
NAB: Automated Large-Scale Multi-language
Dynamic Program Analysis
in Public Code Repositories

Alex Villazón
Universidad Privada Boliviana

Bolivia
avillazon@upb.edu

Haiyang Sun
Università della Svizzera italiana

Switzerland
haiyang.sun@usi.ch

Andrea Rosà
Università della Svizzera italiana

Switzerland
andrea.rosa@usi.ch

Eduardo Rosales
Università della Svizzera italiana

Switzerland
rosale@usi.ch

Daniele Bonetta
Oracle Labs
United States

daniele.bonetta@oracle.com

Isabella Defilippis
Universidad Privada Boliviana

Bolivia
isabelladefilippis@upb.edu

Sergio Oporto
Universidad Privada Boliviana

Bolivia
sergiooporto@upb.edu

Walter Binder
Università della Svizzera italiana

Switzerland
walter.binder@usi.ch

Abstract
This paper describes NAB, a novel framework to execute
custom dynamic analysis on open-source software hosted
in public repositories. NAB is fully-automatic, language-
agnostic and scalable. We present NAB’s key features and its
architecture. We also discuss three large-scale case studies
enabled by NAB on more than 56K Node.js, Java, and Scala
projects.

CCS Concepts • Software and its engineering → Dy-
namic analysis.

Keywords Dynamic program analysis; code repositories;
GitHub; Node.js; Java; Scala; promises; JIT-unfriendly code;
task granularity

ACM Reference Format:
Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele
Bonetta, Isabella Defilippis, Sergio Oporto, and Walter Binder. 2019.
NAB: Automated Large-Scale Multi-language Dynamic Program
Analysis in Public Code Repositories. In Proceedings of the 2019
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Com-
panion ’19), October 20–25, 2019, Athens, Greece. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3359061.3362777

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH Companion ’19, October 20–25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6992-3/19/10.
https://doi.org/10.1145/3359061.3362777

1 Introduction
Analyzing today’s large code repositories has become an
important research area for understanding and improving
different aspects of modern software systems. Despite the
presence of a large body of work on mining code repositories
through static analysis, studies applying dynamic analysis to
open-source projects are scarce and of limited scale. Nonethe-
less, being able to apply dynamic analysis to the projects
hosted in public code repositories is fundamental for large-
scale studies on the runtime behavior of applications, which
can greatly benefit the programming-language and software-
engineering communities.
To enable large-scale studies on the wild requiring dy-

namic analysis, we propose NAB [4], a novel, distributed,
container-based infrastructure for massive dynamic analysis
on code repositories hosting open-source projects, which
may be implemented in different programming languages.
NAB automatically looks for available executable code in
a repository, instruments it according to a user-defined dy-
namic analysis, and runs the instrumented code. Such exe-
cutable code could correspond to existing benchmarks (e.g.,
workloads defined by the developers via the JavaMicrobench-
mark Harness (JMH)) or software tests (e.g., defined in the
default test entry of a Node.js project managed by Node Pack-
age Manager (NPM), or based on popular testing frameworks
such as JUnit).
NAB resorts to containerization for efficient sandboxing,

for the parallelization of dynamic analysis execution, and
for simplifying the deployment on clusters or in the Cloud.
Sandboxing is important to isolate the underlying execution
environment and operating system, since NAB executes un-
verified projects that may contain buggy or even harmful

9

https://doi.org/10.1145/3359061.3362777
https://doi.org/10.1145/3359061.3362777
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3359061.3362777&domain=pdf&date_stamp=2019-10-20

SPLASH Companion ’19, October 20–25, 2019, Athens, Greece A. Villazón, H. Sun, A. Rosà, E. Rosales, D. Bonetta, I. Defilippis, S. Oporto, and W. Binder

!"#$"%&'()*+

!"#$,+&-'*+

./001#+23*+

.2%425#

!"#$.&67*+

5283*+

9-&+:

;'<4=%

>=7?<@
!"#$5&6A@2&+B

B*;'2(

C<*+(

:2%=72+

67&76

+*6<'76

6*
&+8

A

8'2%*

&%&'(6=61&87=D=7(

8+&-'1&87=D=7(

68A*B<'*

Figure 1. Overview of NAB. New components are shown
as white boxes, whereas existing containerized services are
marked in gray.

code. Also, parallelizing dynamic analysis execution is an
important feature for massive analysis, as sequential analysis
of massive code repository would take prohibitive time.
Figure 1 depicts the overall NAB architecture based on

