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Chapter 1

Introduction

1.1 Presentation

The Time-Frequency Toolbox is a collection of sci-files developed for the
analysis of non-stationary signals using time-frequency distributions. This
toolbox includes two groups of files :

• the signal generation functions, which allow the synthesis of numerous
kinds of non-stationary signals ;

• the processing functions, including the time-frequency distributions and
other related processing functions.

As usual under Scilab, each function of the toolbox has a help entry that
you can refer to by typing

>> help name_of_the_function

at the prompt of the scilab command window. In almost every case, a simple
example is given, which facilitates the use of the function.

Seven demonstration sce-files are also available, which provide sequences
of examples illustrating the possibilities of the Time-Frequency Toolbox, and
following closely the plan of this tutorial. These files are :

tfdemo1 Introduction
tfdemo2 Non-stationary signals
tfdemo3 Linear time-frequency representations
tfdemo4 Cohen’s class time-frequency distributions
tfdemo5 Affine class time-frequency distributions
tfdemo6 Reassigned time-frequency distributions
tfdemo7 Extraction of information
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The aim of this Tutorial is to present the way to use the Time-Frequency
Toolbox, and also to introduce the reader in an illustrative and friendly
way to the theory of time-frequency analysis. We advise the reader, when
looking at a chapter of this tutorial, to run simultaneously the corresponding
demonstration file. In this way, he will have a good understanding of the
Toolbox.

1.2 Background, system requirements and

installation

This Toolbox is primarily intended for researchers and engineers with
some knowledge on signal processing theory. In particular, the concepts
of Fourier transform, Shannon sampling and stationarity are important to
understand the following features.

The Time-Frequency Toolbox assumes that Scilab V. 5.2 (or a later ver-
sion) is present on your system.

For installation please do the following:

>> exec builder.sce

The toolbox will be loaded using

>> exec loader.sce

1.3 Introductory examples

1.3.1 Example 1

Let us consider first a signal with constant amplitude, and with a linear
frequency modulation varying from 0 to 0.5 in normalized frequency (ratio of
the frequency in Hertz to the sampling frequency, with respect to the Shannon
sampling theorem). This signal is called a chirp, and as its frequency content
is varying with time, it is a non-stationary signal. To obtain such a signal, we
can use the function fmlin, which generates a linear frequency modulation
(see fig. ??) :

>> sig1=fmlin(128,0,0.5);

>> plot(real(sig1));

From this time-domain representation, it is difficult (except for experienced
specialists) to say what kind of modulation is contained in this signal :
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Figure 1.1: Linear frequency modulation (chirp)

what are the initial and final frequencies, is it a linear, parabolic, hyper-
bolic. . . frequency modulation ?

If we now consider the energy spectrum of this signal sig1 by squaring
the modulus of its Fourier transform (using the fft function) (see fig. ??),

>> dsp1=fftshift(abs(fft(sig1)).^2);

>> plot((-64:63)/128,dsp1);

we still can not say, from this plot, anything about the evolution in time of
the frequency content. This is due to the fact that the Fourier transform
is a decomposition on complex exponentials, which are of infinite duration
and completely unlocalized in time. Time information is in fact encoded in
the phase of the Fourier transform (which is simply ignored by the energy
spectrum), but their interpretation is not straightforward and their direct
extraction is faced with a number of difficulties such as phase unwrapping.
In order to have a more informative description of such signals, it would
be better to directly represent their frequency content while still keeping
the time description parameter : this is precisely the aim of time-frequency
analysis. To illustrate this, let us try the Wigner-Ville distribution on this
signal (see fig. ??) :

>> tfrwv(sig1,’plot’);

Without going into details about this representation (it will be developed in
the following), we can see that the linear progression of the frequency with
time, from 0 to 0.5, is clearly shown.
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Figure 1.2: Energy spectrum of the chirp
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Figure 1.3: Wigner-Ville distribution of the chirp
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Figure 1.4: Chirp embedded in a 0 dB white gaussian noise

If we now add some complex white gaussian noise on this signal, using
the function noisecg and sigmerge, with a 0 dB signal to noise ratio (see
fig. ??),

>> sig2=sigmerge(sig1,noisecg(128),0);

>> plot(real(sig2));

and consider the spectrum of it (see fig. ??) :

>> dsp2=fftshift(abs(fft(sig2)).^2);

>> plot((-64:63)/128,dsp2);

it is worse than before to interpret these plots. On the other hand, the
Wigner-Ville distribution still show quite clearly the linear progression of
the frequency with time (see fig. ??) :

>> tfrwv(sig2,’plot’);

1.3.2 Example 2

The second example we consider is a bat sonar signal, recorded with a
sampling frequency of 230.4 kHz and an effective bandwidth of [8 kHz, 80 kHz]
(this recording was part of the research program RCP 445 supported by
CNRS (Centre National de la Recherche Scientifique, France) [?]).

