
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

111

Deep Learning for Time Series Forecasting: Tutorial and
Literature Survey

KONSTANTINOS BENIDIS∗, Amazon Research, Germany
SYAMA SUNDAR RANGAPURAM, Amazon Research, Germany
VALENTIN FLUNKERT, Amazon Research, Germany
YUYANG WANG, Amazon Research, USA
DANIELLE MADDIX, Amazon Research, USA
CANER TURKMEN, Amazon Research, Germany
JAN GASTHAUS, Amazon Research, Germany
MICHAEL BOHLKE-SCHNEIDER, Amazon Research, Germany
DAVID SALINAS, Amazon Research, Germany
LORENZO STELLA, Amazon Research, Germany
FRANÇOIS-XAVIER AUBET, Amazon Research, Germany
LAURENT CALLOT, Amazon Research, Germany
TIM JANUSCHOWSKI∗†, Zalando SE, Germany

Deep learning based forecasting methods have become the methods of choice in many applications of time
series prediction or forecasting often outperforming other approaches. Consequently, over the last years,
these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently
ranked among the best entries in forecasting competitions (e.g., M4 and M5). This practical success has further
increased the academic interest to understand and improve deep forecasting methods. In this article we provide
an introduction and overview of the field: We present important building blocks for deep forecasting in some
depth; using these building blocks, we then survey the breadth of the recent deep forecasting literature.

∗Equal contribution.
†Work done while at AWS.

Authors’ addresses: Konstantinos Benidis, kbenidis@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin, Germany,
10969; Syama Sundar Rangapuram, rangapur@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin, Germany,
10969; Valentin Flunkert, flunkert@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin, Germany, 10969; Yuyang
Wang, yuyawang@amazon.com, Amazon Research, 1900 University Ave., East Palo Alto, CA, USA, 94303; Danielle Maddix,
dmmaddix@amazon.com, Amazon Research, 1900 University Ave., East Palo Alto, CA, USA, 94303; Caner Turkmen,
atturkm@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin, Germany, 10969; Jan Gasthaus, gasthaus@amazon.
com, Amazon Research, Charlottenstrasse 4, Berlin, Germany, 10969; Michael Bohlke-Schneider, bohlkem@amazon.com,
Amazon Research, Charlottenstrasse 4, Berlin, Germany, 10969; David Salinas, dsalina@amazon.com, Amazon Research,
Charlottenstrasse 4, Berlin, Germany, 10969; Lorenzo Stella, stellalo@amazon.com, Amazon Research, Charlottenstrasse
4, Berlin, Germany, 10969; François-Xavier Aubet, aubetf@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin,
Germany, 10969; Laurent Callot, lcallot@amazon.com, Amazon Research, Charlottenstrasse 4, Berlin, Germany, 10969; Tim
Januschowski, tim.januschowski@zalando.de, Zalando SE, Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0004-5411/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

111:2 Benidis et al.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies
→ Probabilistic reasoning; Artificial intelligence; • Mathematics of computing → Probabilistic
algorithms.

Additional Key Words and Phrases: time series, forecasting, neural networks

ACM Reference Format:
Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle Maddix, Caner
Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella, François-Xavier Aubet,
Laurent Callot, and Tim Januschowski. 2018. Deep Learning for Time Series Forecasting: Tutorial and Literature
Survey. J. ACM 37, 4, Article 111 (August 2018), 37 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Forecasting is the task of extrapolating time series into the future. It has many important appli-
cations [54] such as forecasting the demand for items sold by retailers [15, 25, 41, 136, 156, 190],
the flow of traffic [111, 118, 126], the demand and supply of energy [45, 117, 157, 170], or the
covariance matrix, volatility and long-tail distributions in finance [12, 29, 30, 124, 197]. As such, it
is a well-studied area (e.g., see [84] for an introduction) with its own dedicated research commu-
nity. The machine learning, data science, systems, and operations research communities as well
as application-specific research communities have also studied the problem intensively (e.g., see
a series of recent tutorials [55–58]). In contrast to traditional forecasting applications, modern
incarnations often exhibit large panels of related time series, all of which need to be forecasted
simultaneously [91]. Although these problem characteristics make them amenable to deep learning
or neural networks (NNs), as in many other domains over the course of history, NNs were not
always a standard tool to tackle such problems. Indeed, their effectiveness has historically been
regarded as mixed (e.g., [201]).

The history of NNs starts in 1957 [152] and in 1964 for NNs in forecasting [83]. Since then, interest
in NNs has oscillated, with upsurges in attention attributable to breakthroughs. The application of
NNs in time series forecasting has followed the general popularity, typically with a lag of a few
years. Examples of such breakthroughs include Rumelhart et al. [153, 154] that popularized the
training of multilayer perceptrons (MLPs) using back-propagation. Significant advances were made
subsequently such as the use of convolutional NNs (CNNs) [113], and Long Short Term Memory
(LSTM) [81] cells that address the issue of recurrent NNs’ (RNNs) training, just to name a few.
Despite these advances, NNs remained hard to train and difficult to work with. Methods such as
Support Vector Machines (SVMs) [26] and Random Forests [79] that were developed in the 1990s
proved to be highly effective (LeCun et al. [115] found that SVMs were as good as the best designed
NNs available at the time) and were supported by attractive theory. This shifted the interest of
researchers away from NNs. Forecasting was no exception and results obtained with NNs were
mostly mixed as reflected in a highly cited review [201]. The breakthrough that marked the dawn
of the deep learning era came in 2006 when Hinton et al. [78] showed that it was possible to train
NNs with a large number of layers (deep) if the weights are initialized appropriately. Accordingly,
deep learning has had a sizable impact on forecasting [110] and NNs have long entered the canon
of standard techniques for forecasting [84]. New models specifically designed for forecasting tasks
have been proposed, taking advantage of deep learning to supercharge classical forecasting models
or to develop entirely novel approaches. This recent burst of attention on deep forecasting models
is the latest twist in a long and rich history.
Driven by the availability of (closed-source) large time series panels, the potential of deep

forecasting models, i.e., forecasting models based on NNs, has been exploited primarily in applied

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:3

industrial research divisions over the last years [64, 111, 156, 190].1 With the overwhelming success
of deep forecasting methods in the M4 competition [169], this has convinced also formerly skeptical
academics [128, 129]. In the most recent M5 competition, deep forecasting methods were the second
and third placed solutions [130] although the competition was otherwise dominated by tree-based
forecasting methods such as LightGBM [99] and XGBoost [33], see e.g., [92]. Modern software
frameworks [1, 34, 143] have sped up the development of NN models and dedicated forecasting
packages available [4].
While the history of NNs for forecasting is rich, the focus of this article is on more recent

developments in NN for forecasting, roughly since the time that the term “deep learning” was coined.
As such, we do not attempt to give a complete historical overview and sacrifice comprehensiveness
for recency. The main objectives of this article are to educate on, review and popularize the recent
developments in forecasting driven by NNs for a general audience. Therefore, we place emphasis on
an educational aspect via a tutorial of deep forecasting in the first part (Section 2). In the second part,
Section 3, we provide an overview of the state-of-the-art of modern deep forecasting models. Our
exposition is driven by an attempt to identify the main building blocks of modern deep forecasting
models which hopefully enables the reader to digest the rapidly increasing literature more easily.
We do not attempt a taxonomy of all existing methods and our selection of the building blocks is
opinionated, motivated by our experience of innovating in this area with a strong focus on practical
applicability. Compared with other surveys [76, 120, 201], we provide a more comprehensive
overview with a particular focus on recent, advanced topics. Finally, in Section 4, we conclude and
speculate on potentially fruitful areas for future research.

2 DEEP FORECASTING: A TUTORIAL
In the following, we formalize the forecasting problem, summarize those advances in deep learning
that we deem as the most relevant for forecasting, expose important building blocks for NNs
and discuss archetypal models in detail. For general improvements that fueled the deep learning
renaissance, like weight initialization, optimization algorithms or general-purpose components such
as activation functions, we refer to standard textbooks like [70]. We are aware to be opinionated in
both the selection of topics as well as the style of exposition. We attempt to take a perspective akin
to a deep forecasting model builder who would compose a forecasting model out of several building
blocks such as NN architectures, input transformations and output representations. Although not
all models will fit perfectly into this exposition, it is our hope that this downside is outweighed by
the benefit of allowing the inclined reader to invent new models more easily.

2.1 Notation and Formalization of the Forecasting Problem
Matrices, vectors and scalars are denoted by uppercase bold, lowercase bold and lowercase normal
letters, i.e., X, x and 𝑥 , respectively. Let Z = {z𝑖,1:𝑇𝑖 }𝑁𝑖=1 be a set of 𝑁 univariate time series, where
z𝑖,1:𝑇𝑖 = (𝑧𝑖,1, . . . , 𝑧𝑖,𝑇𝑖), 𝑧𝑖,𝑡 is the value of the 𝑖-th time series at time 𝑡 and Z𝑡1:𝑡2 the values of all
𝑁 time series at the time slice [𝑡1, 𝑡2]. Typical examples for the domain of the time series values
include R,N,Z, [0, 1]. The set of time series is associated with a set of covariate vectors denoted by
X = {X𝑖,1:𝑇𝑖 }𝑁𝑖=1, with x𝑖,𝑡 ∈ R𝑑𝑥 . Note that each vector x𝑖,𝑡 can include both time-varying or static
features. We denote by 𝛼 a general input in a model (that can be any combination of covariates and
lagged values of the target) and by 𝛽 a general output. Since 𝛼 and 𝛽 refer to a general case, we
always represent them with lowercase normal letters. We denote by 𝜃 the parameters of a model

1Forecasting is an example of a sub-discipline in the machine learning community where the comparatively modest attention
it receives in published research is in stark contrast to a tremendous business impact.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

111:4 Benidis et al.

(e.g., parameters of a distribution) and by Φ the learnable free parameters of the underlying NN
(e.g., the weights and biases).

In the most general form, the object of interest in forecasting is the conditional distribution

𝑝 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;𝜃), (1)

where 𝜃 are the parameters of a (probabilistic) model. Eq. (1) is general in the sense that each z𝑖 ∈ Z
is multidimensional (the length of the time series), Z is multivariate (the number of time series
|Z| = 𝑁 > 1) and the forecast is multi-step (ℎ steps). Varying degrees of simplification of Eq. (1)
are considered in the literature, for example by assuming factorizations of 𝑝 and different ways of
estimating 𝜃 . In the following, we present the three archetypical models for addressing Eq. (1).
Local univariate model: A separate (local) model is trained independently for each of the 𝑁

time series, modelling the predictive distribution

𝑝 (z𝑖,𝑡+1:𝑡+ℎ |z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ ;𝜃𝑖), 𝜃𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ), (2)

where Ψ is a generic function mapping input features to the parameters 𝜃𝑖 of the probabilistic
model that are local to the 𝑖-th time series. Note that one may use multidimensional covariates
x𝑖,𝑡 for each of the 𝑁 models, but they are still solving a univariate problem, i.e., forecasting only
one time series. The use of covariates common to all 𝑁 models is possible but any pattern that is
learned in one model is not used in another (unless provided explicitly which prohibits parallel
training). Many classical approaches fall into this category and traditionally NNs were employed in
this local fashion (e.g., [201]). Note that this approach is not suitable for cold start problems: i.e.,
forecasting a time series without historical values.
Global univariate model: A single, global model [90, 135] is trained using available data

from all 𝑁 time series. However, the model is still used to predict a univariate target. It does not
produce joint forecasts of all time series but forecasts of any single time series at a time. This is
also sometimes referred to as a cross-learning approach, e.g., [161]. In a more general form, global
univariate models specialize Eq. (1) to

𝑝 (z𝑖,𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;𝜃𝑖), 𝜃𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ), (3)

where Φ are shared parameters among all 𝑁 time series.
In this article, Ψ in global models is usually a NN and X𝑖 include item-specific features to allow

the model to distinguish between the time series. Although the parameters 𝜃𝑖 of the probabilistic
model for each time series are different, they are still predicted using shared parameters (or weights)
Φ in Ψ. This allows for efficient learning since the model pools information from all time series
and in particular improves inference for shorter time series compared to local univariate models.
Such a model is expected to learn some advanced features (“embeddings”) exploiting information
across time series. Once these advanced features are learned via Ψ, the global model is then used
to forecast each time series independently. That is, although during training the model sees all
the related time series together, the prediction is done by looking at each time series individually.
Note that the embeddings learned in the global model are useful beyond the 𝑁 time series used
in the training. This addresses the cold start problem in the sense that the global model can be
used to provide forecasts for time series without historical values. Global models are also referred
to as cross-learning or panel models in econometrics and statistics and have been the subject of
considerable study, e.g., via dynamic factor models [66].
Multivariate model: Here, a single model is learned for all 𝑁 time series using all available

data, directly predicting the multivariate target:

𝑝 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;𝜃), 𝜃 = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ). (4)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:5

Table 1. Summary of deep forecasting models based on forecast and model type. For one-step and multi-step
forecasting models ℎ = 1 and ℎ > 1, respectively.

Forecast type Model type Formulation

Point
Local univariate ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ)
Global univariate ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ)

Multivariate Ẑ𝑡+1:𝑡+ℎ = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ)

Probabilistic
Local univariate 𝑃 (z𝑖,𝑡+1:𝑡+ℎ |z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ ;𝜃𝑖), 𝜃𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ)
Global univariate 𝑃 (z𝑖,𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;𝜃𝑖), 𝜃𝑖 = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ)

Multivariate 𝑃 (Z𝑡+1:𝑡+ℎ |Z1:𝑡 ,X1:𝑡+ℎ ;𝜃), 𝜃 = Ψ(Z1:𝑡 ,X1:𝑡+ℎ,Φ)

Note that the model also learns the dependency structure among the time series. Technically
speaking, Eq. (4) is a global multivariate model and a further distinction from local multivariate
models, such as VARMA [125], is possible.

Remarks. Note that in Eq. (1) and in the following model-specific cases we have chosen the multi-
step ahead predictive distribution. We can always obtain a multi-step predictive distribution via a
rolling one-step predictive distribution. In our discussion so far, we presented probabilistic forecast
models that learn the entire distribution of the future values. However, it may be desirable to model
specific values such as the mean, median or some other quantile, instead of the whole probability
distribution. These are called point-forecast models and the optimal choice of the summary statistics
to turn a probabilistic forecast into a point forecast depends on the metric used to judge the quality
of the point forecast [104]. More concretely, a point-forecast global univariate model learns a
quantity ẑ𝑖,𝑡+1:𝑡+ℎ = Ψ(z𝑖,1:𝑡 ,X𝑖,1:𝑡+ℎ,Φ), where ẑ𝑖,𝑡+1:𝑡+ℎ is some point estimate of the future values
of the time series. Table 1 summarizes the various modelling option based on the forecast and
model types.

