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Abstract

The Web Mercator projection is used widely for online interactive maps. Despite
discussions of the appropriateness of a simplified spherical approach or fundamen-
tal reservations against the Mercator projection in general, its broad availability for
everyone gives it a great significance. For example, OpenStreetMap provides free ge-
ographical data which is typically accessed by means of map tile servers which rely on
the Web Mercator projection. In this paper, starting with the mathematical deriva-
tion of spherical Mercator projections, the error introduced by identifying ellipsoidal
and spherical coordinates is analyzed, the map tile disassembling is described in full
detail and map applications are given.
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1 Introduction

The Web Mercator (EPSG:3857) projection is used by OpenStreetMap, OsmAnd, Google Maps,
Bing Maps, and many other services to provide zoomable general purpose maps, typically, but not
necessarily for online use. According to Spatialreference.org 2020b, it is intended for visualization
applications and it is not a recognized geodetic system. The reason is quite clear, because this
projection uses data complying to the ellipsoidal coordinates for WGS 84 (World Geodetic
System 1984) and develops the data on a sphere which is then projected to a planar map by
a Mercator projection. This gives an error difference between the “real” Mercator projection
from the WGS 84 ellipsoid and the spherical Web Mercator or Pseudo Mercator projection. The
location error grows from the equator up to 50 km for the polar latitudes 85° S resp. 85°N, see
Battersby, Finn, Usery, and Yamamoto 2014. Nevertheless, for general purpose maps, the visual
difference is quite neglectable for the benefit of simplified computations. Details are discussed
in Section 4. For small scale scientific maps there are accurate alternatives like GMT (Wessel,
Luis, Uieda, Scharroo, Wobbe, Smith, and Tian 2019).

Besides the errors from the spherical simplifications, the Mercator projection has several ques-
tionable aspects, especially on a global scale where areas near the equator are depicted much
smaller than areas nearer to the poles. This is also seen for single map tiles as is shown in
Section 4.3. But, such aspects are not subject of examination here. The emphasis of this work
is on mathematical detail for technical applications and algorithmic implementations.

In this paper, the mathematical basics of the spherical Mercator projection with loxodromes
as starting point are described first. A loxodrome is a curve which crosses all meridians with
a constant angle and is depicted as straight line on a Mercator map, see Figure 1. Next, the
derived projection formulas are specifically adapted for web maps with a clipped geographic
area. The projection image becomes a unit square [0, 1]2. The disassembling of this unit square
into map tiles used by tile servers is developed in full detail. Further, map drawing applications
with map tiles are given according to different requirements. Additionally, the presentation of
the Gudermann function, spherical loxodromic and orthodromic distances are discussed.

This paper provides the technical background and the mathematics for the algorithms used by
the LATEX package mercatormap (Sturm 2020).
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2 Spherical Mercator Projection
The Mercator projection for depicting the earth surface on a map conserves the angles with the
meridians. Such, the loxodromes or rhumb lines become straight lines on the resulting map, see
Figure 1.

The following considerations are based on a perfect sphere and do not respect a more precise
ellipsoidal model for earth. Furthermore, it is sufficient to consider a unit sphere with radius 1.

2.1 Loxodrome Description
The radius vector ~r of the sphere (position vector for the sphere points) can be given in depen-
dency of a latitude angle ϕ ∈

[
−π

2 ,
π
2
]
and a longitude angle λ ∈ R as

~r(ϕ, λ) =




cosλ · cosϕ
sinλ · cosϕ

sinϕ


 (1)

Of course, the longitude λ has a period of 2π and we allow λ ∈ R for now.

Orthogonal to the radius vector ~r are the unit vector ~Λ showing in direction of a latitude circle
and the unit vector ~Φ showing in direction of a meridian:

~Λ(ϕ, λ) = 1
cosϕ ·

∂~r

∂λ
(ϕ, λ) =



− sinλ
cosλ

0


 (2)

~Φ(ϕ, λ) = ∂~r

∂ϕ
(ϕ, λ) =



− cosλ · sinϕ
− sinλ · sinϕ

cosϕ


 (3)

Underlying map © Bundesamt für Kartographie und Geodäsie 2020, Datenquellen
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Figure 1: Course following a loxodrome. The heading angle between ship and meridians is
always a constant β. On a nautical chart with Mercator projection this course is a
straight line.
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Figure 2: Tangent plane at a sphere point denoted by ~r with latitude ϕ and longitude λ. The
plane is spanned by ~Λ and ~Φ. ~B is a vector in the plane with angle β to ~Φ.

For every (ϕ, λ), the three vectors form an orthonormal system since we have
〈
~r
∣∣∣ ~Λ
〉

=
〈
~r
∣∣∣ ~Φ
〉

=
〈
~Λ
∣∣∣ ~Φ
〉

= 0.

The vectors ~Λ and ~Φ span the tangent plane for ~r, see Figure 2.

Now, consider another unit vector ~B in this tangent plane with angle β to ~Φ (meridian). This
vector is given by

~B(ϕ, λ) = cosβ · ~Φ(ϕ, λ) + sin β · ~Λ(ϕ, λ), (4)
because the scalar product of ~B with ~Φ is cosβ:

〈
~B
∣∣∣ ~Φ
〉

= cosβ ·
〈
~Φ
∣∣∣ ~Φ
〉

+ sin β ·
〈
~Λ
∣∣∣ ~Φ
〉

= cosβ.

A loxodrome ~̃γ with heading angle β and representation
~̃γ(s) = ~r(ϕ̃(s), λ̃(s))

which is parameterized by arc length has to fulfill the differential equation system
d~̃γ
ds (s) = ~B(ϕ̃(s), λ̃(s)) (5)

Here, we deliberately ignore the second case d~̃γ
ds (s) = − ~B(ϕ̃(s), λ̃(s)) which leads to loxodromes

heading from north to south.

On the left hand side of the (5) it holds
d~̃γ
ds (s) = d

ds
(
~r(ϕ̃(s), λ̃(s))

)
= ∂~r

∂ϕ
(ϕ̃(s), λ̃(s)) · dϕ̃

ds (s) + ∂~r

∂λ
(ϕ̃(s), λ̃(s)) · dλ̃

ds (s)

6 http://doi.org/10.18726/2020_3
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With (2), (3), and (4), (5) becomes

dϕ̃
ds (s) · ~Φ(ϕ̃(s), λ̃(s)) + dλ̃

ds (s) · cos ϕ̃(s) · ~Λ(ϕ̃(s), λ̃(s))

= cosβ · ~Φ(ϕ̃(s), λ̃(s)) + sin β · ~Λ(ϕ̃(s), λ̃(s))
(6)

Following from the uniqueness of a basis representation or simply by scalar multiplication with
~Λ and ~Φ, (6) is equal to the following two equations:

dϕ̃
ds (s) = cosβ. (7)

dλ̃
ds (s) · cos ϕ̃(s) = sin β, (8)

Now, we change parametrization by arc length to parametrization by latitude using the substi-
tution

ϕ = ϕ̃(s) ⇔ s = ϕ̃−1(ϕ) = s(ϕ)

With (7), we have

1 = d
(
ϕ̃ ◦ ϕ̃−1)

dϕ (ϕ) = dϕ̃
ds
(
ϕ̃−1(ϕ)

)
· dϕ̃−1

dϕ (ϕ) = dϕ̃
ds (s) · dϕ̃−1

dϕ (ϕ) = cosβ · dϕ̃−1

dϕ (ϕ),

which gives the reciprocal of (7), namely

ds
dϕ(ϕ) = dϕ̃−1

dϕ (ϕ) = 1
cosβ (9)

With
λ(ϕ) := λ̃(s) =

(
λ̃ ◦ ϕ̃−1

)
(ϕ),

we get with (8) and (9):

dλ
dϕ(ϕ) =

d
(
λ̃ ◦ ϕ̃−1

)

dϕ (ϕ) = dλ̃
ds
(
ϕ̃−1(ϕ)

)
· dϕ̃−1

dϕ (ϕ)

= dλ̃
ds (s) · 1

cosβ = sin β
cos ϕ̃(s) ·

1
cosβ = tan β · 1

cosϕ.
(10)

With (10), a relationship between ϕ and λ is found. By adding a condition

λ(ϕ0) = λ0

we get a unique solution for λ(ϕ) through integration of (10):

λ(ϕ) = tan β ·
ϕ∫

ϕ0

1
cos t dt+ λ0 = tan β ·




ϕ∫

0

1
cos t dt−

ϕ0∫

0

1
cos t dt


+ λ0

= (arggdϕ− arggdϕ0) · tan β + λ0.

Here, arggd is the inverse Gudermann function given by (14). This representation does not
include the special case β = ±π

2 , where the loxodrome is a circle of latitude which cannot be
parameterized by latitude (which is constant).