First, load the signal from the MAT-file bat.mat (see fig. ??) :

>> loadmatfile(’bat.mat’)

>> t0=linspace(0,2048/2304,2048);

>> plot(t0,bat); xlabel(’Time [ms]’);
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Figure 1.5: Energy spectrum of the noisy chirp
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Figure 1.6: Wigner-Ville distribution of the noisy chirp
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Figure 1.7: Sonar signal from a bat

From this plot, we can not say precisely what is the frequency content at
each time instant t ; similarly, if we look at its spectrum (see fig. ??),

>> dsp=fftshift(abs(fft(bat)).^2);

>> f0=(-1024:1023)*230.4/2048;

>> plot(f0,dsp); xlabel(’Frequency [kHz]’);

we can not say at what time the signal is located around 38 kHz, and at what
time around 40 kHz (you can use the zoom function to see more precisely what
is happening around these frequencies ; see the Scilab Reference Guide). Let
us now consider a representation called the pseudo Wigner-Ville distribution,
applied on the most interesting part of this signal (see fig. ??) :

>> tfrpwv(hilbert(bat),8:8:2048,256,tftb_window(127,’hanning’),1,’plot’)

We then have a nice description of its spectral content varying with time : it
is a narrow-band signal, whose frequency content is decreasing from around
55 kHz to 38 kHz, with a non-linear frequency modulation (approximately of
hyperbolic shape).

1.3.3 Example 3

The last introductory example presented here is a transient signal em-
bedded in a -5 dB white gaussian noise. This transient signal is a constant
frequency modulated by a one-sided exponential amplitude (see fig. ??) :

>> trans=amexpo1s(64).*fmconst(64);

>> sig=[zeros(100,1) ; trans ; zeros(92,1)];
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Figure 1.8: Energy spectrum of the bat sonar signal
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Figure 1.9: Pseudo-WVD of the bat sonar signal
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Figure 1.10: Time- and frequency- representation of a noisy transient signal

>> sign=sigmerge(sig,noisecg(256),-5);

>> plot(real(sign));

>> dsp=fftshift(abs(fft(sign)).^2);

>> plot((-128:127)/256,dsp);

From these representations, it is difficult to localize precisely the signal in
the time-domain as well as in the frequency domain. Now let us have a look
at the spectrogram of this signal calculated using the function tfrsp(see fig.
??) :

>> tfrsp(sign,’plot’);

the transient signal appears distinctly around the normalized frequency 0.25,
and between time points 125 and 160.
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Figure 1.11: Spectrogram of the noisy transient signal
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Chapter 2

Non stationary signals

This chapter presents some useful definitions that constitute the back-
ground of time-frequency analysis (most of the information presented in this
tutorial are extracted from [?]). After a brief recall on time-domain and
frequency-domain representations, we introduce the concepts of time and
frequency localizations, time-bandwidth product and the constraint associ-
ated to this product (the Heisenberg-Gabor inequality). Then, the instanta-
neous frequency and the group delay are presented as a first solution to the
problem of time localization of the spectrum. We carry on by defining non-
stationarity from its opposite, stationarity, and show how to synthesize such
non-stationary signals with the toolbox. Finally, we show that in the case of
multi-component signals, these mono-dimensional functions (instantaneous
frequency and group delay) are not sufficient to represent these signals ; a
two-dimensional description (function of time and frequency) is necessary.

2.1 Time representation and frequency rep-

resentation

The time representation is usually the first (and the most natural) de-
scription of a signal we consider, since almost all physical signals are obtained
by receivers recording variations with time.

The frequency representation, obtained by the Fourier transform

X(ν) =
∫ +∞

−∞
x(t) e−j2πνt dt,

is also a very powerful way to describe a signal, mainly because the relevance
of the concept of frequency is shared by many domains (physics, astronomy,
economics, biology . . . ) in which periodic events occur.
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But if we look more carefully at the spectrum X(ν), it can be viewed
as the coefficient function obtained by expanding the signal x(t) into the
family of infinite waves, exp{j2πνt}, which are completely unlocalized in
time. Thus, the spectrum essentially tells us which frequencies are contained
in the signal, as well as their corresponding amplitudes and phases, but does
not tell us at which times these frequencies occur.

2.2 Localization and the Heisenberg-Gabor

principle

A simple way to characterize a signal simultaneously in time and in fre-
quency is to consider its mean localizations and dispersions in each of these
representations. This can be obtained by considering |x(t)|2 and |X(ν)|2
as probability distributions, and looking at their mean values and standard
deviations :

tm = 1
Ex

∫ +∞
−∞ t |x(t)|2 dt average time

νm = 1
Ex

∫ +∞
−∞ ν |X(ν)|2 dν average frequency

T 2 = 4π
Ex

∫ +∞
−∞ (t− tm)

2 |x(t)|2 dt time spreading

B2 = 4π
Ex

∫ +∞
−∞ (ν − νm)

2 |X(ν)|2 dν frequency spreading

where Ex is the energy of the signal, assumed to be finite (bounded) :

Ex =
∫ +∞

−∞
|x(t)|2 dt < +∞.