2.2 Neural Network Architectures
NNs are compositions of differentiable functions formed from simple building blocks to learn an
approximation of some unknown function from data. An NN is commonly represented as a directed
acyclic graph consisting of nodes and edges. The edges between the nodes contain weights (also
called parameters) that are learned from the data. The basic unit of every NN is a neuron (illustrated
in Fig. 1a), consisting of an input, an affine transformation with learnable weights and (optionally)
a nonlinear activation function. Different types of NNs arrange these components in different ways.
We refer to other reviews [120] for more details on the main architectures. Here, we only offer a
high-level summary for completeness, focusing instead on forecasting specific ingredients for NNs
such as input processing and loss functions.

2.2.1 Multilayer perceptron. In multilayer perceptrons (MLPs) or synonymously feedforward NNs,
layers of neurons are stacked on top of each other to learn more complex nonlinear representations
of the data. An MLP consists of an input and an output layer, while the intermediate layers are called
hidden. The nodes in each layer of the network are fully connected to all the nodes in the previous
layer. The output of the last hidden layer can be seen as some nonlinear feature representation
(also called an embedding) obtained from the inputs of the network. The output layer then learns
a mapping from these nonlinear features to the actual target. Learning with MLPs, and more
generally with NNs, can be thought of as the process of learning a nonlinear feature map of the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Benidis et al.

𝛼1

Inputs

𝑤1

Weights

𝛼2 𝑤2 Σ 𝑓 (·)

Activation
function

𝛽

Output

𝛼3 𝑤3

Bias
𝑏

(a) Single node

𝛼1

𝛼2

𝛼3

𝛼4

𝛽1

𝛽2

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

(b) MLP

Fig. 1. (a) Structure of a single node or neuron. An affine transformation is applied to the input followed by
an activation function, i.e., 𝛽 = 𝑓 (∑𝛼𝑖𝑤𝑖 + 𝑏). The weights and bias parameters are learned during training.
(b) Illustration of the MLP structure. Each circle in the hidden and output layers is a node, i.e., it applies an
affine transformation followed by a nonlinear activation to the set of its inputs.

inputs and the relationship between this feature map and the actual target. Figure 1b illustrates the
structure of an MLP with two hidden layers. Modern incarnations of the MLP have added important
details to alleviate problems like vanishing gradients [80]. For example, ResNet [75], contains direct
connections between hidden layers ℓ − 1 and ℓ + 1, skipping over the hidden layer ℓ .
One of the main limitations of MLPs is that they do not exploit the structure often present in

the data in applications such as computer vision, natural language processing and forecasting.
Moreover, the number of inputs and outputs is fixed making them inapplicable to problems with
varying input and output sizes as in forecasting. Next, we discuss more complex architectures that
overcome these limitations, for which MLPs are often used as the basic building blocks.

2.2.2 Convolutional neural networks. Convolutional neural networks (CNNs) [112] are a special
class of NNs that are designed for applications where inputs have a known ordinal structure such
as images and time series [70]. CNNs are locally connected NNs that use convolutional layers
to exploit the structure present in the input data by applying a convolution function to smaller
neighborhoods of the input data. Convolution here refers to the process of computing moving
weighted sums by sliding the so-called filter or kernel over different parts of the input data. The size
of the filter as well as how the filter is slid across the input are part of the hyperparameters of the
model. A nonlinear activation, typically ReLU [68], is then applied to the output of the convolution
operation.

In addition to convolutional layers, CNNs also typically use a pooling layer to reduce the size of
the feature representation as well as to make the features extracted from the convolutional layer
more robust. For example, a commonly used max-pooling layer, which is applied to the output of
convolutional layers, extracts the maximum value of the features in a given neighborhood. Similarly
to the convolution operation, the pooling operation is applied to smaller neighborhoods by sliding
the corresponding filter over the input. A pooling layer, however, does not have any learnable
weights and hence both the convolution and the pooling layer are counted as one layer in CNNs.

Of particular importance for forecasting are the so-called causal convolutions, defined as

ℎ 𝑗 =
∑︁
𝑑∈D

𝑤𝑑𝛼 𝑗−𝑑 ,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:7

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

(a) CNN

𝛼1 𝛼2 𝛼3

h0 h1 h2 h3 h4

𝛽1 𝛽2 𝛽3

(b) RNN

Fig. 2. (a) Structure of a CNN consisting of a stack of three causal convolution layer. The input layer (green)
is non-dilated and the other two are dilated. (b) Structure of an unrolled RNN. At each timestep 𝑡 the network
receives an external input 𝛼𝑡 and the output of the hidden units from the previous time step h𝑡−1. The hidden
units all share the same weights. The internal state of the network is updated to h𝑡 that is going to play the
role of the previous state in the next timestep 𝑡 + 1. Finally, the network outputs 𝛽𝑡 which is a function of 𝛼𝑡
and h𝑡 .

where ℎ 𝑗 is the output of a hidden node, 𝛼 denotes the input, D = {1, . . . , 𝑛} for some 𝑛, |D| is
the width of the causal convolution (or also called the receptive field) and w are the learnable
parameters. In other words, causal convolutions are weighted moving averages which only take
inputs into account which are before 𝑗 hence the reference to causality in its name. A variation are
dilated causal convolutions where we vary the index set D, e.g., such that it does not necessarily
contain consecutive values, but only every 𝑘-th value. Typically, these dilated causal convolutions
are stacked on top of each other where the output of one layer of dilated causal convolutions is the
input of another layer of causal convolution and the dilation grows by the depth of the NN. Figure
2a illustrates the general structure of a CNN with dilated causal convolutions.

2.2.3 Recurrent neural networks. Recurrent neural networks (RNNs) are NNs specifically designed
to handle sequential data that arise in applications such as time series, natural language processing
and speech recognition. The core idea consists of connecting recurrently the NNs’ hidden units
back to themselves with a time delay [94, 95]. Since hidden units learn some kind of feature
representations of the raw input, feeding them back to themselves can be interpreted as providing
the network with a dynamic memory. One crucial detail here is that the same network is used for
all timesteps, i.e., the weights of the network are shared across timesteps. This weight-sharing idea
is similar to that in CNNs where the same filter is used across different parts of the input. This
allows the RNNs to handle sequences of varying length during training and, more importantly,
generalize to sequence lengths not seen during training. Figure 2b illustrates the general structure
of an (unrolled) RNN.
Although RNNs have been widely used in practice, training them is difficult given that they

are typically applied to long sequences of data. A common issue while training very deep NNs by
gradient-based methods using back-propagation is that of vanishing or exploding gradients [142]
which renders learning challenging. Hochreiter and Schmidhuber [81] proposed Long short-term
memory networks (LSTM) to address this problem. Similar to Resnet, via the skip-connections,
LSTMs (and a simplified version Gated recurrent units (GRU) [36]) always offer a path where the
gradient does not vanish or explode.

2.2.4 Transformer. A more recent architecture is based on the attention mechanism which has
received increased interest in other sequence learning tasks [37, 38, 116, 184] for its ability to
improve on long sequence prediction tasks over RNNs. One natural way to address this issue is to

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 Benidis et al.

learn more than one feature representation (contrary to RNNs), e.g., one for each time step of the
input sequence and decide which of these representations are useful to predict the current element
of the target sequence. Bahdanau et al. [10] suggest using a weighted sum of the representations
where the weights are jointly learned along with the feature representation learning and the
prediction. Note that at each time step in the prediction, one needs to learn a separate set of weights
for the representations. This is essentially training the predictor to learn to which parts of the
input sequence it should pay attention to produce a prediction. This attention mechanism has been
shown to be instrumental for the state of the art in speech recognition and machine translations
tasks [37, 38]. Inspired by the success of attention models, Vaswani et al. [184] developed the
so-called Transformer model and showed that attention alone is sufficient, thus making the training
amenable for parallelization and large number of parameters [28, 44]. In the literature, the term
Transformer can refer to both the specific model and to the overall architecture as well.

2.3 Input Transformations
The careful handling of the input (parameters 𝛼𝑡 in Fig. 1 and 2) is a practically important ingredient
for deep learning models in general and deep forecasting models in particular. Deep forecasting
models are most commonly deployed as so-called global models (see Section 2.1), which means that
the weights of the NN are trained across the panel of time series. Hence, it is important that the
scale of the input is comparable. Standard techniques such as mean-variance scaling carry over to
the forecasting setting. In practice, it is important to avoid leakage of future values in normalization
schemes, so that mean and variance are taken over past windows (similar to causal convolutions).

Traditionally, the forecasting literature has used transformations such as the Box-Cox, i.e.,

ℎ =
𝑧𝜆 − 1
𝜆

, (5)

where 𝑧 is the input of the transformation, ℎ is the output and 𝜆 is a free parameter. Box-Cox
is a popular heuristic to have the input data more closely resemble the Gaussian distribution. A
Box-Cox transformation can be readily integrated into an NN, with the free parameter 𝜆 optimized
as part of the training process jointly with the other parameters of the network. More sophisticated
approaches based on probability integral transformation (PIT) or Copulas are similarly possible,
see e.g., [88] (and references therein) for a recent example.
A further standard technique is the discretization of input into categorical values or bins, for

example by choosing the number and borders of bins such that each bins contains equal mass, see
e.g., [145] for an example in forecasting.
We note that any input transformation must be reversed also to obtain values in the actual

domain of interest. It is a choice for the modeller where/when to apply this reversal. Two extreme
choices are to have transformation of the input and output fully outside the NN or have the input
transformations as part of the NN and hence be subjected to learning.

2.4 Output Models and Loss Functions
Similar to the input, the output (𝛽𝑡 in Fig. 1 and 2) deserve a special discussion. Closely related is
the question on the choice of loss function which we use to train a NN. The simplest form of an
output is a single value, also referred to as a point forecast. For this case, the output 𝑧𝑖,𝑡 is the best
(w.r.t. the chosen loss function) estimate for the true value 𝑧𝑖,𝑡 . Standard regression loss functions
(like ℓ𝑝 losses with their regularized modifications) can be used or more sophistication accuracy
metrics specifically geared towards forecasting such as the MASE, sMAPE or others [85].
As remarked in Section 2.1, a point estimate 𝑧𝑖,𝑡 can be seen as a particular realization from a

probabilistic estimate of 𝑝 (𝑧𝑖,𝑡). Depending on the accuracy metric used in forecasting, a different

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:9

Fig. 3. For a Gaussian distribution, its density function 𝑓 is on the left-hand panel, the corresponding
cumulative density function 𝐹 (the primitive integral of 𝑓) in the central panel and the quantile function 𝐹−1

on the right-hand panel.

realization may be appropriate [104]. So, even for obtaining point forecasts, probabilistic forecasts
are important. More importantly, forecasts are often used in downstream optimization problem
where some form of expected cost is to be minimized and for this, an estimate of the entire
probability distribution is required. The probability distribution can be represented equivalently by
its probability density function (PDF), the cumulative density function (CDF) or its inverse, the
quantile function. Fig. 3 contains a visualization of the different representations for the Gaussian
distribution. Across the deep forecasting landscape, most approaches (e.g., [64, 146, 148, 151, 156]),
have chosen the PDF and quantile function to represent 𝑝 (𝑧𝑖,𝑡) and we will discuss general recipes
next. Since the CDF has typically not been chosen to represent 𝑝 (𝑧𝑖,𝑡), we do not discuss it further.

2.4.1 PDF. Arguably the most common way to represent a probability distribution in forecasting
is via its PDF. The literature contains examples of using the standard parametric distribution
families to represent probabilistic forecasts. For example, the output layer of an NN may produce
the mean and variance parameter of a Gaussian distribution. So, the parameter 𝛽𝑡 in Fig. 1 and 2 is a
two-dimensional vector corresponding to 𝜇𝑡 and 𝜎𝑡 of a Gaussian distribution. We typically achieve
𝜎𝑡 ≥ 0 by mapping the corresponding parameter through a softplus function. For the loss function,
a natural choice is the negative log-likelihood (NLL) since a PDF allows to readily compute the
likelihood of a point under it.

Beyond Gaussian likelihood, a number of differentiable parametric distributions have been used
in the literature depending on the nature of the forecasting problem, e.g., the student-t distribution
or the Tweedie distribution for continuous data, the negative binomial distribution for count data
and more flexible approaches via mixtures of Gaussian. Although forecasting is most commonly
done for domains of numerical values (i.e., we assume 𝑧𝑖,𝑡 to be in R or N), other distributions such
as the multinomial have also been employed successfully in forecasting even though they have no
notion of the order on the domain [145]. The deployment of a multinomial distribution requires a
binning of the input values (see Section 2.3). An alternative approach is to cut the output space in
bins and treat each of them as a uniform distribution, while modelling the tails with a parametric
distribution [50], this results in a piecewise linear CDF.

2.4.2 Quantile function. Another representation of 𝑝 (𝑧𝑖,𝑡) is via the quantile function which has
a particular importance for forecasting. Often, a particular quantile is of practical interest. For
example, in a simplified supply chain scenario for inventory control, there is a direct correspondence
between the chosen quantile and a safety stock level in the newsvendor problem [54].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

111:10 Benidis et al.

Fig. 4. An illustration how a quantile function parametrized by linear splines (left panel) corresponds to a
piece-wise linear CDF (middle) which in turn corresponds to a piece-wise constant PDF as assumed in an
adaptive binning strategy (right panel).

So naturally, estimating the quantiles directly via quantile regression approaches [103] is a
common choice in forecasting either via choosing a single quantile (in a point-forecasting approach)
or multiple quantiles simultaneously [51, 190]. Essentially, this discretizes the quantile function
and estimates specific points only. A common choice for the loss function is the quantile loss or
pinball loss. For the 𝑞-th quantile and 𝐹−1 the quantile function, the quantile loss is defined as

QS𝑞
(
𝐹−1𝑖,𝑡 (𝑞), 𝑧𝑖,𝑡

)
:= 2

(
1{𝑧𝑖,𝑡 ≤𝐹−1𝑖,𝑡

(𝑞) } − 𝑞
) (
𝐹−1𝑖,𝑡 (𝑞) − 𝑧𝑖,𝑡

)
, (6)

where 1{cond } is the indicator function that is equal to 1 if cond is true and 0 otherwise. The output
of the NN is 𝐹−1𝑖,𝑡 (𝑞), i.e., the estimated value of the 𝑞-th quantile. For 𝑞 = 0.5 this reduces to the
median of the forecast distribution and is a common choice of point forecasts.

As an alternative to a quantile regression approach, we can make a parametric assumption on the
quantile function and estimate it directly. The main requirements for modelling a quantile function
are that its domain should be constrained to [0, 1] and the function should be monotonically
increasing. This can be achieved easily via linear splines for example, so the output of the NN’s
last layers are the corresponding free parameters. For the loss function, a rich theory around the
continuous ranked probability score (CRPS) exists [69, 132] and CRPS can be used as a loss function
directly. CRPS can be defined [108] to summarize all possible quantile losses as

CRPS(𝐹𝑖,𝑡 , 𝑧𝑖,𝑡) :=
∫ 1

0
QS𝑞

(
𝐹−1𝑖,𝑡 (𝑞), 𝑧𝑖,𝑡

)
𝑑𝑞. (7)

Multivariate extensions such as the energy score [69] exist.
Interestingly, a popular discretization strategy, adaptive binning, used with multinomial distribu-

tions corresponds to quantile functions parametrized by piece-wise linear splines, see Fig. 4.