Finally, ~γ := ~̃γ ◦ ϕ̃−1 is a representation for a loxodrome parameterized by latitude:
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Figure 3: Loxodrome with a constant angle of 60° to the north. Also, circles of latitude at
85.0511°N and 85.0511° S are illustrated in blue. These are boundaries for the Web
Mercator projection described in Section 3.

Loxodrome representation by latitude

A loxodrome with a constant angle β ∈
]
−π

2 ,
π
2
[
to the north, running from the south pole to the

north pole through ~r(ϕ0, λ0) with λ0 ∈ R and ϕ0 ∈
]
−π

2 ,
π
2
[
, which is parameterized by latitude,

has a representation
~γ :

]
−π2 ,

π

2

[
→ R3, ϕ 7→ ~γ(ϕ) = ~r(ϕ, λ(ϕ)),

where
λ(ϕ) = (arggdϕ− arggdϕ0) · tan β + λ0. (11)

arggd is the inverse Gudermann function given by (14).

An example illustration for such a loxodrome is given by Figure 3.

Alternatively, when (11) is dissolved for ϕ, parametrization can be changed to longitude:

Loxodrome representation by longitude
A loxodrome with a constant angle β ∈ ]0, π[ to the north, running through ~r(ϕ0, λ0) with
λ0 ∈ R and ϕ0 ∈

]
−π

2 ,
π
2
[
, which is parameterized by longitude, has a representation

~γ∗ : R→ R3, λ 7→ ~γ∗(λ) = ~r(ϕ(λ), λ),

where
ϕ(λ) = gd ((λ− λ0) · cotβ + arggdϕ0) . (12)

gd is the Gudermann function given by (13) and arggd is the inverse Gudermann function given
by (14).

In this representation with β ∈ ]0, π[ the parameterized curve ~γ∗ has a heading to the east.

8 http://doi.org/10.18726/2020_3
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2.2 Excursion: Gudermann Function and inverse Gudermann Function

As a short excursion, we consider the Gudermann or Gudermannian function gd (Weisstein 2020)
also known as Mercator function (Walz 2017) given by (13) and its inverse arggd (which we will
see) by (14). The following tabular collocation lists these functions with several equivalent
expressions.

Gudermann function gd

gd : R→
]
−π2 ,

π

2

[
,

x 7→ gdx =
x∫

0

1
cosh tdt

(13)

Inverse Gudermann function arggd

arggd :
]
−π2 ,

π

2

[
→ R,

x 7→ arggdx =
x∫

0

1
cos tdt

(14)

d
dx gdx = 1

cosh x (15) d
dx arggdx = 1

cosx (16)

gdx = arctan (sinh x) (17) arggdx = arsinh (tan x) (18)

arggdx = ln
(

tan x+ 1
cosx

)
(19)

gdx = arcsin
(
e2x − 1
e2x + 1

)
(20) arggdx = 1

2 ln
(1 + sin x

1− sin x

)
(21)

gdx = arcsin (tanh x) (22) arggdx = artanh (sin x) (23)

gdx = 2 arctan
(
ex − 1
ex + 1

)
(24) arggdx = ln

(
1 + tan x

2
1− tan x

2

)
(25)

gdx = 2 arctan
(

tanh x2

)
(26) arggdx = 2 artanh

(
tan x2

)
(27)

gdx = 2 arctan (ex)− π

2 (28) arggdx = ln
(

tan
(
x

2 + π

4

))
(29)

−5 −4 −3 −2 −1 1 2 3 4 5

− 1
2π

1
2π

O
x

y

gd(x)

Figure 4: Graph of the Gudermann function gd.
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Starting with definition (13), we proof all other expressions by elementary manipulations.

d
dx gdx = d

dx

x∫

0

1
cosh tdt = 1

cosh x. This gives (15).

gdx =
x∫

0

1
cosh tdt =

x∫

0

cosh t
cosh2 t

dt =
x∫

0

cosh t
1 + sinh2 t

dt = [arctan (sinh t)]x0

= arctan (sinh x) . This gives (17).

gd is a strictly monotonic increasing function, because d
dx gdx = 1

coshx > 0 for all x ∈ R.
Together with

lim
x→−∞

gdx = lim
x→−∞

arctan (sinh x) = −π2
lim
x→∞ gdx = lim

x→∞ arctan (sinh x) = π

2





gd (R) =
]
−π2 ,

π

2

[
,

we have proven (13) to be well-defined. Also, gd is shown to be bijective. Figure 4 shows the
graph of gd.

Now, we compute the inverse by manipulation of (17):

y = gdx = arctan (sinh x) ⇒ tan y = sinh x ⇒ x = arsinh (tan y) .

This gives

gd−1 :
]
−π2 ,

π

2

[
→ R, x 7→ gd−1(x) = arsinh (tan x) .

The derivative of this inverse is

d
dx gd−1(x) = d

dx (arsinh (tan x)) = 1√
tan2 x+ 1

· 1
cos2 x

= 1√
sin2 x+ cos2 x

· 1
cosx

= 1
cosx.

Here, we used that cosx > 0 for x ∈
]
−π

2 ,
π
2
[
. Now, we have with (14) that

arggdx =
x∫

0

1
cos tdt = gd−1(x) + C,

and C = arggd(0)− gd−1(0) = 0− arsinh (tan 0) = 0.

Altogether, this shows arggd = gd−1 (14). Also, we have (16) and (18).

10 http://doi.org/10.18726/2020_3
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We remember that cosx > 0 for x ∈
]
−π

2 ,
π
2
[
and we continue with transforming (18):

arggdx = arsinh (tan x) = ln
(
tan x+

√
tan2 x+ 1

)
= ln

(
tan x+

√
1

cos2 x

)

= ln
(

tan x+ 1
cosx

)
This gives (19)

= ln
(sin x+ 1

cosx

)
= 1

2 ln
(

(1 + sin x)2

cos2 x

)
= 1

2 ln
(

(1 + sin x)2

1− sin2 x

)

= 1
2 ln

(1 + sin x
1− sin x

)
This gives (21)

= artanh (sin x) This gives (23)

= 1
2 ln

(
1 + 2 sin x

2 cos x2
1− 2 sin x

2 cos x2

)
= 1

2 ln
(

cos2 x
2 + 2 sin x

2 cos x2 + sin2 x
2

cos2 x
2 − 2 sin x

2 cos x2 + sin2 x
2

)

= 1
2 ln

((
cos x2 + sin x

2
)2

(
cos x2 − sin x

2
)2

)
= ln

(
cos x2 + sin x

2
cos x2 − sin x

2

)

= ln
(

1 + tan x
2

1− tan x
2

)
This gives (25)

= 2 artanh
(

tan x2

)
. This gives (27)

We have used cos x2 > sin x
2 for x

2 ∈
]
−π

4 ,
π
4
[
during the transformation.

Now, we look again at (25):

arggdx = ln
(

1 + tan x
2

1− tan x
2

)
= ln

(
tan π

4 + tan x
2

1− tan π
4 tan x

2

)

= ln
(

tan
(
x

2 + π

4

))
. This gives (29)

(23) yields directly (22), i.e.

gdx = arcsin (tanh x) = arcsin
(
ex − e−x

ex + e−x

)

= arcsin
(
e2x − 1
e2x + 1

)
. This gives (20)

(29) yields directly (28) and (27) yields directly (26), i.e.

gdx = 2 arctan
(

tanh x2

)
= 2 arctan

(
e

x
2 − e−

x
2

e
x
2 + e−

x
2

)

= 2 arctan
(
ex − 1
ex + 1

)
. This gives (24)

2.3 Mercator Projection of Latitude/Longitude to Cartesian Coordinates
The classic description of a Mercator projection is to project a sphere to a cylinder tangential to
it at the equator. Later, this cylinder is rolled flat to a plane (the map). On this map, a part of
a loxodrome shall appear as straight line. The following mapping (30) describes this projection,

http://doi.org/10.18726/2020_3 11
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but its domain of definition is deliberately larger than needed to allow arbitrary longitude values
(with a period of 2π).

Mercator projection
Let s > 0 be some scaling factor and let xoff, yoff ∈ R be some offset values.
The Mercator projection of a pair (ϕ, λ) consisting of a latitude angle ϕ and a longitude angle
λ to a pair (x, y) of Cartesian coordinates (on a map) is given by

M :
]
−π2 ,

π

2

[
× R→ R2,

(
ϕ
λ

)
7→
(
x(λ)
y(ϕ)

)
, (30)

where

x(λ) := s · λ+ xoff, (31)
y(ϕ) := s · arggdϕ+ yoff. (32)

We now consider a loxodrome on the sphere with a constant angle β ∈
]
−π

2 ,
π
2
[
to the north

through ~r(ϕ0, λ0). This point is projected to a point (x0, y0) on the plane by
x0 = s · λ0 + xoff,

y0 = s · arggdϕ0 + yoff.

For the loxodrome parameterized by latitude we have with (11):
λ = (arggdϕ− arggdϕ0) · tan β + λ0.