Then a signal can be characterized in the time-frequency plane by its mean
position (tm, νm) and a domain of main energy localization whose area is
proportional to the time-bandwidth product T ×B.

2.2.1 Example 1

These time and frequency localizations can be evaluated thanks to the
function loctime and locfreq of the Toolbox. The first one gives the average
time center (tm) and the duration (T ) of a signal, and the second one the
average normalized frequency (νm) and the normalized bandwidth (B). For
example, for a linear chirp with a gaussian amplitude modulation, we obtain
(see fig. ??) :

>> sig=fmlin(256).*amgauss(256);

>> [tm,T]=loctime(sig) ---> tm=128 T=32

>> [num,B]=locfreq(sig) ---> num=0.249 B=0.0701

18 H. Nahrstaedt, F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine
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Figure 2.1: Linear chirp with a gaussian amplitude modulation

One interesting property of this product T ×B is that it is lower bounded
:

T ×B ≥ 1.

This constraint, known as the Heisenberg-Gabor inequality, illustrates the
fact that a signal can not have simultaneously an arbitrarily small support
in time and in frequency. This property is a consequence of the definition of
the Fourier transform. The lower bound T × B = 1 is reached for gaussian
functions :

x(t) = C exp [−α(t− tm)
2 + j2πνm(t− tm)]

with C ∈ R, α ∈ R+. Therefore, the gaussian signals are those which
minimize the time-bandwidth product according to the Heisenberg-Gabor
inequality.

2.2.2 Example 2

To check the Heisenberg-Gabor inequality numerically, we consider a
gaussian signal and calculate its time-bandwidth product (see fig. ??) :

>> sig=amgauss(256);

>> [tm,T]=loctime(sig);
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Figure 2.2: gaussian signal : lower bound of the Heisenberg-Gabor inequality

>> [fm,B]=locfreq(sig);

>> [T,B,T*B] ---> T=32 B=0.0312 T*B=1

Hence, the time-bandwidth product obtained, when using the function amgauss,
is minimum.

2.3 Instantaneous frequency

Another way to describe a signal simultaneously in time and in frequency
is to consider its instantaneous frequency. In order to introduce such a func-
tion, we must define first the concept of analytic signal.

For any real valued signal x(t), we associate a complex valued signal xa(t)
defined as

xa(t) = x(t) + jHT (x(t))

where HT (x) is the Hilbert transform of x (xa can be obtained using the
function hilbert of the Signal Processing Toolbox). xa(t) is called the ana-
lytic signal associated to x(t). This definition has a simple interpretation in
the frequency domain since Xa is a single-sided Fourier transform where the
negative frequency values have been removed, the strictly positive ones have
been doubled, and the DC component is kept unchanged :

Xa(ν) = 0 if ν < 0
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Figure 2.3: Estimation of the instantaneous frequency of a linear chirp

Xa(ν) = X(0) if ν = 0

Xa(ν) = 2X(ν) if ν > 0

(X is the Fourier transform of x, and Xa the Fourier transform of xa). Thus,
the analytic signal can be obtained from the real signal by forcing to zero
its spectrum for the negative frequencies, which do not alter the information
content since for a real signal, X(−ν) = X∗(ν).

From this signal, it is then possible to define in a unique way the concepts
of instantaneous amplitude and instantaneous frequency by :

a(t) = |xa(t)| instantaneous amplitude

f(t) =
1

2π

d arg xa(t)

dt
instantaneous frequency

An estimation of the instantaneous frequency is given by the function instfreq
of the Time-Frequency toolbox :

Example (see fig. ??)

>> sig=fmlin(256); t=(3:256);

>> ifr=instfreq(sig); plotifl(t,ifr);

As we can see from this plot, the instantaneous frequency shows with success
the evolution with time of the frequency content of this signal.
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Figure 2.4: Estimation of the group delay of the previous chirp

2.4 Group delay

The instantaneous frequency characterizes a local frequency behavior as
a function of time. In a dual way, the local time behavior as a function of
frequency is described by the group delay :

tx(ν) = − 1

2π

d argXa(ν)

dν
.