2.4.3 Further approaches. The recent deep learning literature contains more advanced examples
for density estimation, most prominently via Generalized Adversarial Networks (GANs). We discuss
them in Section 3.8 and discuss normalizing flows here which have arguably resonated more strongly
in forecasting. Normalizing flows are invertible NNs that transform a simple distribution to a more
complex output distribution. Invertibility guarantees the conservation of probability mass and
allows the evaluation of the associated density function everywhere. The key observation is that the
probability density of an observation 𝑧𝑖,𝑡 can be computed using the change of variables formula:

𝑝 (𝑧𝑖,𝑡) = 𝑝𝑦𝑖,𝑡 (𝑓 −1 (𝑧𝑖,𝑡)) |det[Jac𝑓 −1𝑖,𝑡 𝑧𝑖,𝑡] |, (8)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:11

Canonical (One-to-One) Seq2Seq (Many-to-Many)

Fig. 5. Canonical versus sequence-to-sequence models.

where the first term 𝑝𝑦𝑖,𝑡 (𝑓 −1 (𝑧𝑖,𝑡)) is the (in general simple) density of a variable 𝑦𝑖,𝑡 , and the
second is the absolute value of the determinant of the Jacobian of 𝑓 −1𝑖,𝑡 , evaluated at 𝑧𝑖,𝑡 .
The invertible function 𝑓 is typically parametrized by an NN. A particular instantiation is the

Box-Cox transformation, Eq. (5). The field of normalizing flows (e.g., [46, 101, 137]) studies invertible
NNs that typically transform isotropic Gaussians to more complex data distributions. The choice of
a particular instantiation of 𝑓 can facilitate the computation of the likelihood of a given point when
the NLL is amenable as a loss function. Alternatively, generating samples may be computationally
more viable for other instantiations (this is typically the cases with generative adversarial networks
as well). In this case, the NLL can be replaced by other loss functions such as CRPS.

A number of extensions are possible. For example, more complex models for 𝑝 (𝑧𝑖,𝑡) are possible
such as HiddenMarkovModels or Linear Dynamical Systems. NNs can output the free parameters of
these models but then need to be combined with the learning and inference schemes associated with
these models, such as Kalman Filtering/Smoothing in the case of Linear Dynamical System [42, 146]
or the Forward/Backward Algorithm in the case of Hidden Markov Models [5]. Another avenue is to
relax constraints on the representation of 𝑝 (𝑧𝑖,𝑡) to obtain closely related objects withmore favorable
computational properties. For example, energy based models (EBMs) approximate the unnormalized
log-probability [77, 114]. EBMs perform well in learning high dimensional distributions at the cost
of being difficult to train [174] and have been employed in forecasting [150].

2.5 Archetypical Architectures
With all key components in place, in this section we present in more details popular forecasting
architectures. In particular we focus on the widely-used RNN-based architecture that takes as
input its previous hidden state, the currently available information and produces an one-step ahead
estimate of the target time series. There are subtle details on how to handle a multi-step unrolled
model during training (e.g., [109]), which we will skip over. We further examine the sequence-to-
sequence (seq2seq) modelling approach where the model takes an encoding sequence as input and
maps it to a decoding sequence (of predetermined length) on which the loss is computed against
the actual values z during training. A typical instance in the training set in this approach consists
of the target and covariate values up to a certain point in time 𝑡 as the encoding sequence and the
outputs of the NN are a predetermined number of target values after time 𝑡 . Figure 5 contrasts
both approaches. In the following we present two popular deep forecasting models, DeepAR and
MQRNN/MQCNN, in some details to illustrate the core concepts. They represent the one-step-ahead
RNN-based and seq2seq approach, respectively.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

111:12 Benidis et al.

𝛼𝑡−1 𝛼𝑡 𝛼𝑡+1

h𝑡−2 h𝑡−1 h𝑡 h𝑡+1 h𝑡+2

(𝜇𝑡 , 𝜎̂𝑡) (𝜇𝑡+1, 𝜎̂𝑡+1) (𝜇𝑡+2, 𝜎̂𝑡+2)

Fig. 6. DeepAR: The model outputs parameters of a
previously chosen family of distributions. Samples from
this distribution can be fed back into the model during
prediction (dotted lines) or in case of 𝛼𝑡 being missing.

2.5.1 DeepAR. Among the first of the mod-
ern deep forecasting models is DeepAR [156], a
global univariate model (see Table 1) that con-
sists of an RNN backbone (typically an LSTM).2
The input of the model is a combination of
lagged target values and relevant covariates.
The output is either a point forecast with a
standard loss function or, in the basic variant,
a probabilistic forecast via the parameters of a
PDF (e.g., 𝜇 and 𝜎 of a Gaussian distribution),
where the loss function is then the NLL. The
output modelling of DeepAR has been the sub-
ject of follow-upwork, e.g., Jeon and Seong [93]
propose a Tweedie loss, Mukherjee et al. [136] propose a mixture of Gaussians as the distribution
and domain specific feature processing blocks. Figure 6 summarizes the architecture. The dotted
arrows in the picture correspond to drawing a sample that can be used as alternative input (as
a lagged target) during training (even though 𝛼𝑡 may be available or in the case where an 𝛼𝑡 is
missing) and during prediction to obtain multi-step ahead forecasts.

It is also possible to change the output of DeepAR to model the quantile function and use CRPS,
Eq. (7), as the loss function [64, 72, 96]. While this in general computationally challenging, special
cases are amendable for practical computation. For example, we can assume a parametrization of
the quantile function by linear isotonic regression splines:

𝑠 (𝑞;𝛾, 𝑏, 𝑑) = 𝛾 +
𝐿∑︁
ℓ=0

𝑏ℓ (𝑞 − 𝑑ℓ)+ (9)

where 𝑞 ∈ [0, 1] is the quantile level, 𝛾 ∈ R is the intercept term, 𝑏 ∈ R𝐿+1 are weights describing
the slopes of the function pieces, 𝑑 ∈ R𝐿+1 is a vector of knot positions, 𝐿 the number of pieces
of the spline and (𝑥)+ = max(𝑥, 0) is the ReLU function. In order for 𝑠 (·) to represent a quantile
function we need to guarantee its monotonicity and restrict its domain to [0, 1]. Both of these
constraints can readily be achieved using standard NN tooling using a reparametrization of Eq. (9),
while CRPS can be solved in closed form for linear splines (see [64]).

Bag of tricks. While the general setup of DeepAR is straightforward, a number of algorithmic
optimizations turn it into a robust, general-purpose forecasting model. The handling of missing
values via sample replacement from the probability distribution is one such example. Another one
is oversampling of “important” training examples during training, where importance typically
corresponds to time series with larger absolute values. Adding lagged values further help improve
predictive accuracy. Lags can be chosen heuristically based on the frequency of the time series. For
example, in a time series with daily frequency, a lag of 7 days often helps. Similarly, covariates
corresponding to calendar events (e.g., indicator variables for weekends or holidays) can help
further.

2.5.2 MQRNN/MQCNN. As an example for another type of deep forecasting model, we discuss the
multi-horizon quantile recurrent forecaster (MQRNN) [190] next which was conceived concurrently
to DeepAR. Contrary to DeepAR, it is most naturally deployed as a discriminative, seq2seq model
in a quantile regression setting. For each time point 𝑡 in the forecast horizon, MQRNN outputs a

2Hewamalage et al. [76] provide an overview specifically targeted at RNNs for forecasting.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:13

chosen number of estimates for corresponding quantiles and the loss function in MQRNN is Eq. (6),
i.e., the pinball loss summed over all quantiles and time points.
While MQRNN can use multiple configurations, often a CNN-based architecture is chosen in

practice in the encoder (MQCNN) for computational efficiency reasons over RNN-based methods
and two MLPs in the decoder. The first MLP captures all inputs during the forecast horizon and the
context provided by the encoder. A second, local MLP applies only to specific horizons for which it
uses the corresponding available input and the output of the MLP. A further innovation provided
by MQCNN is the training scheme via the so-called forking sequences where the model forecasts
by placing a series of decoders with shared parameters at each timestep in the encoder. Thus, the
model can structurally forecast at each timestep, while the optimization process is stabilized by
updating the gradients from the sequences together. An additional component of MQRNN is a local
MLP component that aims to model spikes and events specifically.

3 LITERATURE REVIEW
In the prior section, we provided an in-depth introduction to selected, basic topics. Building on
these topics, we survey the literature on modern deep forecasting models more broadly in this
section. Given the breadth of the literature available, our selection is necessarily subjective.

We proceed as follows. In Section 3.1 we present probabilistic forecasting models, both one-step
and multi-step. Similarly, in Section 3.2 we summarize point forecast models. We remark that, after
Section 2, we have recipes at hand to turn an one-step ahead forecasting model into a multi-step
forecasting model and a point forecasting model into a probabilistic model. We discuss hybrids
of deep learning with state space models in Section 3.3, multivariate forecasting in Section 3.4,
physics-based model in Section 3.5, global-local models in Section 3.6, models for intermittent time
series in Section 3.7 and generative adversarial networks for forecasting in Section 3.8. We close
this section with an overview of the large number of available models in Section 3.9 where we also
provide guidelines on where to start the journey with deep forecasting models.

3.1 Probabilistic Forecast Models
3.1.1 One-step forecast. The DeepAR model presented in Sec. 2.5.1, is an example of one-step
canonical forecasting model. In its base variant, DeepAR is a global univariate model which learns
a univariate distribution; we discuss multivariate extensions in Sec. 3.4. DeepAR can be equipped
with outputs representing a parametrized PDF including Gaussian Mixture Distributions Mukherjee
et al. [136] or quantile functions Gasthaus et al. [64].

Rasul et al. [150] propose TimeGrad which, like DeepAR, is an RNN model using LSTM or GRU
cells for which samples are drawn from the data distribution at each time step, with the difference
that in TimeGrad the RNN conditions a diffusion probabilistic model [172] which allows the model
to easily scale to multivariate time series and accurately use the dependencies between dimensions.
Replacing the RNN-backbone of DeepAR with dilated causal convolutions has been proposed as
both point and probabilistic forecasting models [4, 20, 183].

3.1.2 Multi-step forecast. Contrary to the some of the models in Section 3.1.1 which produce
one-step ahead forecasts, multi-step forecasts can be obtained directly with a seq2seq architecture.
In Section 2.5.2, we reviewed the MQRNN/MQCNN architecture [190] as a seq2seq architecture for
probabilistic forecasting. The main advantage of seq2seq over one-step ahead forecast models is that
the decoder architecture can be chosen to output all future target values at once. This removes the
need to unroll over the forecast horizon which can lead to error accumulation since early forecast

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

111:14 Benidis et al.

errors propagate through the forecast horizon. Thus, the decoder of seq2seq forecasting models is
typically an MLP while other architectures are also used for the encoder [138, 190].

Wen and Torkkola [189] extended the MQCNN model with a generative quantile copula. This
model learns the conditional quantile function that maps the quantile index, which is a uniform
random variable conditioned on the covariates, to the target. During training, the model draws the
quantile index from a uniform distribution. This turns MQCNN into a generative, marginal quantile
model. The authors combine this approach with a Gaussian copula to draw correlated marginal
quantile index random values. They show that the Gaussian copula component improves the
forecast at the distribution tails. Chen et al. [35] proposed DeepTCN, another seq2seq model where
the encoder is the dilated causal convolution with residual blocks, and the decoder is simply an
MLP with residual connections. Structure-wise, DeepTCN is almost the same as the basic structure
of MQCNN [190], i.e., without the local MLP component that aims to model spikes and events.
Park et al. [141] propose the incremental quantile functions (IQF), a flexible and efficient

distribution-free quantile estimation framework that resolves quantile crossing with a simple
NN layer. A seq2seq encoder-decoder structure is used although the method can be readily applied
to recurrent models with one-step ahead forecasts [156]. IQF is trained using the CRPS loss (Eq. (7))
similar to [64].

A combination of recurrent and encoder-decoder structures has also been explored. In [205], the
authors use an LSTM with Monte Carlo dropout as both the encoder and decoder. However, unlike
other models that directly use RNNs to generate forecasts, the learned embedding at the end of the
decoding step is fed into an MLP prediction network and is combined with other external features
to generate the forecast. Along a similar line, Laptev et al. [111] employ an LSTM as a feature
extractor (LSTM autoencoder), and use the extracted features, combined with external inputs to
generate the forecasts with another LSTM.
Van Den Oord et al. [183] introduced the WaveNet architecture, a generative model for speech

synthesis, which uses dilated causal convolutions to learn the long range dependencies important
for audio signals. Since this architecture is based on convolutions, training is very efficient on GPUs
– prediction is still sequential and further changes are necessary for fast inference. Adaptations of
WaveNet for forecasting are available [4].

3.2 Point Forecast Models
Point forecast models do not model the probability distribution of the future values of a time series
but rather output directly a point forecast that typically corresponds to a summary statistic of the
predictive distribution. We have discussed generic recipes on how to turn a point forecasting model
into a probabilistic forecasting model in Section 2.4 and the literature contains further examples
(see e.g., [74, 175] for recent complementary approaches).

3.2.1 One-step forecast. A considerable amount of attention of the community is dedicated to
one-step forecasting. LSTNet [107] is a model using a combination of a CNN and an RNN. Targeting
multivariate time series, LSTNet uses a convolution network (without pooling) to extract short-term
temporal patterns as well as correlations among variables. The output of the convolution network
is fed into a recurrent layer and a temporal attention layer which, combined with the autoregressive
component, generates the final point forecast. While LSTNet uses a standard point forecast loss
function, it can readily be turned into a probabilistic forecast model using the components described
in Sec. 2, e.g., by modifying LSTNet to output the parameters of a probability distribution and using
NLL as a loss function. Qiu et al. [144] proposed an ensemble of deep belief networks for forecasting.
The outputs of all the networks is concatenated and fed into a support vector regression model
(SVR) that gives the final prediction. The NNs and the SVR are not trained jointly though. Hsu [82]

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:15

proposed an augmented LSTM model which combines autoencoders with LSTM cells. The input
observations are first encoded to latent variables, which is equivalent to feature extraction, and are
fed into the LSTM cells. The decoder is an MLP which maps the LSTM output into the predicted
values. For point forecast multivariate forecasting, Yoo and Kang [198] proposed time-invariant
attention to learn the dependencies between the dimensions of the time series and use them with a
convolution architecture to model the time series.

Building upon the success of CNNs in other application domains, Borovykh et al. [24] proposed
an adjustment to WaveNet [183] that makes it applicable to conditional forecasting. They evaluated
their model on various datasets with mixed results, concluding that it can serve as a strong baseline
and that various improvements could be made. In a similar vein, inspired by the Transformer
architecture [184] Song et al. [173] proposed an adjustment that makes the architecture applicable
to time series. Their method is applied to both regression and classification tasks.