For the points (x, y) of the projected loxodrome, this yields the following relationship:
x = s · λ+ xoff = s · ((arggdϕ− arggdϕ0) · tan β + λ0) + xoff

= (s · arggdϕ+ yoff) · tan β − (s · arggdϕ0 + yoff) · tan β + s · λ0 + xoff

= y · tan β − y0 · tan β + x0.

⇒ x− x0
y − y0

= tan β. (33)

This means that the projected loxodrome is a straight line through (x0, y0) which has a constant
angle β with the y-axis (north direction).

(31) and (32) can be easily transformed to get an inverse projection from the plane (map) back
to the sphere:

Inverse Mercator projection
Let s > 0 be some scaling factor and let xoff, yoff ∈ R be some offset values.
The inverse Mercator projection of a pair (x, y) of Cartesian coordinates to a pair (ϕ, λ) con-
sisting of a latitude angle ϕ and a longitude angle λ is given by

M−1 : R2 →
]
−π2 ,

π

2

[
× R,

(
x
y

)
7→
(
ϕ(y)
λ(x)

)
, (34)

where

ϕ(y) := gd
(
y − yoff

s

)
, (35)

λ(x) := x− xoff
s

. (36)

12 http://doi.org/10.18726/2020_3
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3 Projection to Map Tiles

The general idea of map tiles is that the planar map is cut into square pieces which themselves
are cut further into square pieces. Every cut gives a higher zoom level with a growing number
of smaller pieces which are called map tiles in the following.

On application side, for every map tile a fixed size pixel graphic file (typically 256 times 256
pixel) is created to be served over the Web. The depicted map is composed of several map tiles
from a tile server. The map scale is increased (zoomed in) by selecting map tiles from a higher
zoom level.

The map tile model uses a simplified reference geoid which is a perfect sphere.This gives a slight
error in projecting the ellipsoidal shape of the earth. The size of the error is discussed later in
Section 4.

The Mercator projection (30) has R2 as image. In the following, the domain of the projection
and same scaling are adapted to get [0, 1]2 as image of the projection. This unit square is
identical to the only tile of zoom level 0, the root tile for the disassembling into smaller tiles.

3.1 Transformation of Latitude/Longitude to unified Cartesian Coordinates

For the Mercator projection (30), we now consider a scaling factor s = 1
2π and offset values

xoff = 1
2 and yoff = 1

2 . Also, we clip the longitude and latitude domain such that the projected
Cartesian coordinates lie in the unit square [0, 1]2. This results in the following unified projection:

Unified clipped Mercator projection
The unified clipped Mercator projection of a pair (ϕ, λ) consisting of a latitude angle ϕ and a
longitude angle λ to a pair (x, y) of Cartesian coordinates is given by

MU : [− gdπ, gdπ]× [−π, π]→ [0, 1]2,
(
ϕ
λ

)
7→
(
x(λ)
y(ϕ)

)
, (37)

where

x(λ) := λ

2π + 1
2 , (38)

y(ϕ) := arggdϕ
2π + 1

2 . (39)

In the same manner, (34) gives the inverse mapping:

Inverse unified clipped Mercator projection
The inverse unified clipped Mercator projection of a pair (x, y) of coordinates to a pair (ϕ, λ)
consisting of a latitude angle ϕ and a longitude angle λ is given by

M−1
U : [0, 1]2 → [− gdπ, gdπ]× [−π, π] ,

(
x
y

)
, 7→

(
ϕ(y)
λ(x)

)
(40)

where

ϕ(y) := gd (2πy − π) , (41)
λ(x) := 2πx− π. (42)
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The following should be remarked:

• The resulting unit square [0, 1]2 is considered to be the complete presentable world map.
On zoom level 0, this is the one and only tile of the map (root tile).

• Parts of the polar regions including the poles are not mapped, because the latitude angle
ϕ is restricted by

gdπ .= 1.48442 .= 85.0511°,

i.e. only positions between 85.0511°N and 85.0511° S can be displayed. Figure 3 illustrates
these boundaries.

• The longitude angle λ is restricted by π, but if needed, we allow it to be unrestricted.
Here, λ has a period of 2π and x has a period of 1.

• Note that x(λ) defined by (38) is oriented from south to north, while OpenStreetMap
typically uses another representation which conforms to 1− x(λ) and which is oriented
from north to south (OpenStreetMap contributors 2019).
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3.2 Map Tiles on different Zoom Levels

On every zoom level Z ∈ N0, the unit square [0, 1]2 map is disassembled into 2Z times 2Z
quadratic tiles. Each tile on zoom level Z is addressed by a coordinate pair (X,Y ) with
X,Y ∈

{
0, . . . , 2Z − 1

}
according to the following scheme:

Underlying map
© Bundesamt für Kartographie und Geodäsie 2020, Datenquellen

(0, 0)

x

y

zoom level Z = 0

Underlying map
© Bundesamt für Kartographie und Geodäsie 2020, Datenquellen

(0, 0)

(0, 1)

(1, 0)

(1, 1)

x

y

zoom level Z = 1

Underlying map
© Bundesamt für Kartographie und Geodäsie 2020, Datenquellen

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

x

y

zoom level Z = 2

Underlying map
© Bundesamt für Kartographie und Geodäsie 2020, Datenquellen

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(6,0)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(7,0)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)
x

y

zoom level Z = 3

Every map tile T (Z,X, Y ) is a subset of [0, 1]2. According to the scheme above, the following
definition (43) for T (Z,X, Y ) can be derived.
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Map tile T (Z,X, Y )
The triple (Z,X, Y ) denotes a map tile T (Z,X, Y ) with zoom level Z ∈ N0 and coordinate pair
(X,Y ). With N := 2Z , for every X,Y ∈ {0, N − 1} define a map tile

T (Z,X, Y ) :=
[
X

N
,
X + 1
N

]
×
[
N − Y − 1

N
,
N − Y
N

]

=
{(

x
y

)
∈ R2  X

N
≤ x ≤ X + 1

N
,
N − Y − 1

N
≤ y ≤ N − Y

N

} (43)

as subset of [0, 1]2.
As an extension, we set

T (Z,X + kN, Y ) := T (Z,X, Y ) for all k ∈ Z.

Using (40), (41), and (42), the latitude and longitude for the tile borders can be computed,
resulting in the following:

Latitude range and longitude range of map tile T (Z,X, Y )

Let zoom level Z ∈ N0, N := 2Z , and let X,Y ∈ {0, N − 1}. Then,

M−1
U (T (Z,X, Y )) = [ϕmin, ϕmax]× [λmin, λmax]

contains all positions on the sphere relating to map tile T (Z,X, Y ), where

ϕmin = gd
(

2πN − Y − 1
N

− π
)

= gd
(
π
N − 2Y − 2

N

)
,

ϕmax = gd
(

2πN − Y
N

− π
)

= gd
(
π
N − 2Y
N

)
,

λmin = 2πX
N
− π = π

2X −N
N

,

λmax = 2πX + 1
N

− π = π
2X + 2−N

N
.
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4 Deviation from the WGS 84 Ellipsoid and Size Considerations
For Web Mercator, the ellipsoidal coordinates for WGS 84 are developed on a sphere. As seen
before, the projection to map tiles does not require any radius value for the sphere. A concrete
radius is needed when the map is populated with scale values, distances, map height and width,
etc.

EPSG Geodetic Parameter Registry 2020 states “Relative to WGS 84 / World Mercator (CRS
code 3395) errors of 0.7 percent in scale and differences in northing of up to 43km in the map
(equivalent to 21km on the ground) may arise.” This statement refers to the convention that
the value of the Web Mercator radius is equal to the semi-major axis of the WGS 84 ellipsoid.
This radius is also used by OpenStreetMap contributors 2019. But, according to Battersby,
Finn, Usery, and Yamamoto 2014 it is not clear, if all applications and services use this radius.
One example is www.netzwolf.info 2009 where presumably the volumetric radius of the Earth
is used. Besides the volumetric radius (equal volume), other candidates are the authalic radius
(equal area), and the mean radius 2a+b

3 (Battersby, Finn, Usery, and Yamamoto 2014).

The WGS 84 Ellipsoid (Spatialreference.org 2020a; Spatialreference.org 2020b; National
Geospatial-Intelligence Agency 2014) modelling the Earth is defined by

ellipsoid semi-major axis a = 6 378 137 m, (44)

ellipsoid inverse flattening 1
f

= 298.257 223 563, (45)

ellipsoid eccentricity e =
√

2f − f2 = 0.081 819 190 842 6, (46)
e2 = 2f − f2 = 0.006 694 379 990 14, (47)

1− e2 = 2f − f2 = 0.999 988 758 661, (48)
ellipsoid semi-minor axis b = a(1− f) = 6 356 752.314 252 m. (49)

Also, the Web Mercator sphere has a radius equal to the ellipsoid semi-major axis, i.e.

sphere radius R0 = 6 378 137 m. (50)

Further, following the naming of Moritz 2000, we note for future discussions the

mean radius R1 = 2a+ b

3 = 6 371 008.7714 m, (51)

authalic average radius R2 = 6 371 007.1810 m, (52)
volumetric average radius R3 = 3√

a2b = 6 371 000.7900 m. (53)

In the following, a short overview construction of ellipsoidal coordinates is given. Then, devia-
tions of the Web Mercator sphere to the WGS 84 ellipsoid are discussed.
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4.1 Ellipsoidal Coordinates

a

b

ψ

d
z

x

~m(t)

~̇m(t)
~m⊥(t)

ϕ

Figure 5: Ellipsoidal coordinates. Ellipse as intersection of an ellipsoid of rotation with the
x-z-plane.