This quantity measures the average time arrival of the frequency ν. The
function sgrpdlay of the Time-Frequency Toolbox gives an estimation of
the group delay of a signal (do not mistake it for the function grpdelay of
the signal processing toolbox which gives the group delay of a digital filter).
For example, with signal sig of the previous example, we obtain (see fig.
??) :

>> sig=fmlin(256); fnorm=0:.05:.5;

>> gd=sgrpdlay(sig,fnorm); plot(gd,fnorm);

Be careful of the fact that in general, instantaneous frequency and group
delay define two different curves in the time-frequency plane. They are ap-
proximatively identical only when the time-bandwidth product T×B is large.
To illustrate this point, let us consider a simple example. We calculate the
instantaneous frequency and group delay of two signals, the first one having
a large T × B product, and the second one a small T × B product (see fig.
??) :

>> t=2:255;
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Figure 2.5: Estimation of the instantaneous frequency (stars) and group delay
(line) of two different chirps with different amplitude modulations. The first
plot corresponds to a large T × B product while the second corresponds to
a small one

>> sig1=amgauss(256,128,90).*fmlin(256,0,0.5);

>> [tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1);

>> T1*B1 ---> T1*B1=15.9138

>> ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);

>> gd1=sgrpdlay(sig1,f1); plot(t,ifr1,’*’,gd1,f1,’-’)

>> sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);

>> [tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2);

>> T2*B2 ---> T2*B2=1.224

>> ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);

>> gd2=sgrpdlay(sig2,f2); plot(t,ifr2,’*’,gd2,f2,’-’)

On the first plot, the two curves are almost superimposed (i.e. the instanta-
neous frequency is the inverse transform of the group delay), whereas on the
second plot, the two curves are clearly different.

2.5 About stationarity

Before talking about non-stationarity, which is a ’non-property’, we must
define what we call stationarity.
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A deterministic signal is said to be stationary if it can be written as a
discrete sum of sinusoids :

x(t) =
∑

k∈N
Ak cos [2πνkt+ Φk] for a real signal

x(t) =
∑

k∈N
Ak exp [j(2πνkt + Φk)]for a complex signal

i.e. as a sum of elements which have constant instantaneous amplitude and
instantaneous frequency.

In the random case, a signal x(t) is said to be wide-sense stationary

(or stationary up to the second order) if its expectation is independent of
time and its autocorrelation function E[x(t1)x

∗(t2)] depends only on the time
difference t2 − t1. We can then show that the associated analytic signal has
constant instantaneous amplitude and frequency expectations, which can be
connected to the deterministic case.

So a signal is said to be non-stationary if one of these fundamental as-
sumptions is no longer valid. For example, a finite duration signal, and in
particular a transient signal (for which the length is short compared to the
observation duration), is non-stationary.

2.6 How to synthesize a mono-component non-

stationary signal

One part of the Time-Frequency Toolbox is dedicated to the generation of
non-stationary signals. In that part, three groups of functions are available :

1. The first one allows to synthesize different amplitude modulations.
These functions begin with the prefix ’am’. For example, amrect com-
putes a rectangular amplitude modulation, amgauss a gaussian ampli-
tude modulation . . .

2. The second one proposes different frequency modulations. These func-
tions begin with ’fm’. For example, fmconst is a constant frequency
modulation, fmhyp a hyperbolic frequency modulation . . .

3. The third one is a set of pre-defined signals. Some of them begin
with ’ana’ because these signals are analytic (for example anastep,

anabpsk, anasing . . . ), other have special names (doppler, atoms

. . . ).
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Figure 2.6: Mono-component non-stationary signal with a linear frequency
modulation and a gaussian amplitude modulation

The first two groups of functions can be combined to produce a large
class of non-stationary signals, multiplying an amplitude modulation and a
frequency modulation.

Examples

We can multiply the linear frequency modulation of Example 1 (see page
??) by a gaussian amplitude modulation (see fig. ??) :

>> fm1=fmlin(256,0,0.5);

>> am1=amgauss(256);

>> sig1=am1.*fm1; plot(real(sig1));

By default, the signal is centered on the middle (256/2=128), and its spread
is T = 32. If you want to center it at an other position t0, just replace am1

by amgauss(256,t0). A second example can be to multiply a pure frequency
(constant frequency modulation) by a one-sided exponential window starting
at t=100 (see fig. ??) :

>> fm2=fmconst(256,0.2);

>> am2=amexpo1s(256,100);

>> sig2=am2.*fm2; plot(real(sig2));

As a third example of mono-component non-stationary signal, we can
consider the function doppler : this function generates a modelization of
the signal received by a fixed observer from a moving target emitting a pure
frequency (see fig. ??).
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Figure 2.7: Mono-component non-stationary signal with a constant frequency
modulation and a one-sided exponential amplitude modulation

>> [fm3,am3]=doppler(256,200,4000/60,10,50);

>> sig3=am3.*fm3; plot(real(sig3));

This example corresponds to a target (a car for instance) moving straightly
at the speed of 50m/s, and passing at 10m from the observer (the radar !).
The rotating frequency of the engine is 4000 revolutions per minute, and the
sampling frequency of the radar is 200Hz.

In order to have a more realistic modelization of physical signals, we
may need to add some complex noise on these signals. To do so, two func-
tions (noisecg an noisecu) of the Time-Frequency Toolbox are proposed :
noisecg generates a complex white or colored gaussian noise, and noisecu,
a complex white uniform noise. For example, if we add complex colored
gaussian noise on the signal sig1 with a signal to noise ratio of -10 dB (see
fig. ??)

