparsity
constraint

MAE, MRE, RMSE traffic Stacked autoencoders with
logistic regression output layer

DCRNN [118] RNN Point ≥ 1 NLL MAE, MAPE,
RMSE

traffic Diffusion convolution for
spatial and RNN for temporal

dependencies

Asadi and Regan [6] CNN + RNN Point ≥ 1 ℓ2 MAE, RMSE traffic Decomposition-based model
for spatio-temporal forecasting

Bandara et al. [14] RNN + Classical
Decomposition

Point ≥ 1 - sMAPE CIF2016, NN5 Clusters time series based on
set of features and train one

model per cluster

LSTM-MSNet [13] RNN + Classical
Decomposition

Point ≥ 1 ℓ1 sMAPE, MASE M4, energy Decomposition based model
with multiple seasonal patterns

Cinar et al. [39] RNN + Attention Point ≥ 1 ℓ2 , ℓ2 regularizer MSE, sMAPE energy, max
temperature, CPU
usage, air quality

Attention mechanism on top of
RNN

Deep Factors [188] RNN + GP Prob ≥ 1 NLL QL, MAPE electricity, traffic, taxi,
uber

Global RNN and a local GP

DeepGLO [162] CNN Point ≥ 1 ℓ2 WAPE, MAPE,
sMAPE

electricity, traffic, wiki Global matrix factorization
regularized by a deep leveled

network

ES-RNN [169] RNN Point ≥ 1 QL MASE, sMAPE,
MSIS

M4 Locally estimated seasonality
and trend and global RNN

Kourentzes [105] MLP Point 1 ℓ2 ME, MAE, service
level

intermittent demand MLP-based intermittent
demand model
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Attentional Twin RNN
[195]

RNN Prob 1 NLL MAE point process data Event sequence prediction

Gutierrez et al. [73] MLP Point 1 ℓ2 MAPE, RGRMSE,
PB

intermittent demand MLP-based intermittent
demand model

Deep Renewal Process
[181]

RNN Prob ≥ 1 NLL P50, P90 quantile
loss

intermittent demand RNN-based intermittent
demand model inspired by

point processes

WaveNet [4, 183] CNN Prob ≥ 1 NLL mean opinion
score

traffic, electricity, M4 Diluted causal convolutions

Transformer [116] MLP Point 1 NLL QL electricity, traffic,
wind, M4, solar

Transformer with causal
convolutions and sparse

attention

AttnAR [198] CNN Point 1 ℓ2 RMSE electricity, traffic,
solar, exchange rate

Multivariate forecasting

LSTM MAF [151] RNN Prob ≥ 1 NLL RMSE electricity, traffic,
solar, exchange rate

Multivariate forecasting using
normalizing flows

TimeGrad [150] RNN Prob ≥ 1 NLL RMSE electricity, traffic,
solar, exchange rate,

taxi, wikipedia

Multivariate forecasting using
diffusion models.

TFT [119] LSTM, MLP Prob ≥ 1 QL P50, P90 quantile
loss

electricity, traffic,
retail, volatility

Modified transformer
architecture for improved

interpretability

MQ-Transformer
[51]

CNN, MLP Prob ≥ 1 QL P50, P90, LT-SP electricity, traffic,
retail, volatility, retail
demand (proprietary)

Architectural improvements on
MQ-RNN/CNN for multi-step

forecasting

Informer [204] CNN, MLP Point ≥ 1 MSE MSE, MAE electricity, weather,
sensor data

Sparse and computationally
efficient transformer

architecture

Table 2. Summary of modern deep forecasting models.
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determine the correct method. Some NN architectures need extensions to include such information
while others readily accept them.

From a practical perspective, NNs have been reported to outperform demand forecasting baselines
starting from 50000 observations in [156] and from a few hundred observations in load-forecasting
[146, 188]. Understanding better these limitation, both theoretically and empirically, is an area of
current research and is not yet well understood. See [131] for some current theoretical work on
sample complexity of global-local approaches for instance and [23] for empiricial work.

3.9.3 Problem characteristics. The characteristics of the forecasting problem to be solved are
natural important decision points. We list a few dimensions to consider here.
One important aspect of a model is its forecast nature, i.e., if it produces probabilistic or point

forecasts. The choice of this is highly dependent on the underlying application. To illustrate this we
can examine two different forecasting use cases: product demand and CPU utilization. In the former
use case one wishes to forecast the future demand of a product in order to take a more informed
decision about the stock that is required to have in a warehouse or to optimize the labour planning
based on the traffic that is expected. In the latter, the forecast of CPU utilization could be used to
identify in a timely manner if a process will fail in order to proactively resolve associated issues, or
to detect possible anomalous behaviours that could trigger some root cause analysis and system
improvements. Although in both applications a forecast is required, the end goal is different, which
changes the requirements of the chosen forecasting model. For example, for product demand the
whole distribution of the future demand might be important: one cannot rely on a single forecast
value since the variance in the forecast plays an important role to avoid out of stock issues or
under/over planning the expected required labour. Therefore, in this application it is important
to use a model that focuses on predicting accurately the whole distribution. On the other hand,
for CPU utilization one might be interested in the 99-th percentile, since everything below that
threshold might not be of particular interest or does not produce any actionable alarm. In this case,
a model that focuses on a particular quantile of importance is of higher interest than a model that
predicts the whole distribution with possibly worse accuracy on the selected quantile.
It is observed [42, 106, 146, 155, 156] empirically that autoregressive models are superior in