Since the WGS 84 ellipsoid is an ellipsoid of rotation, it is enough to regard an intersection with
the x-z-plane which gives an ellipse, see Figure 5.

Here, ϕ is the geodetic latitude while ψ is a spherical polar angle (geocentric latitude) with angle-
dependent geocentric radius d (Heck and Seitz 2017). x and z are the Cartesian coordinates of
the considered point on the meridian ellipse. x is also the radius of the circle of latitude ϕ for
the WGS 84 ellipsoid.

We start with an auxiliary parametrization of the meridian ellipse given by

~m(t) =
(
x
z

)
=
(
a cos t
b sin t

)
, t ∈

]
−π2 ,

π

2

[
(54)

which obviously fulfills x2

a2 + y2

b2 = 1. This parameterizes the right-hand half of our ellipse by
parametric latitude t.

Here, we have
tanψ = z

x
= b

a
tan t. (55)

The tangent vector at ~m(t) is found as

~̇m(t) =
(
−a sin t
b cos t

)

and further the normal vector on the ellipse as

~m⊥(t) =
(
b cos t
a sin t

)
.
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The geodetic latitude ϕ is the angle between ~m⊥(t) and the equatorial plane, i.e.

tanϕ = a sin t
b cos t = a

b
tan t. (56)

t = arctan
(
b

a
tanϕ

)
. (57)

Combining (55) and (56) gives

tanψ = b2

a2 tanϕ = (1− e2) tanϕ (58)

using the eccentricity definition

e2 = a2 − b2

a2 = 1− b2

a2 ,
b2

a2 = 1− e2, b = a
√

1− e2, a = b
1√

1− e2 .

From (58), we get directly
ψ = arctan

(
(1− e2) tanϕ

)
. (59)

Let us note the basic relations (for every ξ ∈ R)

sin2(arctan ξ) = ξ2

1 + ξ2 and cos2(arctan ξ) = 1
1 + ξ2 (60)

to deduct from (54) and (57) the following

x2 = a2 cos2 t = a2 cos2
(

arctan
(
b

a
tanϕ

))

= a2 1
1 + b2

a2 tan2 ϕ
= a2 cos2 ϕ

cos2 ϕ+ b2
a2 sin2 ϕ

= a2 cos2 ϕ

1− sin2 ϕ+ b2
a2 sin2 ϕ

= a2 cos2 ϕ

1− e2 sin2 ϕ
.

Since x and cosϕ are both positive values, this gives

x = a cosϕ√
1− e2 sin2 ϕ

. (61)

z is computed in the same manner from (54) and (57) by

z2 = b2 sin2 t = b2 sin2
(

arctan
(
b

a
tanϕ

))

= b2
b2

a2 tan2 ϕ

1 + b2
a2 tan2 ϕ

=
b4

a2 sin2 ϕ

cos2 ϕ+ b2
a2 sin2 ϕ

= a2(1− e2)2 sin2 ϕ

1− e2 sin2 ϕ
.

Since z and sinϕ share the same algebraic sign, this gives

z = a(1− e2) sinϕ√
1− e2 sin2 ϕ

. (62)
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For sake of completeness, d is found as length of ~m(t) from (54), (61), and (62) by

d =
√
x2 + z2 = a√

1− e2 sin2 ϕ

√
cos2 ϕ+ (1− e2)2 sin2 ϕ

= a√
1− e2 sin2 ϕ

√
1− sin2 ϕ+ (1− 2e2 + e4) sin2 ϕ

= a√
1− e2 sin2 ϕ

√
1− (2− e2)e2 sin2 ϕ. (63)

For the summary, the ellipse is to be rotated around the z-axis to get the ellipsoid. From (61)
and (62) we get by adding trigonometric functions of the longitude:

Position vector for the ellipsoid
The position vector ~r for the ellipsoid points can be given in dependency of a latitude angle
ϕ ∈

[
−π

2 ,
π
2
]
and a longitude angle λ ∈ R as

~r(ϕ, λ) =




A(ϕ) · cosλ · cosϕ
A(ϕ) · sinλ · cosϕ

A(ϕ) · (1− e2) · sinϕ


 (64)

where
A(ϕ) := a√

1− e2 sin2 ϕ
. (65)

We consider now the signed meridian distance µ(ϕ) from latitude ϕ to the equator following a
meridian. With (54) and (57), it is found as

µ(ϕ) =
t(ϕ)∫

0

∥∥∥ ~̇m(t)
∥∥∥dt =

t(ϕ)∫

0

(
a2 sin2 t+ b2 cos2 t

) 1
2 dt, with t(ϕ) = arctan

(
b

a
tanϕ

)
. (66)

From (62) we get

a2 sin2 t = a2

b2
z2 = a2

b2
a2(1− e2)2 sin2 ϕ

1− e2 sin2 ϕ
= b2 sin2 ϕ

1− e2 sin2 ϕ
(67)

and from (61) we get

b2 cos2 t = b2

a2x
2 = b2

a2
a2 cos2 ϕ

1− e2 sin2 ϕ
= b2 cos2 ϕ

1− e2 sin2 ϕ
. (68)

Differentiating (57) gives

dt
dϕ(ϕ) = 1

1 + b2
a2 tan2 ϕ

· b
a
· 1

cos2 ϕ
= b

a
· 1

cos2 ϕ+ b2
a2 sin2 ϕ

= b

a
· 1

1− e2 sin2 ϕ
(69)

Using (67), (68), and (69) for integral substitution in (66) results in

µ(ϕ) =
ϕ∫

0

(
b2 cos2 φ

1− e2 sin2 φ
+ b2 cos2 φ

1− e2 sin2 φ

) 1
2

· b
a
· 1

1− e2 sin2 φ
dφ

= b2

a

ϕ∫

0

1
(
1− e2 sin2 φ

) 3
2

dφ = a(1− e2)
ϕ∫

0

dφ
(
1− e2 sin2 φ

) 3
2
.
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Besides numerical integration for this elliptic integral, there a several known series expansions
to evaluate µ(ϕ), see Osborne 2013, Section 5.8.

Distances on the ellipsoid
The signed parallel distance on the ellipsoid from longitude λ1 to λ2 on a circle of latitude ϕ is
given by

sparallel = a cosϕ√
1− e2 sin2 ϕ

· (λ2 − λ1) = A(ϕ) · cosϕ · (λ2 − λ1). (70)

The signed meridian distance on the ellipsoid from latitude ϕ1 to ϕ2 is given by

smeridian = a(1− e2)
ϕ2∫

ϕ1

dφ
(
1− e2 sin2 φ

) 3
2

= µ(ϕ2)− µ(ϕ1) (71)

where

µ(ϕ) = a(1− e2)
ϕ∫

0

dφ
(
1− e2 sin2 φ

) 3
2
. (72)

The development of (72) was done immediately beforehand. (70) is a direct consequence from
the radius of a circle of latitude ϕ computed in (61) or derived from (64).

4.2 Deviation of Web Mercator from the WGS 84 Ellipsoid

a

b

a

ϕϕ

RWGS(ϕ)

RWM(ϕ)

Figure 6: Intersection of the x-z-plane with an exaggerative flattened ellipsoid representing
WGS 84 and a Web Mercator sphere with radius a. The displayed points on ellipse
and sphere share the same geodetic latitude and are identified with each other.

For Web Mercator, positions on the WGS 84 ellipsoid are interpreted as positions on a sphere, see
Figure 6. This introduces deviations (friendly for errors) in map presentation and calculations
of distances and scales.
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a

b

a

ϕϕ

RWGS(ϕ)

RWM(ϕ)

Figure 7: Intersection of the x-z-plane with an exaggerative flattened ellipsoid representing
WGS 84 and a Web Mercator sphere with radius small than a. The displayed points
on ellipse and sphere share the same geodetic latitude and are identified with each
other.

We consider the following distances on the sphere as subject for analysis.

Distances on the sphere
The signed parallel distance on the sphere with radius R from longitude λ1 to λ2 on a circle of
latitude ϕ is given by

ŝparallel = R · cosϕ · (λ2 − λ1). (73)

The signed meridian distance on the sphere from latitude ϕ1 to ϕ2 is given by

ŝmeridian = R · (ϕ2 − ϕ1). (74)

Figure 6 displays a position with latitude ϕ on an ellipsoid representing WGS 84, but very
exaggerated. The same latitude ϕ is seen on a sphere representing Web Mercator which is
identified with WGS 84. The radii of circles of latitude are denoted RWGS(ϕ) and RWM(ϕ)
here.