3.2.2 Multi-step forecast. N-BEATS [138] is an NN architecture purpose-built for the forecasting
task that relies on a deep, residual stack of MLP layers to obtain point forecasts. The basic building
block in this architecture is a forked MLP stack that takes the block input and feeds the intermediate
representation into separateMLPs to learn the parameters of the context (the authors call it backcast)
and forecast time series models. The residual architecture removes the part of the context signal
it can explain well before passing to the next block and adds up the forecasts. The learned time
series model can have free parameters or be constrained to follow a particular, functional form.
Constraining the model to trend and seasonality functional forms does not have a big impact on
the error and generates models whose stacks are interpretable since the trend and seasonality
components of the model can be separated and analyzed. N-BEATS has also been interpreted as a
meta-learning model [139], where the repeated application of residual blocks can be seen as an
inner optimization loop. N-BEATS generalizes better than other architectures when trained on a
source dataset (e.g., M4-monthly) and applied to a different target datasets (e.g., M3-monthly).
Lv et al. [126] propose a stacked autoencoder (SAE) architecture to learn features from spatio-

temporal traffic flow data. On top of the autoencoder, a logistic regression layer is used to output
predictions of the traffic flow at all locations in a future time window. The resulting architec-
ture is trained layer-wise in a greedy manner. The experimental results show that the method
significantly improves over other shallow architectures, suggesting that the SAE is capable of
extracting latent features regarding the spatio-temporal correlations of the data. In the same con-
text of spatio-temporal forecasting and under the seq2seq framework, Li et al. [118] proposed the
Diffusion Convolutional Recurrent NN (DCRNN). Diffusion convolution is employed to capture the
dependencies on the spatial domain, while an RNN is utilized to model the temporal dependencies.
Finally, Asadi and Regan [6] proposed a framework where the time series are decomposed in
an initial preprocessing step to separately feed short-term, long-term, and spatial patterns into
different components of a NN. Neighbouring time series are clustered based on their similarity of
the residuals as there can be meaningful short-term patterns for spatial time series. Then, in a CNN
based architecture, each kernel of a multi-kernel convolution layer is applied to a cluster of time
series to extract short-term features in neighbouring areas. The output of the convolution layer is
concatenated by trends and is followed by a convolution-LSTM layer to capture long-term patterns
in larger regional areas.

Bandara et al. [14] addressed the problem of predicting a set of disparate time series, which may
not be well captured by a single global model. For this reason, the authors propose to cluster the
time series according to a vector of features extracted using the technique from [87] and the Snob
clustering algorithm [186]. Only then, an RNN is trained per cluster, after having decomposed the
series into trend, seasonality and residual components. The RNN is followed by an affine neural

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Benidis et al.

layer to project the cell outputs to the dimension of the intended forecast horizon. This approach is
applied to publicly available datasets from time series competitions, and appears to consistently
improve against learning a single global model. In subsequent work, Bandara et al. [13] continued
to mix heuristics, in this instance seasonality decomposition techniques, known from classical
forecasting methods with standard NN techniques. Their aim is to improve on scenarios with
multiple seasonalities such as inter and intra daily. The findings are that for panels of somewhat
unrelated time series, such decomposition techniques help global models whereas for panels of
related or homogeneous time series this may be harmful. The authors do not attempt to integrate
these steps into the NN architecture itself, which would allow for end-to-end learning.

Cinar et al. [39] proposed a content attention mechanism that seats on top of any seq2seq RNN.
The idea is to select a combination of the hidden states from the history and combine them using a
pseudo-period vector of weights to the predicted output step.
Li et al. [116] introduce two modifications to the Transformer architecture to improve its per-

formance for forecasting. First, they include causal convolutions in the attention to make the key
and query context dependent, which makes the model more sensitive to local contexts. Second,
they introduce a sparse attention, meaning the model cannot attend to all points in the history,
but only to selected points. Through exponentially increasing distances between these points,
the memory complexity can be reduced from quadratic to 𝑂 (𝑇 (log𝑇)2), where 𝑇 is the sequence
length, which is important for long sequences that occur frequently in forecasting. Other archi-
tectural improvements to the Transformer model have also been used more recently to improve
accuracy and computational complexity in forecasting applications. For example, Lim et al. [119]
introduce the Temporal Fusion Transformer (TFT), which incorporates novel model components
for embedding static covariates, performing “variable selection”, and gating components that skip
over irrelevant parts of the context. The TFT is trained to predict forecast quantiles, and promotes
forecast interpretability by modifying self-attention and learning input variable importance. Eise-
nach et al. [51] propose MQ-Transformer, a Transformer architecture that employs novel attention
mechanisms in the encoder and decoder separately, and consider learning positional embeddings
from event indicators. The authors discuss the improvements not only on forecast accuracy, but also
on excess forecast volatility where their model improves over the state of the art. Finally, Zhou et al.
[204] recently proposed the Informer, a computationally efficient Transformer architecture, that
specifically targets applications with long forecast horizons. The Informer introduces a ProbSparse
attention layer and a distilling mechanism to reduce both the time complexity and memory usage
of learning to 𝑂 (𝑇 log𝑇), while improving forecast performance over deep forecasting benchmark.

3.3 Deep State Space Models
In contrast to pure deep learning methods for time series forecasting introduced in Section 2,
Rangapuram et al. [146] propose to combine classical state space models (SSM) [49, 86] with
deep learning. The main motivation is to bridge the gap between SSMs that provide a principled
framework for incorporating structural assumptions but fail to learn patterns across a collection of
time series, and NNs that are capable of extracting higher order features but results inmodels that are
hard to interpret. Their method parametrizes a linear Gaussian SSM using an RNN. The parameters
of the RNN are learned jointly from a dataset of raw time series and associated covariates. Instead of
learning the SSM parameters 𝜃𝑖,1:𝑇𝑖 for the 𝑖-th time series individually or locally in the terminology
of Section 2.1), the model is global and learns a shared mapping from the covariates associated
with each target time series to the parameters of a linear SSM. This mapping 𝜃𝑖,𝑡 = 𝑓 (x𝑖,1:𝑡 ;Φ), for
𝑖 = 1, . . . , 𝑁 and 𝑡 = 1, . . . ,𝑇𝑖 +ℎ, is implemented by an RNN with weights Φwhich are shared across
different time series as well as different time steps. Note that 𝑓 depends on the entire covariate
time series up to time 𝑡 as well as the set of shared parameters Φ. Since each individual time series

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:17

𝑖 is modelled using an SSM with parameters Θ𝑖 , assumptions such as temporal smoothness in
the forecasts are easily enforced. The shared model parameters Φ are learned by maximizing the
likelihood given the observations Z = {z𝑖,1:𝑇𝑖 }𝑁𝑖=1. The likelihood terms for each time series reduce
to the standard likelihood computation under the linear-Gaussian SSM, which can be carried out
efficiently via Kalman filtering [16]. Once the parameters Φ are learned, it is straightforward to
obtain the forecast distribution via the SSM parameters 𝜃𝑖,𝑇𝑖+1:𝑇𝑖+ℎ .
There are two major limitations of the method proposed in Rangapuram et al. [146]: first, the

observations are assumed to follow a Gaussian distribution and second, the underlying latent
process that generates observations is assumed to evolve linearly. de Bézenac et al. [42] address
the first limitation via Normalizing Kalman Filters (NKF) by augmenting SSMs with normalizing
flows [46, 101, 137] thereby giving them the flexibility to model non-Gaussian, multimodal data.
Their main idea is to map the non-Gaussian observations {z𝑖,1:𝑇𝑖 } to more Gaussian-like observations
via a sequence of learnable, nonlinear transformations (e.g., a normalizing flow) so that the method
in [146] can then be applied on the transformed observations. While being more flexible, their
method still retains attractive properties of linear Gaussian SSMs, namely, tractability of exact
inference and likelihood computation, efficient sampling, and robustness to noise.

In a concurrent work to [42], Kurle et al. [106] improve the method in [146] by addressing both
limitations. In particular, to model nonlinear latent dynamics, they propose a recurrent switching
Gaussian SSM, which uses additional latent variables to switch between different linear dynamics.
Moreover, to handle non-Gaussian observations, they propose a nonlinear emission model via a
decoder-type NN [61]. Although the exact inference is no longer tractable with these improvements,
they show that the approximate inference and likelihood estimation can be Rao-Blackwellised; i.e.,
the inference for the Gaussian latent states can be done exactly while the inference for the switch
variables needs to be approximated.

Finally, Ansari et al. [5] propose to extend [146] via incorporating switching dynamics. The
recurrent explicit duration switching dynamical system (RED-SDS) is a flexible model that is
capable of identifying both state- and time-dependent switching dynamics of a time series. State-
dependent switching is enabled by a recurrent state-to-switch connection and an explicit duration
count variable is used to improve the time-dependent switching behavior. A hybrid algorithm that
approximates the posterior of the continuous states via an inference network and performs exact
inference for the discrete switches and counts provides efficient inference. The method is able to
infer meaningful switching patterns from the data and extrapolate the learned patterns into the
forecast horizon.

3.4 Multivariate Forecasting
The models presented up to this point are mainly global univariate models, i.e., they are trained on
all time series but they are still used to predict a univariate target. When dealing with multivariate
time series, one should be able to exploit the dependency structure between the different time
series in the panel in a generalization of Eq. (3) to Eq. (4).
Toubeau et al. [179] and Salinas et al. [155] combined RNN-based models with copulas to

model multivariate distributions. The model in [179] uses a nonparametric copula to capture
the multivariate dependence structure. In contrast, the work in [155] uses a Gaussian copula
process approach. Salinas et al. [155] use a low-rank covariance matrix approximation to scale to
thousands of dimensions. Additionally, the model implements a non-parametric transformation of
the marginals to deal with varying scales in the dimensions and non-Gaussian data. More recently,
Rasul et al. [151] proposed to represent the data distribution with a type of normalizing flows called
Masked Autoregressive Flows [140] while using either an RNN or a Transformer [184] to model
the multivariate temporal dynamics of time series. Normalizing flows were also used to bring deep

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 Benidis et al.

SSMs [146] to a flexible, multivariate scenario [42]. Rasul et al. [150] propose TimeGrad which,
like DeepAR, is an RNN model for which samples are drawn from the data distribution at each
time step, with the difference that in TimeGrad the RNN conditions a diffusion probabilistic model
[172] which allows the model to easily scale to multivariate time series and accurately use the
dependencies between dimensions.
A recent application of global multivariate models is for hierarchical forecasting problems [7,

17, 176, 191]. Typically, in such problems an aggregation structure is defined (e.g., via a product
hierarchy) and a trade-off between forecast accuracy and forecast coherency with respect to the
aggregation structure must be managed. Here, forecast coherency or consistency means that the
forecasts conforms to the aggregation structure, so that aggregated forecasts are the same as
forecasts of aggregated time series. This aggregation structure is typically encoded via linear
constraints where the aggregation structure is captured in a matrix 𝑆 . Rangapuram et al. [148]
propose to use a multivariate model such as [155] and enforce consistency of forecast samples via
incorporation of a projection of the samples with 𝑆 into the learning problem. Dedicated work
exists for aggregation along the time dimension [8, 147, 178].
In some multivariate forecasting settings the different dimensions are tied together by some

interpretable connections other than a hierarchy and this can be modelled as part of the input
layer rather than the output as discussed so far. One can for example think of forecasting the traffic
network of a city where the traffic at each of the location in the city is mostly influenced by the
traffic at the neighboring locations, like in PEMS-BAY and METR-LA [118]. Graph Neural Networks
(GNN) have been used in this forecasting setting [43, 63, 102, 163, 193, 206] where, in addition to
the forecasting task, the challenge is to best use the graph information that is provided or even
learn the graph if none is available. The methods that propose to learn the graph do so by looking
for the graph that allows to produce the most accurate forecasts. An embedding is learned for
each dimension, and similarity scores are computed between every two dimension using these
embeddings from which the adjacency matrix is obtained, either by taking the K-top edges [43, 193]
or sampling from them [102, 163]. As of now, two main strategies have been proposed to learn the
node embeddings, either simply by gradient descent [43, 193] or by taking representation from the
time series [102, 163], with the latter approach to seemingly yielding better results. While these
methods were all presented as point forecasting method, one could obtain probabilistic forecasts
by training these models to parametrize a predictive distribution as explained in Section 2.4.

3.5 Physics-based Models
In physics-based models, deep forecasting methods have been proposed that model the underlying
dynamics in sophisticated ways. Chen et al. [32] proposed the Neural ODE (NODE) model, where
an ordinary differential equation (ODE) is solved forward in time, and the adjoint equation is solved
backwards in time using backpropagation. One limitation of the Neural ODE model is that the
unknown parameters 𝜃 are assumed to be constant in time. Other limitations such as computational
complexity have been addressed in follow-up work, e.g., [18]. Vialard et al. [185] extends the NODE
model to allow the parameters 𝜃 (𝑡) to be time-varying by introducing a shooting formulation. In
the shooting formulation, the optimal 𝜃 is determined by minimizing a regularized loss function.
Vialard et al. [185] also shows that a residual network (ResNet) can be expressed as the Forward
Euler discretization of an ODE with time step Δ𝑡 = 1. Wang et al. [187] compares successful time
series deep sequence models, such as [146, 156] to NODE and other hybrid deep learning models to
model COVID-19 dynamics, as well as the population dynamics using the Lotka-Volterra equations.
Through their benchmarking study, the authors show that distribution shifts can pose problems
for deep sequence models on these tasks, and propose a hybrid model AutoODE to model the
underlying dynamics.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:19

3.6 Global-local
With local models, the free parameters of the model are learned individually for each series in a
collection, see Section 2.1. Classical local time series models such as SSMs, ARIMA, and exponential
smoothing (ETS) [84] excel at modelling the complex dynamics of individual time series given a
sufficiently long history. Other local models include Gaussian SSMs, which are computationally
efficient, e.g., via a Kalman filter, and Gaussian Processes (GPs) [27, 67, 149, 159]. These methods
provide uncertainty estimates, which are critical for optimal downstream decision making. Since
these methods are local, they learn one model per time series and cannot effectively extract
information across multiple time series. These methods are unable to address cold-start problems
where there is a need to generate predictions for a time series with little or no observed history.

Conversely, recall that in global models, their free parameters are learned jointly on every series
in a collection of time series. NNs have proven particularly well suited as global models [64, 111,
146, 156, 190]. Global methods can extract patterns from collections of irregular time series even
when these patterns would not be distinguishable using a single series.

Global-local models have been proposed to combine the advantages of both global and local mod-
els. Examples include mixed effect models [40], which consist of two kinds of effects: fixed (global)
effects that describe the whole population, and random (local) effects that capture the idiosyncratic
of individuals or subgroups. A similar mixed approach is used in hierarchical Bayesian [65] methods,
which combine global and local models to jointly model a population of related statistical problems.
In an early example of hierarchical Bayesian models, [31] combined global and local features for
intermittent demand forecasting in retail planning. In [3, 123], other combined global and local
models are detailed.