>> noise=noisecg(256,.8);

>> sign=sigmerge(sig1,noise,-10); plot(real(sign));

the deterministic signal sig1 is now almost imperceptible from the noise.

2.7 What about multi-component non-stationary

signals ?

The notion of instantaneous frequency implicitly assumes that, at each
time instant, there exists only a single frequency component. A dual restric-
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Figure 2.8: Doppler signal
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Figure 2.9: Gaussian transient signal (sig1) embedded in a -10 dB colored
gaussian noise

Time-Frequency Toolbox Tutorial, October 4, 2018



20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Time

No
rm

ali
ze

d 
fre

qu
en

cy

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Time

No
rm

ali
ze

d 
fre

qu
en

cy

Figure 2.10: Estimation of the instantaneous frequency (first plot) and group-
delay (second plot) of a multi-component signal

tion applies to the group delay : the implicit assumption is that a given fre-
quency is concentrated around a single time instant. Thus, if these assump-
tions are no longer valid, which is the case for most of the multi-component
signals, the result obtained using the instantaneous frequency or the group
delay is meaningless.

Example

For example, let us consider the superposition of two linear frequency
modulations :

>> N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);

>> x=x1+x2;

At each time instant t, an ideal time-frequency representation should repre-
sent two different frequencies with the same amplitude. The results obtained
using the instantaneous frequency and the group delay are of course com-
pletely different, and therefore irrelevant (see fig. ??) :

>> ifr=instfreq(x); subplot(211); plot(ifr);

>> fn=0:0.01:0.5; gd=sgrpdlay(x,fn);

>> subplot(212); plot(gd,fn);

So these one-dimensional representations, instantaneous frequency and group
delay, are not sufficient to represent all the non-stationary signals. A further
step has to be made towards two-dimensional mixed representations, jointly
in time and in frequency. Even if no gain of information can be expected
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Figure 2.11: Squared modulus of the short-time Fourier transform of the
previous multi-component non-stationary signal

since it is all contained in the time or in the frequency representation, we
can obtain a better structuring of this information, and an improvement in
the intelligibility of the representation.

To have an idea of what can be made with a time-frequency decomposi-
tion, let us anticipate the following and have a look at the result obtained
on this signal with the Short Time Fourier Transform (see fig. ??) :

>> tfrstft(x,’plot’);

Here two “time-frequency components” can be clearly seen, located around
the locus of the two frequency modulations.
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Chapter 3

First class of solutions : the

atomic decompositions

As we have seen in the previous chapter, the Fourier transform is not
adapted to the analysis of non-stationary signals since it projects the signal
on infinite waves (sinusoids) which are completely delocalized in time. The
concepts of instantaneous frequency and group delay are also inherently un-
adapted to a large number of non-stationary signals, those containing more
than one elementary component, and in particular noisy signals. Thus mono-
dimensional solutions seem not to be sufficient, and one has to consider bi-
dimensional functions (functions of the variables time and frequency).

A first class of such time-frequency representations is given by the atomic

decompositions (also known as the linear time-frequency representations). To
introduce this concept, we begin with the short-time Fourier transform which
has a very intuitive interpretation.

3.1 The Short-Time Fourier Transform

3.1.1 Definition

In order to introduce time-dependency in the Fourier transform, a simple
and intuitive solution consists in pre-windowing the signal x(u) around a par-
ticular time t, calculating its Fourier transform, and doing that for each time
instant t. The resulting transform, called the short-time Fourier transform

(STFT, or short-time spectrum), is

Fx(t, ν; h) =
∫ +∞

−∞
x(u) h∗(u− t) e−j2πνu du
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Figure 3.1: non-stationary signal x(u) and the short-time window h∗(u − t)
centered at time t

where h(t) is a short time analysis window (see fig. ??) localized around
t = 0 and ν = 0. Because multiplication by the relatively short window
h∗(u− t) effectively suppresses the signal outside a neighborhood around the
analysis time point u = t, the STFT is a ”local” spectrum of the signal x(u)
around t. Provided that the short-time window is of finite energy, the STFT
is invertible according to

x(t) =
1

Eh

∫ +∞

−∞

∫ +∞

−∞
Fx(u, ξ; h) h(t− u) ej2πtξ du dξ,

with Eh =
∫ +∞
−∞ |h(t)|2 dt. This relation expresses that the total signal can

be decomposed as a weighted sum of elementary waveforms

ht,ν(u) = h(u− t) exp [j2πνu]

which can be interpreted as “building blocks” or “atoms”. Each atom is
obtained from the window h(t) by a translation in time and a translation in
frequency (modulation). The corresponding transformation group of transla-
tions in both time and frequency is called the Weyl-Heisenberg group. Fig.
?? shows two such atoms corresponding to a gaussian window. The STFT
may also be expressed in terms of signal and window spectra :