The pictogram of Figure 6 shows directly that the parallel distance on the sphere is smaller than
the parallel distance on the ellipsoid, because RWM(ϕ) < RWGS(ϕ). On the other hand, the
meridian distance (at least to the equator) on the sphere is larger than the parallel distance on
the ellipsoid.

Depending on what effect is seen worse, one could choose a smaller radius for the Web Mercator
sphere than the semi-major axis of the ellipsoid. This situation is demonstrated in Figure 7.
In comparison to Figure 6, the parallel distance on the sphere is made smaller again, i.e. more
deviating from the ellipsoid. Also the meridian distance of the sphere is downsized which could
decrease the gap to to the ellipsoid.
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80° S 60° S 40° S 20° S 20° N 40° N 60° N 80° N

−6 · 10−3

−4 · 10−3

−2 · 10−3

2 · 10−3

4 · 10−3

6 · 10−3

Latitude

East-west relative deviation

fparallel with R = a
fparallel with R = R∗

fparallel with R = Rm

Figure 8: Relative deviation of parallel distances for the same latitude between Web Mercator
spheres with different radius to the WGS 84 ellipsoid.

80° S 60° S 40° S 20° S 20° N 40° N 60° N 80° N

−6 · 10−3

−4 · 10−3

−2 · 10−3

2 · 10−3

4 · 10−3

6 · 10−3

Latitude

North-south relative deviation

fmeridian with R = a
fmeridian with R = R∗

fmeridian with R = Rm

Figure 9: Relative deviation of meridian distances between Web Mercator spheres with different
radius to the WGS 84 ellipsoid.

The three “natural” candidates for a uniform radius are the mean radius R1 (51), the authalic
average radius R2 (52), and the volumetric average radius R3 (53). All three are very similar
with identical first five significant digits. Also, as will be seen, a distinct smaller radius could
also be a candidate. Therefore, we define a further

average radius R∗ := 6 371 000 m, (75)

which equals to R1, R2, R3 with five to six significant digits.

Firstly, we consider the relative deviation of arcs on a circle of latitude ϕ from longitude λ1 to
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λ2 (east-west). With (70) and (73) it is given by

fparallel = ŝparallel
sparallel

− 1 = R · cosϕ · (λ2 − λ1)
A(ϕ) · cosϕ · (λ2 − λ1) − 1

= R

a
·
√

1− e2 sin2 ϕ− 1. (76)

This function in dependence of latitude is the relative ratio of the radii of sphere and ellipsoid
seen in Figure 6 and Figure 7. For different sphere radii, fparallel is depicted in Figure 8 where
the highest absolute deviation is found in the high north and south at gdπ and gd−π.

Secondly, we consider the average relative deviation of arcs on meridians from latitude ϕ1 to ϕ2
(north-south). With (71) and (74) it is given by

f̄meridan = ŝmeridian
smeridian

− 1 = R · (ϕ2 − ϕ1)
µ(ϕ2)− µ(ϕ1) − 1.

The local relative deviation for a latitude ϕ is found as limit result

fmeridan = lim
∆ϕ→0

R · (ϕ+ ∆ϕ− ϕ)
µ(ϕ+ ∆ϕ)− µ(ϕ) − 1 = R · 1

lim
∆ϕ→0

µ(ϕ+∆ϕ)−µ(ϕ)
∆ϕ

− 1

= R · 1
dµ(ϕ)

dϕ
− 1 = R · 1

a(1− e2)
(
1− e2 sin2 ϕ

)− 3
2
− 1

= R

a
·
(
1− e2 sin2 ϕ

) 3
2

1− e2 − 1 (77)

= (fparallel + 1) · 1− e2 sin2 ϕ

1− e2 − 1. (78)

This function in dependence of latitude is depicted in Figure 9 where the highest positive devi-
ation is found at the equator and the lowest negative deviation in the high north and south at
gdπ and gd−π.

The results of the analysis are

• If R = a (semi-major axis) is chosen as radius for the Web Mercator sphere, east-west
calculations with spherical formulas give an error smaller than

∣∣∣∣
√

1− e2 sin2(gdπ)− 1
∣∣∣∣ =

∣∣∣∣
√

1− e2 tanh2 π − 1
∣∣∣∣
.= 0.333%

North-south calculations give an error smaller than
∣∣∣∣

1
1− e2 − 1

∣∣∣∣
.= 0.674%

This error is smaller than 0.5% north of 25°N and south of 25° S.

• If R = R∗ is chosen as radius for the Web Mercator sphere, east-west calculations with
spherical formulas give an error smaller than

∣∣∣∣
R∗

a

√
1− e2 tanh2 π − 1

∣∣∣∣
.= 0.444%

North-south calculations give an error smaller than
∣∣∣∣
R∗

a
· 1

1− e2 − 1
∣∣∣∣
.= 0.561%

This error is smaller than 0.5% north of 15°N and south of 15° S.
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The radius may be decreased even further. Let Rm denote the radius, where the absolute relative
deviation for the meridian on the equator equals the absolute relative deviation at gd(π) and
gd(−π). Here, with (77) we have the equation

Rm
a
· 1

1− e2 − 1 = 1− Rm
a
·

(
1− e2 tanh2 π

) 3
2

1− e2

⇒ Rm
a
·

1 +
(
1− e2 tanh2 π

) 3
2

1− e2 = 2

⇒ Rm = a · 2 · 1− e2

1 +
(
1− e2 tanh2 π

) 3
2

.= 6 367 117 m. (79)

Figure 8 and Figure 9 also contain this case R = Rm.

• If R = Rm is chosen as radius for the Web Mercator sphere, east-west calculations with
spherical formulas give an error smaller than 0.5% between 80° S and 80°N, but slightly
higher error values up to gd(−π) south and gd(π) north.
North-south calculations give an error smaller than or equal 0.5%.

On small scale maps with Mercator projection (spherical or ellipsoidal alike), the scales on
parallels in the north and south of the map will differ more from the scale in the center of the
map than the deviations between the Web Mercator sphere and the WGS 84 ellipsoid. Therefore,
any sphere radius R ∈ [Rm, a] may be a valid solution for an application. www.netzwolf.info
2009 and Sturm 2020 select R = R∗ as “natural” choice (which is just a soft criterion). With
it, errors are mostly lower than 0.5% (see above). Therefore, computed values with spherical
formulas will have usually two significant digits. The exception is an equatorial area between
15° S and 15°N where the error rises up to 0.674%.

Another aspect of small scale maps is that the east-west relative deviation for a selected latitude
stays constant independent from the range of longitude, but the north-south relative deviation
is getting averaged. This is a further motivation not to optimize the peak north-south relative
deviation too much in choosing Rm on cost of worsen the east-west relative deviation.

The results are illustrated with example maps given by Figure 10, Figure 11, Figure 12, and
Figure 13. Here, R = R∗ is selected as radius for the Web Mercator sphere. The scale is
computed according to the spherical model. The width of the map is stated for north, center,
and south position, also the height of the map. All distances are computed with ellipsoidal and
spherical formulas for comparison.
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Kartendaten: © OpenStreetMap Mitwirkende, SRTM | Kartendarstellung: © OpenTopoMap (CC-BY-SA)

Example: 0.2190° S 78.5000° W (Quito)
East-West Latitude sparallel ŝparallel

North 0.1740° S 10.0112 km 10.0000 km
Center 0.2190° S 10.0112 km 10.0000 km
South 0.2640° S 10.0112 km 10.0000 km

smeridian ŝmeridian
North-South 9.94418 km 10.00000 km

Figure 10: 10 cm by 10 cm map with a nominal (center) scale of 1:100 000.
For this near-equator map a small east-west deviation (ca. 0.11%) and a large north-
south deviation (ca. 0.56%) can be noted in concordance to Figure 8 and Figure 9.
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Kartendaten: © OpenStreetMap Mitwirkende, SRTM | Kartendarstellung: © OpenTopoMap (CC-BY-SA)

Example: 40.0700° N 2.1400° W (Cuenca)
East-West Latitude sparallel ŝparallel

North 40.1150° N 10.0185 km 9.99340 km
Center 40.0700° N 10.0251 km 10.0000 km
South 40.0250° N 10.0317 km 10.0066 km

smeridian ŝmeridian
North-South 9.98571 km 10.00000 km

Figure 11: 10 cm by 10 cm map with a nominal (center) scale of 1:100 000.
For this map near 40°N a small east-west deviation (ca. 0.25%) and a small north-
south deviation (ca. 0.14%) can be noted in concordance to Figure 8 and Figure 9.
The difference in width between North and South (ellipsoidal and spherical alike) is
in about the same range.
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Kartendaten: © OpenStreetMap Mitwirkende, SRTM | Kartendarstellung: © OpenTopoMap (CC-BY-SA)