A recent global-local family of models, Deep Factors [188] provide an alternative way to combine
the expressive power of NNs with the data efficiency and uncertainty estimation abilities of
classical probabilistic local models. Each time series, or its latent function for non-Gaussian data, is
represented as the weighted sum of a global time series and a local model. The global part is given by
a linear combination of a set of deep dynamic factors, where the loading is temporally determined
by attentions. The local model is stochastic. Typical choices include white noise processes, linear
dynamical systems, GPs [127] or RNNs. The stochastic local component allows for the uncertainty
to propagate forward in time, while the global NN model is capable of extracting complex nonlinear
patterns across multiple time series. The global-local structure extracts complex nonlinear patterns
globally while capturing individual random effects for each time series locally.
The Deep Global Local Forecaster (DeepGLO) [162] is a method that “thinks globally and acts

locally” to forecast collections of up to millions of time series. It crucially relies on a type of temporal
convolution (a so-called leveled network), that can be trained across a large amount time series
with different scales without the need for normalization or rescaling. DeepGLO is a hybrid model
that uses a global matrix factorization model [200] regularized by a temporal deep leveled network
and a local temporal deep level network to capture patterns specific to each time series. Each time
series is represented by a linear combination of 𝑘 basis time series, where 𝑘 ≪ 𝑁 , with 𝑁 the total
number of time series. The global and local models are combined through data-driven attention for
each time series.

A further example in the global-local model class is the ES-RNN model proposed by Smyl [169]
that has recently attracted attention by winning the M4 competition [128] by a large margin on
both evaluation settings. In the ES-RNN model, locally estimated level and trend components
are multiplicatively combined with an RNN model. Apart from its global-local nature, it also
integrates aspects of different model classes into a a single model similar to Deep State Space models
(Section 3.3). In particular, the ℎ-step ahead prediction ẑ𝑖,𝑡+1:𝑡+ℎ = 𝑙𝑖,𝑡 · s𝑖,𝑡+1:𝑡+ℎ · exp(RNN(x𝑖,𝑡))

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Benidis et al.

consists of a level 𝑙𝑖,𝑡 and a seasonal component 𝑠𝑖,𝑡 obtained through local exponential smoothing,
and the output of a global RNN model RNN(x𝑖,𝑡), where x𝑖,𝑡 is a vector of preprocessed data
extracted from deseasonalized and normalized time series x𝑖,𝑡 = log(z𝑖,𝑡−𝐾 :𝑡/(s𝑖,𝑡−𝐾 :𝑡𝑙𝑖,𝑡)) cut in a
window of length 𝐾 + 1. The RNN models are composed of dilated LSTM layers with additional
residual connections. The M4-winning entry used slightly different architectures for the different
type of time series in the competition.

3.7 Intermittent Time Series
We noted in the introduction that deep forecasting models had a major impact on operational
forecasting problems. In these large-scale problem, intermittent time series occur regularly [25].
Accordingly, research on NNs for intermittent time series forecasting has been an active area.
Salinas et al. [156] propose a standard RNN architecture with a negative binomial likelihood to
handle intermittent demand similar to [171] in classical methods. To the best of our knowledge,
other likelihoods that have been proposed for intermittent time series in classical models, e.g.,
by [160], have not yet been carried over to NNs. However, some initial work is available via more
standard likelihoods [93, 156].
In the seminal paper on intermittent demand forecasting [41], Croston separates the data in a

sequence of observed non-zero demands and a sequence of time intervals between positive demand
observations, and runs exponential smoothing separately on both series. A comparison of NNs to
classical models for intermittent demand first appeared in Gutierrez et al. [73], where the authors
compare the performance of a shallow and narrow MLP with Croston’s method. They find NNs to
outperform classical methods by a significant margin.

Kourentzes [105] proposes two MLP architectures for intermittent demand, taking demand sizes
and intervals as inputs. As in Gutierrez et al. [73], the networks are shallow and narrow by modern
standards, with only a single hidden layer and three hidden units. The difference between the
two architectures is in the output. In one case interval times and non-zero occurrences are output
separately, while in the other a ratio of the two is computed. The approach proposed by Kourentzes
[105] outperforms other approaches primarily with respect to inventory metrics, but not forecasting
accuracy metrics, challenging previous results in [73]. It is unclear whether the models are used as
global or local. However, given the concern around overfitting and regularization, we assume that
these models were primarily used as local models in the experiments.
Both approaches of [73, 105] only offer point forecasts. This shortcoming is addressed by [180,

181], where the authors propose renewal processes as natural models for intermittent demand
forecasting. Specifically, they use RNNs to modulate both discrete time and continuous time renewal
processes, using the simple analogy that RNNs can replace exponential smoothing in [41].

Finally, a recent trend in sequence modelling employs NNs in modelling discrete event sequences
observed in continuous time [48, 133, 164, 165, 182, 194] and [166] for an overview. Notably, Xiao
et al. [195] use two RNNs to parametrize a probabilistic “point process” model. These networks
consume data from asynchronous event sequences and uniformly sampled time series observations
respectively. Their model can be used in forecasting tasks where time series data can be enriched
with discrete event observations in continuous time.

3.8 Generalized Adversarial Networks
Additionally to the approaches mentioned in Sections 2.4 and 2.4.3, the recent literature contains
further examples for density estimation, most prominently via Generalized Adversarial Networks
(GANs) [71]. While GANs have received much attention in the overall deep learning literature [52,
53, 98, 121, 199], this has not been reflected in forecasting. We speculate that this is because a
discriminator network can be replaced by metrics such as CRPS which measure the quality of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:21

generated samples. We therefore only provide a brief overview here and mention that, while they
rely on the buildings blocks discussed in Section 2, they typically require architectures that are
more complex than then ones discussed here and lead to involved optimization problems.
Despite the comparably less attention that GANs have received in forecasting, they have been

recently applied to the time series domain [53, 199] to synthesize data [53, 177] or to employ
an adversarial loss in forecasting tasks [192]. Many time series GAN architectures use recurrent
networks to model temporal dynamics [53, 134, 199]. Modelling long-range dependencies and
scaling recurrent networks to higher lengths is inherently difficult and limits the application of
time series GANs to short sequence lengths [53, 199]. One way to achieve longer realistic synthetic
time series is by employing convolutional [11, 62, 183] and self-attention architectures [184].

Convolutional architectures are able to learn relevant features from the raw time series data [11,
62, 183], but are ultimately limited to local receptive fields and can only capture long-range
dependencies via many stacks of convolutional layers. Self-attention can bridge this gap and
allow for modelling long-range dependencies from convolutional feature maps, which has been a
successful approach in the image [203] and time series forecasting domain [116]. Another technique
to achieve long sample sizes is progressive growing, which successively increases the resolution by
adding layers to a GAN generator and discriminator during training [97]. A recent proposal [21]
synthesizes progressive growing with convolutions and self-attention into a novel architecture
particularly geared towards time series.

3.9 Summary and Practical Guidelines
In Section 2 and this section, we introduced a large number of deep forecasting models. We
summarize the main approaches in Table 2. The list below provide keys to reading the table.

• Forecast distinguishes between probabilistic (Prob) and Point forecasts.
• Horizon indicates whether the model does one-step predictions (noted 1) in which case
multi-step forecasts are obtained recursively, or if it directly predicts a whole sequence
(≥ 1).

• Loss and Metrics specifies the loss used for training and metrics used for evaluation. Here,
we only provide an explanation of the acronyms and not the definition of each metric
which can be easily found in the corresponding papers: negative log-likelihood (NLL),
quantile loss (QL), continuous ranked probability score (CRPS), (normalized) (root) mean
squared error (NRMSE, RMSE, MSE), root relative squared error (RRSE), relative geometric
RMSE (RGRMSE), weighted absolute percentage error (WAPE), normalized deviation (ND),
mean absolute deviation (MAD), mean absolute error (MAE), mean relative error (MRE),
(weighted) mean absolute percentage error (wMAPE, MAPE), mean absolute scaled error
(MASE), overall weighted average (OWA), mean scaled interval score (MSIS), Kullback-
Leibler divergence (KL), Value-at-Risk (VaR), expected shortfall (ES), empirical correlation
coefficient (CORR), area under the receiver operating characteristic (AUROC), percentage
best (PB).

While Table 2 serves to illustrate thewealth of deep forecastingmethods now available, their sheer
number may be slightly overwhelming. Furthermore, empirical evidence on the effectiveness of the
different architectures has so far not revealed a clearly superior approach [4]. In this, forecasting
differs from other domains, e.g., natural language processing where Transformer-basedmodels [184]
dominate overall. Also, deep forecasting methods seem to differ from other model families, such
as tree-based methods where LightGBM [99] or XGBoost [33] dominate (as in the recent M5
forecasting competition [92]). We speculate that this diffuse picture is in part due to the practical
reasons, the relative immaturity of the field and the corresponding software implementations and in

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

111:22 Benidis et al.

part due to fundamental reason as a natural consequence of the breadth and diversity of forecasting
problems.
So, choosing the appropriate architecture for a problem at hand can be a daunting task. In the

following, we therefore attempt to provide guidelines for a more informed deep forecasting model
selection. These are largely based on our own experience in working with practical forecasting
problem and they should primarily be taken as a non-exhaustive guidance on where to start model
exploration.

3.9.1 Baseline methods and standard mode of deployment. At the start of any in-depth model
exploration, considering a baseline model is commonly accepted best practice. To the best of our
knowledge, the most mature deep forecasting models are DeepAR [156] and MQCNN [190] which
exist in a number of open-source and commercial implementations.3 As a practical guideline, we
recommend to start model exploration using at least these methods as baselines. Other candidates
we would consider are N-BEATS [138], WaveNet [183] and a Transformer-based model. The relative
performance of these methods compared with other methods should give reasonable, directional
evidence whether the problem at hand is amenable to deep forecasting methods. We note that
AutoML approaches for forecasting are available4 but while promising are in their infancy. At least
in the M5 competition, they are still outperformed by the aforementioned more specialized deep
forecasting models.
Our typical suggestion is to employ NNs as global models since, given enough data, global

methods outperform classical local methods when dealing with groups of similar time series.5
Interestingly, recent empirical evidence have shown that global models can achieve a state-of-the-
art performance even in heterogeneous groups of time series. This is supported by the M4 [128]
and M5 competitions where the top performing models had some form of globality. This suggests a
more general applicability of global methods with a high impact on practical application where a
general automated forecasting mechanism is required.

3.9.2 Data characteristics. The amount of data available is among the easiest dimensions in choos-
ing a deep forecasting model. First, NNs require a minimum amount of data to be effective in
comparison to other, more parsimoniously parametrized models. This is perhaps the most im-
portant factor in successful applications of NNs in forecasting. How much data does one need
for a given application? Several important points should be discussed on this question. First, the
amount of data is often misunderstood as the number of time series but in reality the amount of
data typically relates to the number of observations. For instance, one may have only one time
series but many thousands of observations, as in the case of a time series from a real-time sensor
where measurements happen every second for a year, allowing to fit a complex NN [2]. Second,
it is probably better to see the amount of data in terms of information quantity. For instance, in
finance the amount of information of many millions of hourly transactions is limited given the
very low signal-to-noise ratio in contrast to a retailer whose products follow clear seasonality and
patterns, making it easier to apply deep learning methods. The more structured the data is (e.g., via
strong seasonality or knowledge about the underlying process) the better deep forecasting models
that incorporate these structures will fare. On the contrary, if the time series are more irregular or
short, a more data-driven approach (e.g., via Transformer-based models) will often be preferable.
The importance of covariate information for the forecasting problem at hand can further help
3https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-
accurate-time-series-forecasting/
4http://ai.googleblog.com/2020/12/using-automl-for-time-series-forecasting.html
5This is a more generally applicable fact beyond NN. Montero-Manso and Hyndman [135] show favorable theoretical and
empirical properties for global over local models.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/
https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/
http://ai.googleblog.com/2020/12/using-automl-for-time-series-forecasting.html

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

D
eep

Learning
for

Tim
e
Series

Forecasting:Tutorialand
Literature

Survey
111:23

Study Structure Forecast Horizon Loss Metrics Data Types Comments

DeepAR [156] RNN Prob 1 NLL Coverage, QL, ND,
NRMSE

demand, traffic,
electricity

Learns parametric distributions

Toubeau et al. [179] RNN/CNN Prob 1 NLL/QL RMSE, price electricity Nonparametric copula to
capture multivariate

dependence

Salinas et al. [155] RNN Prob 1 NLL QL, MSE electricity, traffic,
exchange rate, solar,

taxi, wiki

Learns multivariate model via
low-rank Gaussian copula

processes

ARMDN [136] RNN Prob 1 NLL wMAPE demand Like [156], but using mixture
of Gaussian’s and domain
specific feature processing

QARNN [196] MLP Prob 1 QL VaR, ES finance Conditional quantile function
estimation

SQF-RNN [64] RNN Prob 1 CRPS QL, MSIS, NRMSE,
OWA

demand, traffic, count
data, finance, M4

Models non-parametric
distributions with splines

LSTNet [107] CNN + RNN + MLP Point 1 ℓ1 RRSE, CORR traffic, solar,
electricity, exchange

rate

Extracts short and long
temporal patterns with a CNN

and RNN, respectively

Zhu and Laptev
[205]

RNN + MLP Prob 1 - sMAPE, calibration daily trips Fits an encoder (RNN) that
constructs an embedding state,
which is fed to a prediction

network (MLP)

Laptev et al. [111] RNN Prob 1 MSE sMAPE traffic, M3 LSTM as feature extractor

Qiu et al. [144] MLP + SVR Point 1 ℓ2 for MLP, SVR
objective

RMSE, MAPE energy, housing Ensemble of DBNs where their
output is fed to an SVR

A-LSTM [82] RNN + MLP Point 1 ℓ2 , ℓ2 regularizer RMSE electricity
consumption

Combination of LSTM with
autoencoders

J.A
CM

,Vol.37,N
o.4,A

rticle
111.Publication

date:A
ugust2018.

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

111:24
B
enidis

et
al.