Fx(t, ν; h) =
∫ +∞

−∞
X(ξ) H∗(ξ − ν) exp [j 2π(ξ − ν)t] dξ

where X and H are respectively the Fourier transforms of x and h. Thus,
the STFT Fx(t, ν; h) can be considered as the result of passing the signal
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Figure 3.2: Time-frequency atoms : two atoms corresponding to a gaussian
window. The STFT is a projection of the analyzed signal on such atoms
which are relatively well localized in time and in frequency

x(u) through a band-pass filter whose frequency response is H∗(ξ − ν), and
is therefore deduced from a mother filter H(ξ) by a translation of ν. So the
STFT is similar to a bank of band-pass filters with constant bandwidth.

3.1.2 An example

Let us have a look at the result obtained by applying the STFT on a
speech signal. The signal we consider is a speech signal containing the word
’GABOR’, recorded on 338 points with a sampling frequency of 1 kHz (with
respect to the Shannon criterion) (see fig. ??).

>> loadmatfile("gabor.mat")

>> time=0:337; subplot(211); plot(time,gabor);

>> dsp=fftshift(abs(fft(gabor)).^2);

>> freq=(-169:168)/338*1000; subplot(212); plot(freq,dsp);

We can not say from this representation what part of the word is responsible
for that peak around 140Hz.

Now if we look at the squared modulus of the STFT of this signal, using a
hamming analysis window of 85 points, we can see some interesting features
(the time-frequency matrix is loaded from the MAT-file because it takes a
long time to be calculated ; we represent only the frequency domain where
the signal is present) (see fig. ??) :

>> contour(time,(0:127)/256*1000,tfr); xgrid;
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Figure 3.3: Speech signal corresponding to the word ’GABOR’. Time signal
(first plot) and its energy spectral density (second plot)

>> xlabel(’Time [ms]’); ylabel(’Frequency [Hz]’);

>> title(’Squared modulus of the STFT of the word GABOR’);

The first pattern in the time-frequency plane, located between 30ms and
60ms, and centered around 150Hz, corresponds to the first syllable ’GA’.
The second pattern, located between 150ms and 250ms, corresponds to the
last syllable ’BOR’, and we can see that its mean frequency is decreasing
from 140Hz to 110Hz with time. Harmonics corresponding to these two
fundamental signals are also present at higher frequencies, but with a lower
amplitude.

3.1.3 Some properties

• The STFT preserves frequency shifts and time shifts up to a modula-
tion:

y(t) = x(t) ej2πν0t ⇒ Fy(t, ν; h) = Fx(t, ν − ν0; h)

y(t) = x(t− t0) ⇒ Fy(t, ν; h) = Fx(t− t0, ν; h) e
j2πt0ν

• Generalizing what has been said previously, the signal x(t) can be re-
constructed from its STFT with a synthesis window g(t) different from
the analysis window h(t) :

x(t) =
∫ +∞

−∞

∫ +∞

−∞
Fx(u, ξ; h) g(t− u) ej2πtξ du dξ

34 H. Nahrstaedt, F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine
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Figure 3.4: Speech signal analyzed in the time-frequency plane

providing that the windows g and h validate the constraint

∫ +∞

−∞
g(t) h∗(t) dt = 1.

3.1.4 Time-frequency resolution

The time resolution of the STFT can be obtained by considering for x a
Dirac impulse :

x(t) = δ(t− t0) ⇒ Fx(t, ν; h) = exp [−j2πt0ν] h(t− t0).

Thus, the time resolution of the STFT is proportional to the effective dura-
tion of the analysis window h. Similarly, to obtain the frequency-resolution,
we have to consider a complex sinusoid (a Dirac impulse in the frequency
domain) :

x(t) = exp [j2πν0t] ⇒ Fx(t, ν; h) = exp [−j2πtν0] H(ν − ν0).

So the frequency-resolution of the STFT is proportional to the effective band-
width of the analysis window h. Consequently, for the STFT, we have a
trade-off between time and frequency resolutions : on one hand, a good time
resolution requires a short window h(t) ; on the other hand, a good frequency
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Figure 3.5: Perfect time resolution with the STFT, but with no frequency
resolution : the window h is chosen as a Dirac impulse

resolution requires a narrow-band filter i.e. a long window h(t). But unfor-
tunately, these wishes can not be simultaneously granted. This limitation is
a consequence of the Heisenberg-Gabor inequality. Two instructive cases can
be considered :

1. The first one corresponds to a perfect time resolution : the window h(t)
is chosen as a Dirac impulse :

h(t) = δ(t) ⇒ Fx(t, ν; h) = x(t) exp [−j2πνt]

the STFT is perfectly localized in time, but does not provide any fre-
quency resolution.