Example: 80° N 64.8636° W (Greenland)
East-West Latitude sparallel ŝparallel

North 80.0449° N 9.99926 km 9.95559 km
Center 80° N 10.0439 km 10.0000 km
South 79.9549° N 10.0887 km 10.0446 km

smeridian ŝmeridian
North-South 10.0419 km 10.0000 km

Figure 12: 10 cm by 10 cm map with a nominal (center) scale of 1:100 000.
For this map near 80°N a medium to large east-west deviation (ca. 0.44%) and a
medium to large north-south deviation (ca. 0.42%) can be noted in concordance to
Figure 8 and Figure 9. The difference in width between North and South (ellipsoidal
and spherical alike) is in about twice in size.
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Kartendaten: © OpenStreetMap Mitwirkende, SRTM | Kartendarstellung: © OpenTopoMap (CC-BY-SA)

Example: 50° N 10° E (Europe)
East-West Latitude sparallel ŝparallel

North 54.2886° N 911.110 km 908.080 km
Center 50° N 1003.09 km 1000 km
South 45.2916° N 1097.53 km 1094.45 km

smeridian ŝmeridian
North-South 1000.69 km 1000.43 km

Figure 13: 10 cm by 10 cm map with a nominal (center) scale of 1:10 000 000.
For this small scale map with center 50°N a small east-west deviation (from
ca. 0.28% to ca. 0.33%) and a very small north-south deviation (ca. 0.026%) can
be noted in concordance to Figure 8 and Figure 9. As Figure 9 shows, averaging
near 50°N may give complete error extinction in lucky situations. The difference in
width between North and South (ellipsoidal and spherical alike) is distinctly larger
with 186 km in comparison to 1003 km respectively 1000 km center width.
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4.3 Size of the Map Tiles
The equations for longitude range and latitude range for a map tile are easily seen by combining
(43) with (42) and (41). With these values, size indications can be given by basic relations
reprising (73) and (74):

Indications of size for map tile T (Z,X, Y )

Let zoom level Z ∈ N0, N := 2Z , and let X,Y ∈ {0, N − 1}. Also, let a radius R > 0 be given.
The spherical rectangle described by M−1

U (T (Z,X, Y )) = [ϕmin, ϕmax]× [λmin, λmax] scaled with
R, is given by

height = R · (ϕmax − ϕmin) ,
north width = R · (λmax − λmin) · cosϕmax,

south width = R · (λmax − λmin) · cosϕmin,

area = R2 · (λmax − λmin) · (sinϕmax − sinϕmin) .

Size comparison for T (10, ∗, Y )
The following table uses a zoom level 10, an arbitrary tile position X and some selected tile
positions Y from north polar region to equator and a mean radius of R∗ = 6371 km with the
spherical model.

Y south north height width(S) width(N) area
0 85.021° 85.051° 3.383 km 3.393 km 3.372 km 11.4 km2

127 79.171° 79.237° 7.322 km 7.344 km 7.300 km 53.6 km2

255 66.513° 66.653° 15.536 km 15.580 km 15.492 km 241 km2

433 26.431° 26.746° 34.958 km 35.006 km 34.910 km 1222 km2

511 0.000° 0.352° 39.092 km 39.092 km 39.091 km 1528 km2

The table above shows that for not-too-small zoom level values a perfect square map tile relates to
a well-squarish region on the earth surface. But, as it is no surprise for the Mercator projection,
the edge length for such a region shrinks from 39 km at the equator to about 15 km at the polar
circles. About 50 percent of the unit square [0, 1]2 for the presentable world lie beyond the polar
circle where the edge length shrinks to nearly 3 km at the very end.

The logical consequence is that near the equator much higher zoom levels should be provided
than in the polar regions to gain the same degree of resolution for the Earth surface. According
to OpenStreetMap contributors 2019, OpenStreetMap and other providers for tile servers use a
fixed range of zoom levels, sometimes more for national regions. Bundesamt für Kartographie
und Geodäsie 2018 uses a staggered approach with zoom levels 0–9 for Earth, 10–14 for Europe,
15–18 for Germany.
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5 Map Drawing

5.1 Covering a Map with Map Tiles

For applications like zoomable Web maps or static electronic or printed graphics, a rectangular
selection of available map tiles is needed. A map is seen as a window showing some of the map
tiles of the projected earth surface at a certain zoom level Z as displayed in Figure 14. Hereby,
the window is completely covered with map tiles. For some special cases, some map tiles may
appear more than once or may be virtual (not really existing).

Map description

ϕ1 latitude of the north side of the map
ϕ2 latitude of the south side of the map with ϕ2 < ϕ1
λ1 longitude of the west side of the map
λ2 longitude of the east side of the map with λ1 < λ2
Z zoom level with Z ≥ 0
(X1, Y1) map tile coordinate pair (north west)
(X2, Y2) map tile coordinate pair (south east) with X2 ≥ X1, Y2 ≥ Y1
mX map window width given as multiplicity of map tiles with mX > 0
mY map window height given as multiplicity of map tiles with mY > 0
dX western offset given as multiplicity of map tiles with 0 ≤ dX < 1
dY northern offset given as multiplicity of map tiles with 0 ≤ dY < 1
d̂Y southern offset given as multiplicity of map tiles with 0 ≤ d̂Y < 1

The map description above contains several redundant values which can be converted into each
other as will be shown in the following. Also, we allow Y1 < 0 and Y2 ≥ 2Z denoting virtual
map tiles outside the unit square [0, 1]2 described in Section 3. In the following, let N := 2Z .

(west) λ1 λ2 (east)

ϕ1 (north)

ϕ2 (south)

(X1, Y1)

(X2, Y2)

mX

mY

dX

dY

dX

d̂Y

Figure 14: Map window which is covered by map tiles.
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5.2 Map Dimensions from Latitude and Longitude Boundaries

If a zoom level Z and east, west, north, and south boundaries are given, the remaining map
description parameters can be computed.

With (43), we have for all (x, y) inside a map tile T (Z,X, Y ) that

X

N
≤ x ≤ X + 1

N
⇔ X ≤ x ·N ≤ X + 1

and

N − Y − 1
N

≤ y ≤ N − Y
N

⇔ N − Y − 1 ≤ y ·N ≤ N − Y

⇔ Y −N ≤ −y ·N ≤ Y −N + 1 ⇔ Y ≤ (1− y) ·N ≤ Y + 1

With this, we get:

Map computation from Z,ϕ1, ϕ2, λ1, λ2

Let N := 2Z .

X1 = bx(λ1) ·Nc =
⌊(

λ1
2π + 1

2

)
· 2Z

⌋
=
⌊

(λ1 + π) · 2Z−1

π

⌋
,

Y1 = b(1− y(ϕ1)) ·Nc =
⌊(1

2 −
arggdϕ1

2π

)
· 2Z

⌋
=
⌊

(π − arggdϕ1) · 2Z−1

π

⌋
,

X2 = dx(λ2) ·Ne − 1 =
⌈(

λ2
2π + 1

2

)
· 2Z

⌉
− 1 =

⌈
(λ2 + π) · 2Z−1

π

⌉
− 1,

Y2 = d(1− y(ϕ2)) ·Ne − 1 =
⌈(1

2 −
arggdϕ2

2π

)
· 2Z

⌉
− 1

=
⌈

(π − arggdϕ2) · 2Z−1

π

⌉
− 1,

mX = (x(λ2)− x(λ1)) ·N = λ2 − λ1
2π · 2Z = (λ2 − λ1) · 2Z−1

π
,

mY = (y(ϕ1)− y(ϕ2)) ·N = arggdϕ1 − arggdϕ2
2π · 2Z = (arggdϕ1 − arggdϕ2) · 2Z−1

π
,

dX = x(λ1) ·N −X1 = (λ1 + π) · 2Z−1

π
−X1,

dY = (1− y(ϕ1)) ·N − Y1 = (π − arggdϕ1) · 2Z−1

π
− Y1,

d̂Y = Y2 − (1− y(ϕ2)) ·N + 1 = Y2 − (π − arggdϕ2) · 2Z−1

π
+ 1

= Y2 − Y1 + 1−mY − dY .

For a more concise representation, we define some help variables a1, a2, b1, and b2. They are
the projected and scaled boundaries.
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Map computation from Z,ϕ1, ϕ2, λ1, λ2 (version 2)

P := 2Z−1

π
,

a1 := (λ1 + π) · P,
b1 := (π − arggdϕ1) · P,
a2 := (λ2 + π) · P,
b2 := (π − arggdϕ2) · P,
X1 = ba1c ,
Y1 = bb1c ,
X2 = da2e − 1,
Y2 = db2e − 1,
mX = a2 − a1,

mY = b2 − b1,
dX = a1 −X1,

dY = b1 − Y1,

d̂Y = Y2 − b2 + 1.