Borovykh et al. [24] CNN Point 1 ℓ1 , ℓ2 regularizer RMSE, MASE,
HITS

index forecasting,
exchange rate

WaveNet [183] based model
adjusted for time series

forecasting

SAnD [173] MLP + Attention Point 1 ℓ2 , cross-entropy,
multi-label

classification loss

AUROC, MASE,
MSE

clinical Transformer [116] based model
adjusted for time series

forecasting

Zhang [202] MLP Point 1 MSE MSE, MAD sunspot, lynx,
exchange rate

Hybrid local model that uses
ARIMA to capture the linear
component and a NN for the

nonlinear residuals

Khashei and Bijari
[100]

MLP Point 1 MSE MAE, MSE sunspot, lynx,
exchange rate

Hybrid local model that uses
ARIMA and a NN for trend

correction

Deep State Space
[146]

RNN + State Space Prob ≥ 1 NLL P50, P90 quantile
loss

traffic, electricity,
tourism, M4

RNN parametrized linear
Gaussian SSM

NKF [42] RNN + State Space +
Normalizing Flow (NF)

Prob ≥ 1 NLL QL traffic, electricity,
exchange rate, solar,

wiki

RNN parametrized linear
Gaussian SSM combined with
normalizing flow, which acts as
an emission model to handle

non-Gaussian data

ARSGLS [106] Recurrent Switching
State Space + NN

Prob ≥ 1 NLL QL traffic, electricity,
exchange rate, solar,

wiki

Recurrent Switching State
Space combined with

decoder-type NN, which acts
as an emission model to handle

non-Gaussian data

MQ-RNN/CNN
[190]

RNN/CNN + MLP Prob ≥1 QL QL, calibration,
sharpness

demand Learns pre-specified grid of
quantiles

Wen and Torkkola
[189]

CNN + MLP Prob ≥1 QL, inverse
reconstruction loss,

NLL

QL, quantile
crossing, QL over
sum of future
intervals

demand Combines model in [190] with
Gaussian copula

DeepTCN [35] CNN + MLP Prob ≥1 QL QL retail demand Learns pre-specified grid of
quantiles

J.A
CM

,Vol.37,N
o.4,A

rticle
111.Publication

date:A
ugust2018.

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

D
eep

Learning
for

Tim
e
Series

Forecasting:Tutorialand
Literature

Survey
111:25

N-BEATS [138] MLP Point ≥ 1 sMAPE, MASE,
MAPE

sMAPE, MASE,
OWA

M4 Deep, residual MLP that learns
interpretable trend and
seasonality function

Lv et al. [126] Stacked autoencoder Point ≥ 1 MSE, KL sparsity
constraint

MAE, MRE, RMSE traffic Stacked autoencoders with
logistic regression output layer

DCRNN [118] RNN Point ≥ 1 NLL MAE, MAPE,
RMSE

traffic Diffusion convolution for
spatial and RNN for temporal

dependencies

Asadi and Regan [6] CNN + RNN Point ≥ 1 ℓ2 MAE, RMSE traffic Decomposition-based model
for spatio-temporal forecasting

Bandara et al. [14] RNN + Classical
Decomposition

Point ≥ 1 - sMAPE CIF2016, NN5 Clusters time series based on
set of features and train one

model per cluster

LSTM-MSNet [13] RNN + Classical
Decomposition

Point ≥ 1 ℓ1 sMAPE, MASE M4, energy Decomposition based model
with multiple seasonal patterns

Cinar et al. [39] RNN + Attention Point ≥ 1 ℓ2 , ℓ2 regularizer MSE, sMAPE energy, max
temperature, CPU
usage, air quality

Attention mechanism on top of
RNN

Deep Factors [188] RNN + GP Prob ≥ 1 NLL QL, MAPE electricity, traffic, taxi,
uber

Global RNN and a local GP

DeepGLO [162] CNN Point ≥ 1 ℓ2 WAPE, MAPE,
sMAPE

electricity, traffic, wiki Global matrix factorization
regularized by a deep leveled

network

ES-RNN [169] RNN Point ≥ 1 QL MASE, sMAPE,
MSIS

M4 Locally estimated seasonality
and trend and global RNN

Kourentzes [105] MLP Point 1 ℓ2 ME, MAE, service
level

intermittent demand MLP-based intermittent
demand model

J.A
CM

,Vol.37,N
o.4,A

rticle
111.Publication

date:A
ugust2018.

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

111:26
B
enidis

et
al.

Attentional Twin RNN
[195]

RNN Prob 1 NLL MAE point process data Event sequence prediction

Gutierrez et al. [73] MLP Point 1 ℓ2 MAPE, RGRMSE,
PB

intermittent demand MLP-based intermittent
demand model

Deep Renewal Process
[181]

RNN Prob ≥ 1 NLL P50, P90 quantile
loss

intermittent demand RNN-based intermittent
demand model inspired by

point processes

WaveNet [4, 183] CNN Prob ≥ 1 NLL mean opinion
score

traffic, electricity, M4 Diluted causal convolutions

Transformer [116] MLP Point 1 NLL QL electricity, traffic,
wind, M4, solar

Transformer with causal
convolutions and sparse

attention

AttnAR [198] CNN Point 1 ℓ2 RMSE electricity, traffic,
solar, exchange rate

Multivariate forecasting

LSTM MAF [151] RNN Prob ≥ 1 NLL RMSE electricity, traffic,
solar, exchange rate

Multivariate forecasting using
normalizing flows

TimeGrad [150] RNN Prob ≥ 1 NLL RMSE electricity, traffic,
solar, exchange rate,

taxi, wikipedia

Multivariate forecasting using
diffusion models.

TFT [119] LSTM, MLP Prob ≥ 1 QL P50, P90 quantile
loss

electricity, traffic,
retail, volatility

Modified transformer
architecture for improved

interpretability

MQ-Transformer
[51]

CNN, MLP Prob ≥ 1 QL P50, P90, LT-SP electricity, traffic,
retail, volatility, retail
demand (proprietary)

Architectural improvements on
MQ-RNN/CNN for multi-step

forecasting

Informer [204] CNN, MLP Point ≥ 1 MSE MSE, MAE electricity, weather,
sensor data

Sparse and computationally
efficient transformer

architecture

Table 2. Summary of modern deep forecasting models.

J.A
CM

,Vol.37,N
o.4,A

rticle
111.Publication

date:A
ugust2018.

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:27

determine the correct method. Some NN architectures need extensions to include such information
while others readily accept them.

From a practical perspective, NNs have been reported to outperform demand forecasting baselines
starting from 50000 observations in [156] and from a few hundred observations in load-forecasting
[146, 188]. Understanding better these limitation, both theoretically and empirically, is an area of
current research and is not yet well understood. See [131] for some current theoretical work on
sample complexity of global-local approaches for instance and [23] for empiricial work.

3.9.3 Problem characteristics. The characteristics of the forecasting problem to be solved are
natural important decision points. We list a few dimensions to consider here.
One important aspect of a model is its forecast nature, i.e., if it produces probabilistic or point

forecasts. The choice of this is highly dependent on the underlying application. To illustrate this we
can examine two different forecasting use cases: product demand and CPU utilization. In the former
use case one wishes to forecast the future demand of a product in order to take a more informed
decision about the stock that is required to have in a warehouse or to optimize the labour planning
based on the traffic that is expected. In the latter, the forecast of CPU utilization could be used to
identify in a timely manner if a process will fail in order to proactively resolve associated issues, or
to detect possible anomalous behaviours that could trigger some root cause analysis and system
improvements. Although in both applications a forecast is required, the end goal is different, which
changes the requirements of the chosen forecasting model. For example, for product demand the
whole distribution of the future demand might be important: one cannot rely on a single forecast
value since the variance in the forecast plays an important role to avoid out of stock issues or
under/over planning the expected required labour. Therefore, in this application it is important
to use a model that focuses on predicting accurately the whole distribution. On the other hand,
for CPU utilization one might be interested in the 99-th percentile, since everything below that
threshold might not be of particular interest or does not produce any actionable alarm. In this case,
a model that focuses on a particular quantile of importance is of higher interest than a model that
predicts the whole distribution with possibly worse accuracy on the selected quantile.
It is observed [42, 106, 146, 155, 156] empirically that autoregressive models are superior in

performance (in terms of forecast accuracy) compared to state space models, especially when the
data is less noisy and the forecast horizon is not too long. This is not surprising given that the
autoregressive models directly use past observations as input features and treat own predictions as
lag inputs in the multi-step forecast setting. A general rule of thumb is that if one knows details
such as the forecast horizon, the quantile to query or the exact goals of the forecasting problem
in advance and these are unlikely to change, then a discriminative model is often a good default
choice. Conversely, state space models proved to be robust when there are missing and/or noisy
observations [42]. Moreover, if the application-specific constraints can be incorporated in the latent
state, then state space models usually perform better even in the low-data regimes [146].
The length of the forecast horizon relative to the history or, more generally speaking, the

importance of the historic values for future values must further be taken into account. For example,
very long forecast horizons may require to control (e.g., via differential equations) the exponential
growth in the target. A canonical example for this is forecasting of a pandemic. This example
further clarifies the importance of being able to produce counterfactuals for what-if analysis (e.g.,
the incorporation of intervention). Not all deep forecasting models allow for this.

3.9.4 Other Aspects. A number of other aspects can further help to narrow the model exploration
space. For example, computational constraints (how much time/money for training is available,
are there constraints on the latency during inference) can favor “simpler” NNs, see e.g., [23] for a

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

111:28 Benidis et al.

discussion on multi-objective forecasting model selection. Another aspect to consider could be CNN
over RNN-based architectures. The skill set of the research team available is an important factor.
For example, probabilistic models often are more sensitive towards parametrization and identifying
reasonable parameter ranges requires in-depth knowledge. On the other extreme, troubleshooting
Transformer-based models requires deep learning experience that not every research team may
possess. The time budget available for model development and the willingness to extend existing
models are further factors.

4 CONCLUSIONS AND AVENUES FOR FUTUREWORK
This article has attempted to provide an introduction to and an overview of NNs for forecasting
or deep forecasting. We began by providing a panorama of some of the core concepts in the
modern literature on NNs chosen by their degree of relevance for forecasting. We then reviewed
the literature on recent advances in deep forecasting models.

Deep forecastingmethods have received considerable attention in the literature because they excel
at addressing forecasting problems with many related time series and at extracting weak signals
and complex patterns from large amounts of data. From a practical perspective, the availability of
efficient programming frameworks helps to alleviate many of the pain points that practitioners
experience with other forecasting methods such as manual feature engineering or the need to
derive gradients. However, NNs are not a silver bullet. For many important classes of forecasting
problems such as long-rangemacro-economic forecasts or other problems requiring external domain
knowledge not learnable from the data, deep forecasting methods are not the most appropriate
choice and will likely never be. Still, it is our firm belief that NNs belong to the toolbox of every
forecaster, in industry and academia.
Building onto the existing promising work in NNs for forecasting, many challenges remain

to be solved. We expect that the current trends of hybridizing existing time series techniques
with NNs [64, 146, 169, 181] and bringing innovations from other related areas or general purpose
techniques to forecasting [71, 183, 184] will continue organically. Typical general challenges for
NNs, such as data effectiveness, are important in forecasting and likely need a special treatment (see
[59] for an approach in time series classification with transfer learning). Other topics of general ML
interest such as interpretability, explainability and causality (e.g., [19, 122, 158]) are of particular
practical importance in the forecasting setting. It is our hope that original methods such as new
NN architectures will be pioneered in the time series prediction sector (e.g., [138]) and that those
will then feed back into the general NN literature to help solve problems in other disciplines.

Beyond such organic improvements, we speculate that another area in which NNs have had
tremendous impact [167, 168] may become important for forecasting, namely deep reinforcement
learning. In contrast to current practice, where forecasting merely serves as input to downstream
decision problems (often mixed-integer nonlinear stochastic optimization problems), for example
to address problems such as restocking decisions, reinforcement learning allows to directly learn
optimal decisions in business context [89]. It will be interesting to see whether reinforcement based
approaches can improve decision making – and how good forecasting models could help improve
reinforcement approaches.
As methodology advances, so will the applicability. Many potential applications of forecasting

methods are under-explored. To pick areas that are close to the authors’ interests, in database
management, cloud computing, and system operations a host of applications would greatly benefit
from the use of principled forecasting methods (see e.g., [9, 22, 60]). Forecasting can also be used
to improve core ML tasks such as hyperparameter optimization (e.g., [47]) and we expect more
applications to open up in this area.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:29

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). 265–283.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsupervised real-time anomaly detection for
streaming data. Neurocomputing 262 (2017), 134–147.

[3] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexander J Smola. 2012. Scalable
inference in latent variable models. In Proceedings of the fifth ACM International Conference on Web Search and Data
Mining. ACM, 123–132.

[4] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim
Januschowski, Danielle C Maddix, Syama Sundar Rangapuram, David Salinas, Jasper Schulz, et al. 2020. GluonTS:
Probabilistic and Neural Time Series Modeling in Python. Journal of Machine Learning Research 21, 116 (2020), 1–6.

[5] Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alexander J Smola, Bernie
Wang, and Tim Januschowski. 2021. Deep Explicit Duration Switching Models for Time Series. Advances in Neural
Information Processing Systems 34 (2021).

[6] Reza Asadi and Amelia C Regan. 2020. A Spatial-Temporal Decomposition Based Deep Neural Network for Time
Series Forecasting. Applied Soft Computing 87 (2020), 105963.

[7] George Athanasopoulos, Roman A Ahmed, and Rob J Hyndman. 2009. Hierarchical forecasts for Australian domestic
tourism. International Journal of Forecasting 25, 1 (2009), 146–166.

[8] George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos. 2017. Forecasting with
temporal hierarchies. European Journal of Operational Research 262, 1 (2017), 60–74.

[9] Fadhel Ayed, Lorenzo Stella, Tim Januschowski, and Jan Gasthaus. 2020. Anomaly Detection at Scale: The Case for
Deep Distributional Time Series Models. arXiv:2007.15541 [cs.LG]

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to
Align and Translate. arXiv preprint arXiv:1409.0473 (2014).

[11] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

[12] Luca Vincenzo Ballestra, Andrea Guizzardi, and Fabio Palladini. 2019. Forecasting and trading on the VIX futures
market: A neural network approach based on open to close returns and coincident indicators. International Journal
of Forecasting 35, 4 (2019), 1250 – 1262.

[13] Kasun Bandara, Christoph Bergmeir, and Hansika Hewamalage. 2020. LSTM-MSNet: Leveraging forecasts on sets
of related time series with multiple seasonal patterns. IEEE Transactions on Neural Networks and Learning Systems
(2020).

[14] Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. 2017. Forecasting across time series databases using long
short-term memory networks on groups of similar series. arXiv preprint arXiv:1710.03222 8 (2017), 805–815.

[15] Kasun Bandara, Peibei Shi, Christoph Bergmeir, Hansika Hewamalage, Quoc Tran, and Brian Seaman. 2019. Sales
demand forecast in e-commerce using a long short-term memory neural network methodology. In International
Conference on Neural Information Processing. Springer, 462–474.

[16] David Barber. 2012. Bayesian reasoning and machine learning. Cambridge University Press.
[17] Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. 2017. Coherent probabilistic forecasts for hierarchical time

series. In International Conference on Machine Learning. 3348–3357.
[18] Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Günnemann. 2021.

Neural Flows: Efficient Alternative to Neural ODEs. Advances in Neural Information Processing Systems 34 (2021).
[19] Alexander Binder, Sebastian Bach, Gregoire Montavon, Klaus-Robert Müller, and Wojciech Samek. 2016. Layer-wise

relevance propagation for deep neural network architectures. In Information Science and Applications (ICISA). Springer,
913–922.

[20] Toby Bischoff and Austin Gross. 2019. Wavenet & Dropout: An efficient setup for competitive forecasts at scale. In
Proceedings of the International Symposium on Forecasting.