* Example : This can be computed easily using the Time-Frequency
Toolbox : we consider for x a linear frequency modulation with a gaus-
sian amplitude modulation (see fig. ??).

>> x=real(amgauss(128).*fmlin(128));

>> h=1;

>> tfrstft(x,1:128,128,h,’plot’);
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Figure 3.6: Perfect frequency resolution with the STFT : the window h is
chosen as a constant

The signal is perfectly localized in time (a section for a given frequency
of the modulus of the STFT corresponds exactly to the modulus of the
signal), but the frequency resolution is null.

2. The second is that of perfect frequency resolution, obtained with a
constant window

h(t) = 1 (H(ν) = δ(ν)) ⇒ Fx(t, ν; h) = X(ν)

here the STFT reduces to the Fourier transform of x(t), and does not
provide any time resolution (see fig. ??).

>> h=ones(127,1);

>> tfrstft(x,1:128,128,h,’plot’);

The result obtained for Fx(t, ν; h) is not exactly X(ν), because the
window h has not an infinite duration. Thus, some side effects appear.

To illustrate the influence of the shape and length of the analysis window
h, we consider two transient signals having the same gaussian amplitude and
constant frequency, with different arrival times (using the function atoms) :

>> sig=atoms(128,[45,.25,32,1;85,.25,32,1]);
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Figure 3.7: Two gaussian atoms analyzed by the STFT using a Hamming
window h of 65 points : it is difficult to discriminate the two components in
time

Here is the result obtained with a Hamming analysis window of 65 points
(see fig. ??) :

>> h=window(65,’hamming’);

>> tfrstft(sig,1:128,128,h,’plot’);

The frequency resolution is very good, but it is almost impossible to dis-
criminate the two components in time. If we now consider a short Hamming
window of 17 points (see fig. ??)

>> h=window(17,’hamming’);

>> tfrstft(sig,1:128,128,h,’plot’);

the frequency resolution is poorer, but the time resolution is sufficiently good
to distinguish the two components. For more information on the choice of
the window, see [?].

3.2 Time-scale analysis and the wavelet trans-

form

Since the Wavelet Toolbox is fully dedicated to this problem, we will
merely give here some basic definitions which are essential in the next part

38 H. Nahrstaedt, F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine
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Figure 3.8: Same gaussian atoms analyzed by the STFT using a Hamming
window h of 17 points : frequency resolution is poorer, but the two compo-
nents can be easily distinguished

to introduce the affine quadratic time-frequency distributions.

3.2.1 Definitions and interpretation

The idea of the continuous wavelet transform (CWT) is to project a sig-
nal x on a family of zero-mean functions (the wavelets) deduced from an
elementary function (the mother wavelet) by translations and dilations:

Tx(t, a; Ψ) =
∫ +∞

−∞
x(s) Ψ∗

t,a(s) ds : Continuous Wavelet Transform

where Ψt,a(s) = |a|−1/2 Ψ
(

s−t
a

)

. The variable a corresponds now to a scale

factor, in the sense that taking |a| > 1 dilates the wavelet Ψ and taking
|a| < 1 compresses Ψ. By definition, the wavelet transform is more a time-
scale than a time-frequency representation. However, for wavelets which are
well localized around a non-zero frequency ν0 at scale a = 1, a time-frequency
interpretation is possible thanks to the formal identification ν = ν0

a
.

The basic difference between the wavelet transform and the short-time
Fourier transform is as follows : when the scale factor a is changed, the
duration and the bandwidth of the wavelet are both changed but its shape
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Figure 3.9: Time-scale atoms. The CWT is a projection of the analyzed
signal on such atoms whose time duration is inversely proportional to the
central frequency

remains the same. And in contrast to the STFT, which uses a single analysis
window, the CWT uses short windows at high frequencies and long windows
at low frequencies. This partially overcomes the resolution limitation of the
STFT : the bandwidth B is proportional to ν, or

B

ν
= Q : constant.

We call it a constant-Q analysis. The CWT can also be seen as a filter bank
analysis composed of band-pass filters with constant relative bandwidth.

3.2.2 Properties

• The wavelet transform is covariant by translation in time and scaling,
which means that

y(t) =
√

|a0| x(a0(t− t0)) ⇒ Ty(t, a; Ψ) = Tx(a
∗
0(t− t0), a/a0; Ψ).

The corresponding group of transforms is called the affine group (to be
compared to the Weyl-Heisenberg group).

• The signal x can be recovered from its continuous wavelet transform
according to the formula

x(t) =
∫ +∞

−∞

∫ +∞

−∞
Tx(s, a; Φ) Ψs,a(t) ds

da

a2

40 H. Nahrstaedt, F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine



where Φ is the synthesis wavelet, if the following admissibility condition
is verified by Φ and Ψ :

∫ +∞

−∞
Ψ(ν) Φ∗(ν)

dν

|ν| = 1.