The auxiliary variables (a1, b1) and (a2, b2) can be interpreted as coordinate pairs from a rescaled
coordinate system where the unit square [0, 1]2 is projected to [0, 2Z ]2. Note that the y coordinate
was scaled negative (flipped). Here, each map tile has edge length 1.
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5.3 Map Dimensions for a fixed Map Size from a Center Position
If a zoom level Z and a fixed map size mX and mY are given, the remaining map description
parameters can be computed from a given center position (ϕc, λc).

The computation formulas of Section 5.2 are complemented with help variables ac and bc for the
projected and scaled center position. The remaining parameters can be resolved as follows:

Map computation from Z,mX ,mY , ϕc, λc

P := 2Z−1

π
,

ac := (λc + π) · P,
bc := (π − arggdϕc) · P,

a1 := ac −
1
2mX ,

b1 := bc −
1
2mY ,

a2 := ac + 1
2mX ,

b2 := bc + 1
2mY ,

λ1 = a1
P
− π,

ϕ1 = gd
(
π − b1

P

)
,

λ2 = a2
P
− π,

ϕ2 = gd
(
π − b2

P

)
,

X1 = ba1c ,
Y1 = bb1c ,
X2 = da2e − 1,
Y2 = db2e − 1,
dX = a1 −X1,

dY = b1 − Y1,

d̂Y = Y2 − b2 + 1.

Note that this construction from a center position can easily be adapted to a construction from
other reference positions. Candidates are map edge positions like west, northwest, north, etc.
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5.4 Map Dimensions for a fixed Map Size to fit Latitude and Longitude Boundaries
If a fixed map size mX and mY is given and the map should fit an area described by latitude and
longitude boundaries ϕ̃1, ϕ̃2, λ̃1, λ̃2, the minimum zoom level and the remaining map description
parameters can be computed.

Basically, the zoom level Z is computed and the area is centered inside the map window.

From Section 5.2, we have

mX = (λ2 − λ1) · P, mY = (arggdϕ1 − arggdϕ2) · P, Z = 1 + log2 (π · P )

A fitting zoom level is found, if the lower P from the first two equations inserted with
ϕ̃1, ϕ̃2, λ̃1, λ̃2 is taken and Z is computed from it:

Map computation from mX ,mY , ϕ̃1, ϕ̃2, λ̃1, λ̃2

Z = max
{

0, 1 +
⌊
log2

(
π ·min

{
mX

λ̃2 − λ̃1
,

mY

arggd ϕ̃1 − arggd ϕ̃2

})⌋}
,

P := 2Z−1

π
,

ac :=
(
λ̃1 + λ̃2

2 + π

)
· P,

bc :=
(
π − arggd ϕ̃1 + arggd ϕ̃2

2

)
· P,

a1 := ac −
1
2mX ,

b1 := bc −
1
2mY ,

a2 := ac + 1
2mX ,

b2 := bc + 1
2mY ,

λ1 = a1
P
− π,

ϕ1 = gd
(
π − b1

P

)
,

λ2 = a2
P
− π,

ϕ2 = gd
(
π − b2

P

)
,

X1 = ba1c ,
Y1 = bb1c ,
X2 = da2e − 1,
Y2 = db2e − 1,
dX = a1 −X1,

dY = b1 − Y1,

d̂Y = Y2 − b2 + 1.
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5.5 Application (Target) Coordinate System
The final step for map drawing is fitting to the target coordinate system of the application.
Depending on the constraints of the application, the target system has positive orientation
(e.g. TikZ for LATEX) or negative orientation (many computer screen drawing libraries from
programming languages), see Figure 15.

In the following, without loss of generality, the origin of the target system is assumed to be the
southwest or northwest corner of the map, see Figure 15. Additional to a map description as
in Section 5.1, an edge length for a single square tile is needed for computation. Let sT be this
tile size (edge length). For a computer screen application sT = 256 is the natural choice, if the
pixel file for a tile contains 256 times 256 pixels. With this data and (37), (38), (39), the fitting
to the target coordinate system is simple scaling and shifting.

Projection to the application coordinate system
Consider a map description from Section 5.1. Let sT denote the size (edge length) of a single
tile. Also define

sM := sT ·N = sT · 2Z .

The projection of a pair (ϕ, λ) consisting of a latitude angle ϕ and a longitude angle λ to a pair
(ux, uy) of Cartesian coordinates is given as follows.

• Coordinate system with positive orientation:

ux = sM · (x(λ)− x(λ1)) = sM
2π · (λ− λ1) ,

uy = sM · (y(ϕ)− y(ϕ2)) = sM
2π · (arggd(ϕ)− arggd(ϕ2))

= sM
2π · ln




tan
(

1
2ϕ+ 1

4π
)

tan
(

1
2ϕ2 + 1

4π
)


 .

• Coordinate system with negative orientation:

ux = sM · (x(λ)− x(λ1)) = sM
2π · (λ− λ1) ,

uy = sM · (y(ϕ1)− y(ϕ)) = sM
2π · (arggd(ϕ1)− arggd(ϕ))

= sM
2π · ln




tan
(

1
2ϕ1 + 1

4π
)

tan
(

1
2ϕ+ 1

4π
)


 .

Map

ux

uy

O

south west
positive orientation

Map

ux

uy

O

north west
negative orientation

Figure 15: Orientation of the application coordinate system
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The calculations above are found straight forward using (38) and (39) together with the repre-
sentation (29) of the inverse Gudermann function.

This gives the projection of (ϕ, λ) to a target coordinate pair (ux, uy) on a computer screen
or another application image. The target map is covered with tiles T (Z,X, Y ) as described in
Section 5.1. The center position (x, y) of a tile T (Z,X, Y ) in unified Cartesian coordinates is
given by (43) as

x =
X + 1

2
N

, y =
N − Y − 1

2
N

.

The positioning of these tiles in the application coordinate system is presented by the following.

Map tile positioning in the application coordinate system
Consider a map description from Section 5.1. Let sT denote the size (edge length) of a single
tile. Also define

sM := sT ·N = sT · 2Z .

The center position (ux, uy) of a tile T (Z,X, Y ) with

X1 ≤ X ≤ X2, Y1 ≤ Y ≤ Y2

in the application coordinate system is given as follows.
• Coordinate system with positive orientation:

ux = sM ·
(
X + 1

2
N

− x(λ1)
)

= sT · (X −X1) + sT ·
(1

2 − dX
)
,

uy = sM ·
(
N − Y − 1

2
N

− y(ϕ2)
)

= sT · (Y2 − Y ) + sT ·
(1

2 − d̂Y
)
.

• Coordinate system with negative orientation:

ux = sM ·
(
X + 1

2
N

− x(λ1)
)

= sT · (X −X1) + sT ·
(1

2 − dX
)
,

uy = sM ·
(
y(ϕ1)−

N − Y − 1
2

N

)

= sT · (Y − Y1) + sT ·
(1

2 − dY
)
.

For the offset values dX , d̂Y , and dY consult Figure 14 and Section 5.1.
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6 Excursion: Loxodromic and orthodromic Distance

6.1 Loxodromic Distance

The arc length s of a loxodrome on a unit sphere which is parameterized by latitude following
(11) is described by (9) as

ds
dϕ(ϕ) = dϕ̃−1

dϕ (ϕ) = 1
cosβ

which gives through integration

s(ϕ) = ϕ

cosβ + s0. (80)

Now, we consider a loxodrome running from the position (ϕ1, λ1) to (ϕ2, λ2). The non-negative
length s of the loxodrome piece between these two positions following (11) and (80) is given by

s = |ϕ2 − ϕ1|
cosβ with tan β = λ2 − λ1

arggdϕ2 − arggdϕ1
. (81)

Since 1
cosβ =

√
1 + tan2 β for |β| < π

2 , this gives

s = |ϕ2 − ϕ1| ·

√
1 +

(
λ2 − λ1

arggdϕ2 − arggdϕ1

)2
, for ϕ1 6= ϕ2. (82)

If ϕ1 = ϕ2, we run on a circle of latitude and we get directly

s = |λ2 − λ1| · cos(ϕ1), for ϕ1 = ϕ2. (83)

With the abbreviations ∆ϕ := ϕ2−ϕ1 and ∆λ := λ2−λ1, we finally consider an approximation
formula for (82), if ∆ϕ is very small. The derivatives of arggdx are with (16) given by

d
dx arggd(x) = 1

cosx,

d2

dx2 arggd(x) = tan x
cosx ,

d3

dx3 arggd(x) = cosx · (1 + tan2 x)− tan x · (− sin x)
cos2 x

= 1 + 2 tan2 x

cosx .

The Taylor approximation for arggd is found as

arggd(ϕ2) = arggd(ϕ1) + d
dϕ arggd(ϕ1) ·∆ϕ+ 1

2
d2

dϕ2 arggd(ϕ1) ·∆ϕ2

+ 1
6

d3

dϕ3 arggd(ϕ1) ·∆ϕ3 + . . .