Docker containers. At its core, NAB features a microservice
architecture based on a master-worker pattern relying on
a publish-subscribe communication layer using the MQTT
protocol, allowing asynchronous events to be exchanged
between its internal components. NAB uses existing con-
tainerized services and introduces four new components,
three of them running in containers: NAB-Crawler, NAB-
Analyzer, and NAB-Master; as well as one external service,
NAB-Dashboard. The NAB-Crawler instances are respon-
sible for mining and crawling code repositories, collecting
metadata that allows making a decision on which projects
to analyze. The NAB-Analyzer instances are responsible for
downloading the code, applying some filtering based on
user-defined criteria and eventually running the dynamic
analysis. The results generated by the dynamic analysis
(such as profiles containing various dynamic metrics) are
stored in a NoSQL MongoDB database. NAB provides a plu-
gin mechanism to integrate different dynamic analyses in
NAB-Analyzer instances.

NAB-Master orchestrates the distribution of crawling and
dynamic analysis activities with NAB-Crawler and NAB-
Analyzer instances. NAB-Dashboard is responsible for the
deployment of NAB components through the Docker Swarm
orchestration service and monitors the progress of an ongo-
ing dynamic analysis. Finally, NAB supports different build
systems, testing frameworks, and runtimes (see Table 1), thus
enabling multi-language support. Moreover, it can easily in-
tegrate existing dynamic analyses.
We used NAB to conduct three large-scale case studies

applying dynamic analysis on more than 56K open-source
projects hosted on GitHub, leveraging unit tests that can be
automatically executed and analyzed. We performed a novel
analysis that sheds light on the usage of the Promise API
in open-source Node.js projects. We found many projects

Table 1. NAB supported languages, build systems, analysis
frameworks, dynamic analyses, and runtimes.

Language Build
System

Analysis
Framework

Dynamic
Analysis Runtime

JavaScript NPM NodeProf [3] Deep-Promise [4]
JITProf GraalVM

Java MVN DiSL [1]
AspectJ

tgp [2]
JavaMOP

HotSpot VM
GraalVM

Scala SBT
MVN DiSL tgp

HotSpot VM
GraalVM

with long promise chains, which can potentially be consid-
ered for benchmarking promises on Node.js. Moreover, the
results of our analysis could be useful for Node.js developers
to find projects and popular modules that use promises for
asynchronous executions, whose optimization could be ben-
eficial to several existing applications. We also conducted a
large-scale study on the presence of JIT-unfriendly code on
Node.js projects. Our study revealed that Node.js developers
frequently use code patterns that could prevent or jeopar-
dize dynamic optimizations and have a potential negative
impact on applications performance. Finally, we performed
a large-scale analysis on Java and Scala projects, searching
for task-parallel workloads suitable for inclusion in a bench-
mark suite. We identified five candidate workloads (two in
Java and three in Scala) that may be used for benchmarking
task parallelism on the JVM. Overall, our case studies con-
firm that NAB can be used for applying dynamic analysis
massively on public code repositories, and that the large-
scale analyses enabled by NAB provide insights that are of
practical interest.

A preliminary version of NAB can be downloaded at http:
//dag.inf.usi.ch/software/nab/. More information on NAB
and on the described use cases can be found in our previous
publication [4]. We are actively working on an open-source
release of NAB.

Acknowledgments
This work has been supported by Oracle (ERO project 1332),
the Swiss National Science Foundation (scientific exchange
project IZSEZ0_177215), theHasler Foundation (project 18012),
and by a Bridging Grant with Japan (BG 04-122017).

References
[1] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. 2012.

DiSL: A Domain-specific Language for Bytecode Instrumentation. In
AOSD. 239–250.

[2] A. Rosà, E. Rosales, and W. Binder. 2018. Analyzing and Optimizing
Task Granularity on the JVM. In CGO. 27–37.

[3] H. Sun, D. Bonetta, C. Humer, and W. Binder. 2018. Efficient Dynamic
Analysis for Node.Js. In CC. 196–206.

[4] A. Villazón, H. Sun, A. Rosà, E. Rosales, D. Bonetta, I. Defilippis, S.
Oporto, and W. Binder. 2019. Automated Large-scale Multi-language
Dynamic Program Analysis in the Wild. In ECOOP. 20:1–20:27.

10

http://dag.inf.usi.ch/software/nab/
http://dag.inf.usi.ch/software/nab/

	Abstract
	1 Introduction
	Acknowledgments
	References