[21] Michael Bohlke-Schneider, Paul Jeha, Pedro Mercado, Shubham Kapoor, Jan Gasthaus, and Tim Januschowski.
2022. PSA-GAN: Progressive Self Attention GANs for Synthetic Time Series. International Conference on Learning
Representations (ICLR) (2022).

[22] Michael Bohlke-Schneider, Shubham Kapoor, and Tim Januschowski. 2020. Resilient Neural Forecasting Systems. In
Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning (Portland,
OR, USA) (DEEM’20). Association for Computing Machinery, New York, NY, USA, Article 4, 5 pages.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/2007.15541

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

111:30 Benidis et al.

[23] Oliver Borchert, David Salinas, Valentin Flunkert, Tim Januschowski, and Stephan Günnemann. 2022. Multi-Objective
Model Selection for Time Series Forecasting. arXiv preprint arXiv:2202.08485 (2022).

[24] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. 2017. Conditional time series forecasting with
convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017).

[25] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin Lange, David Salinas, Sebastian
Schelter, Matthias Seeger, and Yuyang Wang. 2017. Probabilistic demand forecasting at scale. Proceedings of the VLDB
Endowment 10, 12 (2017), 1694–1705.

[26] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A Training Algorithm for Optimal Margin
Classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT ’92). ACM, New
York, NY, USA, 144–152.

[27] Sofiane Brahim-Belhouari and Amine Bermak. 2004. Gaussian process for nonstationary time series prediction.
Computational Statistics & Data Analysis 47, 4 (2004), 705–712.

[28] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[29] Laurent Callot, Mehmet Caner, A ÖzlemÖnder, and Esra Ulaşan. 2019. A Nodewise Regression Approach to Estimating
Large Portfolios. Journal of Business & Economic Statistics (2019), 1–12.

[30] Laurent AF Callot, Anders B Kock, and Marcelo C Medeiros. 2017. Modeling and forecasting large realized covariance
matrices and portfolio choice. Journal of Applied Econometrics 32, 1 (2017), 140–158.

[31] Nicolas Chapados. 2014. Effective Bayesian modeling of groups of related count time series. In International Conference
on Machine Learning. PMLR, 1395–1403.

[32] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural ordinary differential
equations. Advances in Neural Information Processing Systems 31 (2018).

[33] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). ACM, 785–794.

[34] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.
NeurIPS Workshop on Machine Learning Systems (2015).

[35] Yitian Chen, Yanfei Kang, Yixiong Chen, and ZizhuoWang. 2020. Probabilistic forecasting with temporal convolutional
neural network. Neurocomputing 399 (2020), 491–501.

[36] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches. CoRR abs/1409.1259 (2014).

[37] Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. End-to-end continuous speech
recognition using attention-based recurrent NN: First results. arXiv preprint arXiv:1412.1602 (2014).

[38] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. 2015. Attention-based
models for speech recognition. In Advances in Neural Information Processing Systems. 577–585.

[39] Yagmur Gizem Cinar, Hamid Mirisaee, Parantapa Goswami, Eric Gaussier, Ali Aït-Bachir, and Vadim Strijov. 2017.
Position-based content attention for time series forecasting with sequence-to-sequence RNNs. In International
Conference on Neural Information Processing. 533–544.

[40] Michael J Crawley. 2012. Mixed-effects models. The R Book, Second Edition (2012), 681–714.
[41] J. D. Croston. 1972. Forecasting and Stock Control for Intermittent Demands. Journal of the Operational Research

Society 23, 3 (01 Sep 1972), 289–303.
[42] Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-Schneider, Richard

Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, and Tim Januschowski. 2020. Normalizing Kalman Filters for
Multivariate Time Series Analysis. Advances in Neural Information Processing Systems 33 (2020).

[43] Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detection in multivariate time series. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada. 2–9.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.

[45] I. Dimoulkas, P. Mazidi, and L. Herre. 2019. Neural networks for GEFCom2017 probabilistic load forecasting.
International Journal of Forecasting 35, 4 (2019), 1409 – 1423.

[46] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation using Real NVP. In 5th International
Conference on Learning Representations, ICLR 2017.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:31

[47] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up Automatic Hyperparameter
Optimization of Deep Neural Networks by Extrapolation of Learning Curves. In Proceedings of the 24th International
Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 3460–3468.

[48] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. 2016. Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 1555–1564.

[49] James Durbin and Siem Jan Koopman. 2012. Time series analysis by state space methods. Vol. 38. Oxford University
Press.

[50] Elena Ehrlich, Laurent Callot, and François-Xavier Aubet. 2021. Spliced Binned-Pareto Distribution for Robust
Modeling of Heavy-tailed Time Series. arXiv preprint arXiv:2106.10952 (2021).

[51] Carson Eisenach, Yagna Patel, and Dhruv Madeka. 2020. MQTransformer: Multi-Horizon Forecasts with Context
Dependent and Feedback-Aware Attention. arXiv preprint arXiv:2009.14799 (2020).

[52] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, and Adam Roberts. 2018.
GANSynth: Adversarial Neural Audio Synthesis. In International Conference on Learning Representations.

[53] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. 2017. Real-valued (medical) time series generation with
recurrent conditional gans. arXiv preprint arXiv:1706.02633 (2017).

[54] Fotios Petropoulos et al. 2020. Forecasting: theory and practice. International Journal of Forecasting (2020).
[55] Christos Faloutsos, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. 2019. Forecasting Big

Time Series: Theory and Practice. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019.

[56] Christos Faloutsos, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. 2020. Forecasting Big
Time Series: Theory and Practice. In Companion Proceedings of the Web Conference 2020 (Taipei, Taiwan) (WWW ’20).
Association for Computing Machinery, 320–321.

[57] Christos Faloutsos, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. 2018. Forecasting big time series: old and
new. Proceedings of the VLDB Endowment 11, 12 (2018), 2102–2105.

[58] Christos Faloutsos, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. 2019. Classical and Contemporary Ap-
proaches to Big Time Series Forecasting. In Proceedings of the 2019 International Conference on Management of Data
(SIGMOD ’19). ACM, New York, NY, USA.

[59] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2018.
Transfer learning for time series classification. In IEEE International Conference on Big Data, Big Data 2018, Seattle,
WA, USA, December 10-13, 2018. 1367–1376.

[60] Valentin Flunkert, Quentin Rebjock, Joel Castellon, Laurent Callot, and Tim Januschowski. 2020. A simple and
effective predictive resource scaling heuristic for large-scale cloud applications. arXiv preprint arXiv:2008.01215
(2020).

[61] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. 2017. A disentangled recognition and nonlinear
dynamics model for unsupervised learning. Advances in Neural Information Processing Systems 30 (2017).

[62] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised scalable representation learning for
multivariate time series. Advances in Neural Information Processing Systems 32 (2019).

[63] Victor Garcia Satorras, Syama Sundar Rangapuram, and Tim Januschowski. 2022. Multivariate Time Series Forecasting
with Latent Graph Inference. arXiv preprint (2022).

[64] Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas, Valentin Flunkert,
and Tim Januschowski. 2019. Probabilistic Forecasting with Spline Quantile Function RNNs. In The 22nd International
Conference on Artificial Intelligence and Statistics. 1901–1910.

[65] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian data
analysis. CRC press.

[66] John Geweke. 1977. The dynamic factor analysis of economic time series. Latent variables in socio-economic models
(1977).

[67] Agathe Girard, Carl Edward Rasmussen, Joaquin Quinonero Candela, and Roderick Murray-Smith. 2003. Gaussian
process priors with uncertain inputs application to multiple-step ahead time series forecasting. In Advances in Neural
Information Processing Systems. 545–552.

[68] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the
14th International Conference on Artificial Intelligence and Statistics. 315–323.

[69] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. 2007. Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 2 (2007), 243–268.

[70] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.
org.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

111:32 Benidis et al.

[71] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. Advances in Neural Information Processing Systems 27 (2014).

[72] Adèle Gouttes, Kashif Rasul, Mateusz Koren, Johannes Stephan, and Tofigh Naghibi. 2021. Probabilistic Time Series
Forecasting with Implicit Quantile Networks. arXiv preprint arXiv:2107.03743 (2021).

[73] Rafael S. Gutierrez, Adriano O. Solis, and Somnath Mukhopadhyay. 2008. Lumpy demand forecasting using neural
networks. International Journal of Production Economics 111, 2 (Feb. 2008), 409–420.

[74] Hilaf Hasson, Bernie Wang, Tim Januschowski, and Jan Gasthaus. 2021. Probabilistic Forecasting: A Level-Set
Approach. In Advances in Neural Information Processing Systems. Curran Associates, Inc.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[76] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. 2021. Recurrent neural networks for time series
forecasting: Current status and future directions. International Journal of Forecasting 37, 1 (2021), 388–427.

[77] Geoffrey E. Hinton. 2002. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation
14, 8 (08 2002), 1771–1800.

[78] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural
Computation 18, 7 (2006), 1527–1554.

[79] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and
Recognition, Vol. 1. IEEE, 278–282.

[80] Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6, 02 (1998), 107–116.

[81] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural Computation 9, 8 (1997), 1735–1780.
[82] Daniel Hsu. 2017. Time series forecasting based on augmented long short-term memory. arXiv preprint

arXiv:1707.00666 (2017).
[83] M. J. C. Hu and Halbert E. Root. 1964. An adapative data processing system for weather forecasting. Journal of

Applied Metereology (1964).
[84] Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles and practice. OTexts.
[85] Rob J Hyndman and Anne B Koehler. 2006. Another look at measures of forecast accuracy. International Journal of

Forecasting (2006), 679–688.
[86] Rob J Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. 2008. Forecasting with Exponential Smoothing: the

State Space Approach. Springer.
[87] Rob J Hyndman, EaroWang, and Nikolay Laptev. 2015. Large-scale unusual time series detection. In IEEE International

Conference on Data Mining Workshop (ICDMW). 1616–1619.
[88] Tim Janke, Mohamed Ghanmi, and Florian Steinke. 2021. Implicit Generative Copulas. Advances in Neural Information

Processing Systems 34 (2021).
[89] Tim Januschowski, Jan Gasthaus, YuyangWang, Syama Sundar Rangapuram, and Laurent Callot. 2018. Deep Learning

for Forecasting: Current Trends and Challenges. Foresight: The International Journal of Applied Forecasting 51 (2018),
42–47.

[90] Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-Schneider, and
Laurent Callot. 2019. Criteria for classifying forecasting methods. International Journal of Forecasting (2019).

[91] Tim Januschowski and Stephan Kolassa. 2019. A Classification of Business Forecasting Problems. Foresight: The
International Journal of Applied Forecasting 52 (2019), 36–43.

[92] Tim Januschowski, Yuyang Wang, Hilaf Hasson, Timo Erkkila, Kari Torkkila, and Jan Gasthaus. 2021. Forecasting
with Trees. International Journal of Forecasting (2021).

[93] Yunho Jeon and Sihyeon Seong. 2021. Robust recurrent network model for intermittent time-series forecasting.
International Journal of Forecasting (2021).

[94] Michael I. Jordan. 1986. Serial Order: A parallel, distributed processing approach. Technical Report. Institute for
Cognitive Science, University of California, San Diego.

[95] Michael I. Jordan. 1989. Serial Order: A Parallel, Distributed Processing Approach. In Advances in Connectionist
Theory: Speech. Erlbaum.

[96] Kelvin Kan, François-Xavier Aubet, Tim Januschowski, Youngsuk Park, Konstantinos Benidis, Lars Ruthotto, and
Jan Gasthaus. 2022. Multivariate Quantile Function Forecaster. In The 25th International Conference on Artificial
Intelligence and Statistics.

[97] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive growing of gans for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196 (2017).

[98] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:33

[99] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017.
LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30
(2017).

[100] Mehdi Khashei and Mehdi Bijari. 2011. A novel hybridization of artificial neural networks and ARIMA models for
time series forecasting. Applied Soft Computing 11, 2 (2011), 2664–2675.

[101] Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with Invertible 1x1 Convolutions. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018. 10236–10245.

[102] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. 2018. Neural relational inference
for interacting systems. In International Conference on Machine Learning. PMLR, 2688–2697.

[103] Roger Koenker. 2005. Quantile Regression. Cambridge University Press.
[104] Stephan Kolassa. 2020. Why the “best” point forecast depends on the error or accuracy measure. International Journal

of Forecasting 36, 1 (2020), 208–211.
[105] Nikolaos Kourentzes. 2013. Intermittent demand forecasts with neural networks. International Journal of Production

Economics 143, 1 (2013), 198–206.
[106] Richard Kurle, Syama Sundar Rangapuram, Emmanuel de Bézenac, Stephan Günnemann, and Jan Gasthaus. 2020.

Deep Rao-Blackwellised Particle Filters for Time Series Forecasting. Advances in Neural Information Processing
Systems 33 (2020).

[107] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling long- and short-term temporal
patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. ACM, 95–104.

[108] F. Laio and S. Tamea. 2007. Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrology
and Earth System Sciences 11, 4 (2007), 1267–1277.

[109] Alex M Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron C Courville, and Yoshua Bengio. 2016. Professor
forcing: A new algorithm for training recurrent networks. Advances in Neural Information Processing Systems 29
(2016).

[110] Martin Längkvist, Lars Karlsson, and Amy Loutfi. 2014. A review of unsupervised feature learning and deep learning
for time-series modeling. Pattern Recognition Letters 42 (2014), 11–24.

[111] Nikolay Laptev, Jason Yosinsk, Li Li Erran, and Slawek Smyl. 2017. Time-series Extreme Event Forecasting with
Neural Networks at Uber. In ICML Time Series Workshop.

[112] Yann LeCun. 1989. Generalization and network design strategies. In Connectionism in perspective.
[113] Yann LeCun and Yoshua Bengio. 1995. Convolutional networks for images, speech, and time series. The handbook of

brain theory and neural networks 3361, 10 (1995).
[114] Yann LeCun, Sumit Chopra, Raia Hadsell, Fu Jie Huang, and et al. 2006. A tutorial on energy-based learning. In

Predicitng Structured Data. MIT Press.
[115] Yann LeCun, L.D. Jackel, Leon Bottou, A. Brunot, Corinna Cortes, J. S. Denker, Harris Drucker, I. Guyon, U.A. Muller,

Eduard Sackinger, Patrice Simard, and V. Vapnik. 1995. Comparison of learning algorithms for handwritten digit
recognition. In International Conference on Artificial Neural Networks, Vol. 60. Perth, Australia, 53–60.

[116] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. 2019. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in Neural
Information Processing Systems 32 (2019).

[117] Xuerong Li, Wei Shang, and Shouyang Wang. 2019. Text-based crude oil price forecasting: A deep learning approach.
International Journal of Forecasting 35, 4 (2019), 1548 – 1560.

[118] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional Recurrent Neural Network:
Data-Driven Traffic Forecasting. In International Conference on Learning Representations.

[119] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal fusion transformers for interpretable
multi-horizon time series forecasting. International Journal of Forecasting 37, 4 (2021), 1748–1764.