= arggd(ϕ1) + 1
cosϕ1

·∆ϕ+ 1
2

tanϕ1
cosϕ1

·∆ϕ2 + 1
6

1 + 2 tan2 ϕ1
cosϕ1

·∆ϕ3 + . . .
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We put this into (82) and get

s =

√√√√√(ϕ2 − ϕ1)2 +


 λ2 − λ1

arggdϕ2−arggdϕ1
ϕ2−ϕ1




2

≈

√√√√√∆ϕ2 +


 ∆λ

1
cosϕ1

+ 1
2

tanϕ1
cosϕ1

·∆ϕ+ 1
6

1+2 tan2 ϕ1
cosϕ1

·∆ϕ2




2

=

√√√√∆ϕ2 +
(

∆λ · cosϕ1
1 + 1

2 tanϕ1 ·∆ϕ+ 1
6(1 + 2 tan2 ϕ1) ·∆ϕ2

)2

.

Loxodromic Distance between (ϕ1, λ1) and (ϕ2, λ2)
Let (ϕ1, λ1) and (ϕ2, λ2) denote two positions on the unit sphere. Let ∆ϕ := ϕ2 − ϕ1 and
∆λ := λ2 − λ1. Further, consider an ε > 0 near zero.
The loxodromic distance s between these positions is given by:

s = |∆ϕ| ·
√

1 +
( ∆λ

arggdϕ2 − arggdϕ1

)2
, for |∆ϕ| ≥ ε. (84)

s ≈

√√√√∆ϕ2 +
(

∆λ · cosϕ1
1 + 1

2 tanϕ1 ·∆ϕ+ 1
6(1 + 2 tan2 ϕ1) ·∆ϕ2

)2

, for |∆ϕ| < ε. (85)

• For Pseudo-Mercator on a sphere, this distance has to be multiplied with a radius R, e.g.
R = R∗ = 6 371 000 m. An example is given in Figure 17.

• (84) and (85) compute the distance faithful to the given latitude and longitude values. On
a globe, there is a second loxodrome which is shorter, if |∆λ| > π.

6.2 Length of orthodromic Distance

Now, we consider an orthodrome running from the position (ϕ1, λ1) to (ϕ2, λ2). The orthodrome
is a great-circle through

~a := ~r(ϕ1, λ1) =




cosλ1 · cosϕ1
sinλ1 · cosϕ1

sinϕ1


 and ~b := ~r(ϕ2, λ2) =




cosλ2 · cosϕ2
sinλ2 · cosϕ2

sinϕ2




on our unit sphere with the same center as the sphere, see Figure 16.

The central angle ψ (in radians) between the vectors ~a and ~b denoting the two considered points
on the sphere is identical to the orthodromic distance (arc distance) between these points. It
can be computed via the scalar product formula (note that ‖~a‖ =

∥∥∥~b
∥∥∥ = 1):

cosψ =
〈
~a
∣∣∣~b
〉

= axbx + ayby + azbz

= cosλ1 · cosϕ1 · cosλ2 · cosϕ2 + sinλ1 · cosϕ1 · sinλ2 · cosϕ2 + sinϕ1 · sinϕ2

= sinϕ1 · sinϕ2 + cosϕ1 · cosϕ2 · cos(λ2 − λ1).
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~a

~b

ψ

~γ(t)

~c

Figure 16: Orthodrome as great-circle through ~a and ~b. The central angle ψ in radians is equal
to the orthodromic distance between ~a and ~b. ~c is orthogonal to ~a.

Orthodromic Distance between (ϕ1, λ1) and (ϕ2, λ2)
Let (ϕ1, λ1) and (ϕ2, λ2) denote two positions on the unit sphere.
The orthodromic distance ψ between these positions is given by:

ψ = arccos (sinϕ1 · sinϕ2 + cosϕ1 · cosϕ2 · cos(λ2 − λ1)) ∈ [0, π] (86)

• For Pseudo-Mercator on a sphere, this distance (86) has to be multiplied with a radius R,
e.g. R = R∗ = 6 371 000 m. An example is given in Figure 17.

The vectors ~a and ~b span a plane which intersects the sphere in the loxodrome. To construct
the loxodrome or the loxodrome piece between ~a and ~b, we consider a third unit vector ~c inside
this plane which is constructed to be orthogonal to ~a.

~̃c := ~b−
〈
~a
∣∣∣~b
〉
· ~a = ~b− cosψ · ~a

is orthogonal to ~a, but with length
∥∥∥~̃c
∥∥∥ =

√〈
~b− cosψ · ~a

∣∣∣~b− cosψ · ~a
〉

=
√〈

~b
∣∣∣~b
〉
− 2 cosψ ·

〈
~a
∣∣∣~b
〉

+ cos2 ψ · 〈~a |~a〉

=
√

1− 2 cosψ · cosψ + cos2 ψ

=
√

sin2 ψ = sinψ, since ψ ∈ [0, π].
Finally, the unit vector ~c is found as

~c :=
~̃c∥∥∥~̃c
∥∥∥

=
~b− cosψ · ~a

sinψ . (87)

The great-circle through ~a and ~b is a unit circle for the two-dimensional coordinate system
given by the orthogonal unit vectors ~a and ~c, also see Figure 16. This results in the following
orthodrome representation.
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Underlying map © Bundesamt für Kartographie und Geodäsie 2020, Datenquellen

10 922 km

9606 km (9629 km)

Munich

Los Angeles

Figure 17: Distance between Munich (48.14°N 11.58°E) and Los Angeles (34.05°N
118.24°W). The (spherical) loxodromic distance computed according to (84) with
R = R∗ = 6 371 000 m yields 10 922 198 m. The (spherical) orthodromic distance
computed according to (86) with the identical radius gives 9 606 242 m. For com-
parison, also the geodesic distance for the WGS 84 ellipsoid is computed with Geo-
graphicLib (Karney 2019) as 9 628 852 m.

Orthodrome representation
An orthodrome piece connecting two positions (ϕ1, λ1) and (ϕ2, λ2) on the unit sphere has a
representation

~γ : [0, 1]→ R3, t 7→ ~γ(t) = cos(tψ) · ~a+ sin(tψ) · ~c (88)

= sin((1− t)ψ)
sinψ · ~a+ sin(tψ)

sinψ ·~b, (89)

where

ψ = arccos (sinϕ1 · sinϕ2 + cosϕ1 · cosϕ2 · cos(λ2 − λ1)) ,

~a =




cosλ1 · cosϕ1
sinλ1 · cosϕ1

sinϕ1


 , ~b =




cosλ2 · cosϕ2
sinλ2 · cosϕ2

sinϕ2


 , ~c =

~b− cosψ · ~a
sinψ .

It holds
~γ(0) = ~a, ~γ(1) = ~b.

For one point of the loxodrome with coordinates x, y, z the latitude ϕ and the longitude λ is
computed by

ϕ = arcsin z, (90)

λ = sgn(y) · arccos x√
x2 + y2 = sgn(y) · arccos x

cosϕ (91)
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With

~γ(t) =



x(t)
y(t)
z(t)




we get from (88) for the first coordinate

x(t) = cos(tψ) · ax + sin(tψ) · cx

= cos(tψ) · ax + sin(tψ) · bx − cosψ · ax
sinψ

= sinψ · cos(tψ) · ax − cosψ · sin(tψ) · ax + sin(tψ) · bx
sinψ

= sin((1− t)ψ) · ax + sin(tψ) · bx
sinψ .

This is the first coordinate of (89). The other coordinates are seen analogously. (90) and (91)
are found by dissolving (1).

7 Conclusion
Web Mercator maps supplied by Web tile servers opened a door to general purpose maps for
everyone. Despite the lack of accurateness in relation to spherical projection for ellipsoidal data,
the advantages of public access and simplified computation predominate.

The classical spherical Mercator Projection (30), (31), (32) derived from the construction of a
loxodrome (11) is adapted to a unified clipped projection (37), (38), (39) to the unit square
[0, 1]2. This projection uses the Gudermann function and its inverse which are given in many
shapes by (13) to (29).

The unit square is disassembled into map tiles (43) which correspond to pixel graphics accessible
over the Web (OpenStreetMap contributors 2019). For specific map applications, such map tiles
are compound into final maps (Section 5). On such maps, loxodromic distances (84), (85) and
orthodromic distances (86) can be depicted.

The price for using a spherical projection is a certain deviation from the “real world” taken as
WGS 84 ellipsoid. Several aspects of this error are discussed in Section 4 with a choice (75) for
the earth radius as R∗ := 6 371 000 m. Errors may rise up to 0.674%, but are usually lower than
0.5% giving two significant digits.

The work described here involves derivation of classical Mercator formulas and application for
Web Mercator tiles. All computations are presented in detail with the idea of algorithmic
implementation.
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