performance (in terms of forecast accuracy) compared to state space models, especially when the
data is less noisy and the forecast horizon is not too long. This is not surprising given that the
autoregressive models directly use past observations as input features and treat own predictions as
lag inputs in the multi-step forecast setting. A general rule of thumb is that if one knows details
such as the forecast horizon, the quantile to query or the exact goals of the forecasting problem
in advance and these are unlikely to change, then a discriminative model is often a good default
choice. Conversely, state space models proved to be robust when there are missing and/or noisy
observations [42]. Moreover, if the application-specific constraints can be incorporated in the latent
state, then state space models usually perform better even in the low-data regimes [146].
The length of the forecast horizon relative to the history or, more generally speaking, the

importance of the historic values for future values must further be taken into account. For example,
very long forecast horizons may require to control (e.g., via differential equations) the exponential
growth in the target. A canonical example for this is forecasting of a pandemic. This example
further clarifies the importance of being able to produce counterfactuals for what-if analysis (e.g.,
the incorporation of intervention). Not all deep forecasting models allow for this.

3.9.4 Other Aspects. A number of other aspects can further help to narrow the model exploration
space. For example, computational constraints (how much time/money for training is available,
are there constraints on the latency during inference) can favor “simpler” NNs, see e.g., [23] for a
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discussion on multi-objective forecasting model selection. Another aspect to consider could be CNN
over RNN-based architectures. The skill set of the research team available is an important factor.
For example, probabilistic models often are more sensitive towards parametrization and identifying
reasonable parameter ranges requires in-depth knowledge. On the other extreme, troubleshooting
Transformer-based models requires deep learning experience that not every research team may
possess. The time budget available for model development and the willingness to extend existing
models are further factors.

4 CONCLUSIONS AND AVENUES FOR FUTUREWORK
This article has attempted to provide an introduction to and an overview of NNs for forecasting
or deep forecasting. We began by providing a panorama of some of the core concepts in the
modern literature on NNs chosen by their degree of relevance for forecasting. We then reviewed
the literature on recent advances in deep forecasting models.

Deep forecastingmethods have received considerable attention in the literature because they excel
at addressing forecasting problems with many related time series and at extracting weak signals
and complex patterns from large amounts of data. From a practical perspective, the availability of
efficient programming frameworks helps to alleviate many of the pain points that practitioners
experience with other forecasting methods such as manual feature engineering or the need to
derive gradients. However, NNs are not a silver bullet. For many important classes of forecasting
problems such as long-rangemacro-economic forecasts or other problems requiring external domain
knowledge not learnable from the data, deep forecasting methods are not the most appropriate
choice and will likely never be. Still, it is our firm belief that NNs belong to the toolbox of every
forecaster, in industry and academia.
Building onto the existing promising work in NNs for forecasting, many challenges remain

to be solved. We expect that the current trends of hybridizing existing time series techniques
with NNs [64, 146, 169, 181] and bringing innovations from other related areas or general purpose
techniques to forecasting [71, 183, 184] will continue organically. Typical general challenges for
NNs, such as data effectiveness, are important in forecasting and likely need a special treatment (see
[59] for an approach in time series classification with transfer learning). Other topics of general ML
interest such as interpretability, explainability and causality (e.g., [19, 122, 158]) are of particular
practical importance in the forecasting setting. It is our hope that original methods such as new
NN architectures will be pioneered in the time series prediction sector (e.g., [138]) and that those
will then feed back into the general NN literature to help solve problems in other disciplines.

Beyond such organic improvements, we speculate that another area in which NNs have had
tremendous impact [167, 168] may become important for forecasting, namely deep reinforcement
learning. In contrast to current practice, where forecasting merely serves as input to downstream
decision problems (often mixed-integer nonlinear stochastic optimization problems), for example
to address problems such as restocking decisions, reinforcement learning allows to directly learn
optimal decisions in business context [89]. It will be interesting to see whether reinforcement based
approaches can improve decision making – and how good forecasting models could help improve
reinforcement approaches.
As methodology advances, so will the applicability. Many potential applications of forecasting

methods are under-explored. To pick areas that are close to the authors’ interests, in database
management, cloud computing, and system operations a host of applications would greatly benefit
from the use of principled forecasting methods (see e.g., [9, 22, 60]). Forecasting can also be used
to improve core ML tasks such as hyperparameter optimization (e.g., [47]) and we expect more
applications to open up in this area.
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