[120] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning: a survey. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 2194 (Feb 2021).

[121] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. 2017. Adversarial ranking for language
generation. Advances in Neural Information Processing Systems 30 (2017).

[122] Zachary C. Lipton. 2018. The Mythos of Model Interpretability. Queue 16, 3 (2018), 30:31–30:57.
[123] Yucheng Low, Deepak Agarwal, and Alexander J Smola. 2011. Multiple domain user personalization. In Proceedings

of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 123–131.
[124] Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. 2018. A neural stochastic volatility model. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 32.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

111:34 Benidis et al.

[125] Helmut Lütkepohl. 2005. Vector Autoregressive Moving Average Processes. In New Introduction to Multiple Time
Series Analysis. Springer, 419–446.

[126] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2014. Traffic flow prediction with big data:
A deep learning approach. IEEE Transactions on Intelligent Transportation Systems 16, 2 (2014), 865–873.

[127] Danielle C Maddix, Yuyang Wang, and Alex Smola. 2018. Deep Factors with Gaussian Processes for Forecasting.
arXiv preprint arXiv:1812.00098 (2018).

[128] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2018. The M4 Competition: Results, findings,
conclusion and way forward. International Journal of Forecasting 34, 4 (2018), 802–808.

[129] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2018. Statistical and Machine Learning
forecasting methods: Concerns and ways forward. PLOS ONE 13 (03 2018).

[130] Spyros Makridakis, Evangelos Spiliotis, Vassilios Assimakopoulos, Zhi Chen, Anil Gaba, Ilia Tsetlin, and Robert L
Winkler. 2021. The M5 Uncertainty competition: Results, findings and conclusions. International Journal of Forecasting
(2021).

[131] Zelda Mariet and Vitaly Kuznetsov. 2019. Foundations of sequence-to-sequence modeling for time series. In The 22nd
International Conference on Artificial Intelligence and Statistics. PMLR, 408–417.

[132] James E. Matheson and Robert L. Winkler. 1976. Scoring Rules for Continuous Probability Distributions. Management
Science 22, 10 (1976), 1087–1096.

[133] Hongyuan Mei and Jason M. Eisner. 2017. The neural hawkes process: A neurally self-modulating multivariate point
process. In Advances in Neural Information Processing Systems. 6754–6764.

[134] Olof Mogren. 2016. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv preprint
arXiv:1611.09904 (2016).

[135] Pablo Montero-Manso and Rob J Hyndman. 2020. Principles and algorithms for forecasting groups of time series:
Locality and globality. arXiv preprint arXiv:2008.00444 (2020).

[136] Srayanta Mukherjee, Devashish Shankar, Atin Ghosh, Nilam Tathawadekar, Pramod Kompalli, Sunita Sarawagi, and
Krishnendu Chaudhury. 2018. ARMDN: Associative and recurrent mixture density networks for eretail demand
forecasting. arXiv preprint arXiv:1803.03800 (2018).

[137] Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov, Eric Xing, and Jeff Schneider.
2018. Transformation autoregressive networks. In International Conference on Machine Learning. PMLR, 3898–3907.

[138] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2019. N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019).

[139] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. Meta-learning framework with
applications to zero-shot time-series forecasting. arXiv preprint arXiv:2002.02887 (2020).

[140] George Papamakarios, Theo Pavlakou, and Iain Murray. 2017. Masked autoregressive flow for density estimation.
arXiv preprint arXiv:1705.07057 (2017).

[141] Youngsuk Park, Danielle Maddix, François-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and YuyangWang. 2022. Learning
Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting. In The 25th International
Conference on Artificial Intelligence and Statistics.

[142] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks.
In Proceedings of the 30th International Conference on Machine Learning, Vol. 28. 1310–1318.

[143] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems 32 (2019).

[144] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Amaratunga. 2014. Ensemble deep learning
for regression and time series forecasting. In Symposium on Computational Intelligence in Ensemble Learning (CIEL).
IEEE, 1–6.

[145] Stephan Rabanser, Tim Januschowski, Valentin Flunkert, David Salinas, and Jan Gasthaus. 2020. The Effectiveness of
Discretization in Forecasting: An Empirical Study on Neural Time Series Models. arXiv preprint arXiv:2005.10111
(2020).

[146] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim Januschowski.
2018. Deep state space models for time series forecasting. In Advances in Neural Information Processing Systems.
7785–7794.

[147] Syama Sundar Rangapuram, Shubham Shubham Kapoor, Rajbir Nirwan, Pedro Mercado, Tim Januschowski, Yuyang
Wang, and Michael Bohlke-Schneider. 2022. Coherent Probabilistic Forecasting for Temporal Hierarchies.

[148] Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus, and Tim
Januschowski. 2021. End-to-end learning of coherent probabilistic forecasts for hierarchical time series. In In-
ternational Conference on Machine Learning. PMLR, 8832–8843.

[149] Carl Edward Rasmussen and Christopher KI Williams. 2006. Gaussian process for machine learning. MIT press.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:35

[150] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. 2021. Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting. In International Conference on Machine Learning. PMLR,
8857–8868.

[151] Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann, and Roland Vollgraf. 2020. Multi-variate
probabilistic time series forecasting via conditioned normalizing flows. arXiv preprint arXiv:2002.06103 (2020).

[152] Frank Rosenblatt. 1957. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical
Laboratory.

[153] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning internal representations by error
propagation. Technical Report. University of California San Diego, La Jolla Institute for Cognitive Science.

[154] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning Representations by Back-propagating
Errors. Nature 323, 6088 (1986), 533–536.

[155] David Salinas, Michael Bohlke-Schneider, Laurent Callot, and Jan Gasthaus. 2019. High-Dimensional Multivariate
Forecasting with Low-Rank Gaussian Copula Processes. In Advances in Neural Information Processing Systems.

[156] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020), 1181–1191.

[157] Harshit Saxena, Omar Aponte, and Katie T. McConky. 2019. A hybrid machine learning model for forecasting a
billing period’s peak electric load days. International Journal of Forecasting 35, 4 (2019), 1288 – 1303.

[158] Bernhard Schölkopf. 2019. Causality for machine learning. arXiv preprint arXiv:1911.10500 (2019).
[159] Matthias Seeger. 2004. Gaussian processes for machine learning. International Journal of Neural Systems 14, 02 (2004),

69–106.
[160] Matthias W Seeger, David Salinas, and Valentin Flunkert. 2016. Bayesian intermittent demand forecasting for large

inventories. In Advances in Neural Information Processing Systems. 4646–4654.
[161] Artemios-Anargyros Semenoglou, Evangelos Spiliotis, Spyros Makridakis, and Vassilios Assimakopoulos. 2021.

Investigating the accuracy of cross-learning time series forecasting methods. International Journal of Forecasting 37,
3 (2021), 1072–1084.

[162] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. 2019. Think globally, act locally: A deep neural network approach to
high-dimensional time series forecasting. Advances in Neural Information Processing Systems 32 (2019).

[163] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete Graph Structure Learning for Forecasting Multiple Time Series. In
International Conference on Learning Representations.

[164] Anuj Sharma, Robert Johnson, Florian Engert, and Scott Linderman. 2018. Point process latent variable models of
larval zebrafish behavior. In Advances in Neural Information Processing Systems. 10919–10930.

[165] Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, and Stephan Günnemann. 2021. Detecting
Anomalous Event Sequences with Temporal Point Processes. Advances in Neural Information Processing Systems 34
(2021).

[166] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. 2021. Neural temporal point
processes: A review. arXiv preprint arXiv:2104.03528 (2021).

[167] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George VanDenDriessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[168] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419
(2018), 1140–1144.

[169] Slawek Smyl. 2020. A hybrid method of exponential smoothing and recurrent neural networks for time series
forecasting. International Journal of Forecasting 36, 1 (2020), 75–85.

[170] Slawek Smyl and N. Grace Hua. 2019. Machine learning methods for GEFCom2017 probabilistic load forecasting.
International Journal of Forecasting 35, 4 (2019), 1424–1431.

[171] Ralph D. Snyder, J. Keith Ord, and Adrian Beaumont. 2012. Forecasting the intermittent demand for slow-moving
inventories: A modelling approach. International Journal of Forecasting 28, 2 (2012), 485–496.

[172] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning. PMLR, 2256–2265.

[173] Huan Song, Deepta Rajan, Jayaraman J Thiagarajan, and Andreas Spanias. 2018. Attend and diagnose: Clinical time
series analysis using attention models. In Thirty-Second AAAI Conference on Artificial Intelligence.

[174] Yang Song and Diederik P Kingma. 2021. How to train your energy-based models. arXiv preprint arXiv:2101.03288
(2021).

[175] Kamile Stankeviciute, AhmedMAlaa, andMihaela van der Schaar. 2021. Conformal Time-series Forecasting. Advances
in Neural Information Processing Systems 34 (2021).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

111:36 Benidis et al.

[176] Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. 2021. Hierarchical probabilistic forecasting of electricity
demand with smart meter data. J. Amer. Statist. Assoc. 116, 533 (2021), 27–43.

[177] Shuntaro Takahashi, Yu Chen, and Kumiko Tanaka-Ishii. 2019. Modeling financial time-series with generative
adversarial networks. Physica A: Statistical Mechanics and its Applications 527 (2019), 121261.

[178] Filotas Theodosiou and Nikolaos Kourentzes. 2021. Forecasting with Deep Temporal Hierarchies. Available at SSRN:
https://ssrn.com/abstract=3918315 or http://dx.doi.org/10.2139/ssrn.3918315 (2021).

[179] Jean-François Toubeau, Jérémie Bottieau, François Vallée, and Zacharie De Grève. 2018. Deep learning-based
multivariate probabilistic forecasting for short-term scheduling in power markets. IEEE Transactions on Power Systems
34, 2 (2018), 1203–1215.

[180] Ali Caner Turkmen, Tim Januschowski, Yuyang Wang, and Ali Taylan Cemgil. 2021. Forecasting intermittent and
sparse time series: A unified probabilistic framework via deep renewal processes. PlosOne (2021).

[181] Ali Caner Turkmen, Yuyang Wang, and Tim Januschowski. 2019. Intermittent demand forecasting with deep renewal
processes. arXiv preprint arXiv:1911.10416 (2019).

[182] Ali Caner Türkmen, Yuyang Wang, and Alexander J. Smola. 2019. FastPoint: Scalable Deep Point Processes. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.

[183] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew W Senior, and Koray Kavukcuoglu. 2016. WaveNet: A generative model for raw audio. SSW 125 (2016).

[184] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 5998–6008.

[185] François-Xavier Vialard, Roland Kwitt, Suan Wei, and Marc Niethammer. 2020. A Shooting Formulation of Deep
Learning. In Advances in Neural Information Processing Systems.

[186] Chris S Wallace and David L Dowe. 2000. MML clustering of multi-state, Poisson, von Mises circular and Gaussian
distributions. Statistics and Computing 10, 1 (2000), 73–83.

[187] Rui Wang, Danielle Maddix, Christos Faloutsos, Yuyang Wang, and Rose Yu. 2021. Bridging physics-based and
data-driven modeling for learning dynamical systems. In Learning for Dynamics and Control. PMLR, 385–398.

[188] Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski. 2019. Deep factors
for forecasting. In International Conference on Machine Learning. 6607–6617.

[189] Ruofeng Wen and Kari Torkkola. 2019. Deep Generative Quantile-Copula Models for Probabilistic Forecasting. arXiv
preprint arXiv:1907.10697 (2019).

[190] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. 2017. A multi-horizon quantile
recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017).

[191] Shanika L Wickramasuriya, George Athanasopoulos, Rob J Hyndman, et al. 2015. Forecasting hierarchical and
grouped time series through trace minimization. Department of Econometrics and Business Statistics, Monash University
(2015).

[192] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. 2020. Adversarial sparse transformer
for time series forecasting. Advances in Neural Information Processing Systems 33 (2020), 17105–17115.

[193] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. 2020. Connecting the dots:
Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 753–763.

[194] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. 2017. Wasserstein learning of
deep generative point process models. In Advances in Neural Information Processing Systems. 3247–3257.

[195] Shuai Xiao, Junchi Yan, Mehrdad Farajtabar, Le Song, Xiaokang Yang, and Hongyuan Zha. 2017. Joint modeling of
event sequence and time series with attentional twin recurrent neural networks. arXiv preprint arXiv:1703.08524
(2017).

[196] Qifa Xu, Xi Liu, Cuixia Jiang, and Keming Yu. 2016. Quantile autoregression neural network model with applications
to evaluating value at risk. Applied Soft Computing 49 (2016), 1–12.

[197] Xing Yan, Weizhong Zhang, Lin Ma, Wei Liu, and Qi Wu. 2018. Parsimonious quantile regression of financial asset
tail dynamics via sequential learning. Advances in Neural Information Processing Systems 31 (2018).

[198] Jaemin Yoo and U Kang. 2021. Attention-Based Autoregression for Accurate and Efficient Multivariate Time Series
Forecasting. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). SIAM, 531–539.

[199] Jinsung Yoon, Daniel Jarrett, andMihaela Van der Schaar. 2019. Time-series generative adversarial networks. Advances
in Neural Information Processing Systems 32 (2019).

[200] Hsiang-Fu Yu, Rao N., and I.S. Dhillon. 2016. Temporal regularized matrix factorization for high-dimensional time
series prediction. Advances in Neural Information Processing Systems (2016), 847–855.

[201] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. 1998. Forecasting with artificial neural networks: The state of
the art. International journal of forecasting 14, 1 (1998), 35–62.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

Deep Learning for Time Series Forecasting: Tutorial and Literature Survey 111:37

[202] G Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50
(2003), 159–175.

[203] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-attention generative adversarial
networks. In International Conference on Machine Learning. PMLR, 7354–7363.

[204] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2020. Informer:
Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. arXiv preprint arXiv:2012.07436 (2020).

[205] Lingxue Zhu and Nikolay Laptev. 2017. Deep and confident prediction for time series at Uber. In IEEE International
Conference on Data Mining Workshops (ICDMW). 103–110.

[206] Daniel Zügner, François-Xavier Aubet, Victor Garcia Satorras, Tim Januschowski, Stephan Günnemann, and Jan
Gasthaus. 2021. A study of joint graph inference and forecasting. arXiv preprint arXiv:2109.04979 (2021).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Deep Forecasting: A Tutorial
	2.1 Notation and Formalization of the Forecasting Problem
	2.2 Neural Network Architectures
	2.3 Input Transformations
	2.4 Output Models and Loss Functions
	2.5 Archetypical Architectures

	3 Literature review
	3.1 Probabilistic Forecast Models
	3.2 Point Forecast Models
	3.3 Deep State Space Models
	3.4 Multivariate Forecasting
	3.5 Physics-based Models
	3.6 Global-local
	3.7 Intermittent Time Series
	3.8 Generalized Adversarial Networks
	3.9 Summary and Practical Guidelines

	4 Conclusions and Avenues for Future Work
	References