• Time and frequency resolutions, like in the STFT case, are related
via the Heisenberg-Gabor inequality. However, in the present case,
these two resolutions depend on the frequency : the frequency reso-
lution (resp. time resolution) becomes poorer (resp. better) as the
analysis frequency grows.

3.3 Sampling considerations

3.3.1 The discrete STFT

To reduce the redundancy of the continuous STFT, we can sample it in
the time-frequency plane. Since the atoms used can be deduced from the
window h(t) by translation in time and in frequency, it is natural to sample
the STFT on a rectangular grid :

Fx[n,m; h] = Fx(nt0, mν0; h) =
∫ +∞

−∞
x(u) h∗(u− nt0) exp [−j2πmν0u] du

m, n ∈ Z. The problem is then to choose the values of t0 and ν0 so as
to minimize the redundancy without loosing any information. For that, we
must have

t0 × ν0 ≤ 1.

Then, the atoms hnt0,mν0 constitute a discrete over-sampled family of non
orthonormal elements, which is called a frame : when t0 × ν0 > 1, the time-
frequency plane is not sufficiently ”covered” by the atoms hnt0,mν0 , i.e. there
are ”gaps” between adjacent atoms.

When t0×ν0 = 1, the family of atoms hnt0,mν0 can constitute an orthonor-

mal basis for an appropriate choice of the window. But it can be shown that
it is impossible to obtain such a basis with a window h which is well localized
in time and in frequency (this property is known as the Balian-Low obstruc-

tion [?]). Therefore, for a well localized window h (for example a gaussian
window), the reconstruction formula will not be numerically stable.

In the discrete case, the reconstruction (synthesis) formula of the signal
from the STFT is then given by

x(t) =
∑

n

∑

m

Fx[n,m; h] gn,m(t)
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where gn,m(t) = g(t− nt0) exp [j2πmν0t].
This relation is valid provided that the sampling periods t0 and ν0, the

analysis window h and the synthesis window g are chosen such that

1

ν0

∑

n

g(t+
k

ν0
− nt0) h

∗(t− nt0) = δk ∀t

with δk defined as δ0 = 1 and δk = 0 for k 6= 0. This condition is far more
restrictive than the condition

∫ +∞
−∞ g(t) h∗(t) dt = 1 required in the continuous

case.
For a sampled signal x[n] whose sampling period is noted T , t0 has to be

chosen so that t0 = kT , k ∈ N ∗. We then have the following analysis and
synthesis formulae

Fx[n,m; h] =
∑

k

x[k] h∗[k − n] exp [−j2πmk] for − 1

2
≤ m ≤ 1

2
(3.1)

x[k] =
∑

n

∑

m

Fx[n,m; h] g[k − n] exp [j2πmk]. (3.2)

These two relations can be implemented efficiently using a Fast Fourier Trans-
form (FFT) algorithm.

3.3.2 The Gabor Representation

The reconstruction (synthesis) formula of the STFT is given in the dis-
crete case by

x(t) =
∑

n

∑

m

Fx[n,m; h] gn,m(t)

where gn,m(t) = g(t − nt0) exp [j2πmν0t] defines the Gabor representation.
Originally, the synthesis window g(t) was chosen by Gabor as a gaussian
window, because it maximizes the concentration in the time-frequency plane.
But now we speak of Gabor representation for any normalized window g.

The atoms gn,m(t) are called the Gabor logons, and the coefficients Fx[n,m; h],
noted Gx[n,m] in the following, the Gabor coefficients. Each coefficient con-
tains an information relative to the time-frequency content of the signal
around the time-frequency location (nt0, mν0). The logon gn,m is associated
in the time-frequency plane to a rectangular unit area centered on (nt0, mν0).

What about completeness of the Gabor logons gn,m(t) ? As we have seen
before, a necessary but not sufficient condition is that t0 ν0 ≤ 1. At the
critical sampling case t0 ν0 = 1, the logons are linearly independent, but are
not orthogonal in general (Balian-Low obstruction). This means that the
Gabor coefficients Gx[n,m] are not simply the projections of x(t) onto the
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corresponding logons gn,m(t) (i.e. the analysis and synthesis windows h and
g can not be the same). A theoretical solution to this problem is obtained
if the windows g and h are chosen biorthonormal, i.e. if they validate the
biorthonormal condition

∫ +∞

−∞
gn,m(t) h

∗
n′,m′(t) dt = δn−n′ δm−m′

Then the analysis formula given before (expression (??)) allows the com-
putation of the Gabor coefficients, and the synthesis formula (expression
(??)) the reconstruction of the signal x(t) (to compute the biorthonormal

window h associated to a given synthesis window g, one can use the Zak

transform [?] : this is the approach followed in the function tfrgabor, and
the function zak computes this transform). From an implementation point
of view, this solution is not fully satisfactory since the computation of the
biorthonormal window h is numerically unstable. So in general, some degree
of oversampling is considered (t0 × ν0 < 1), which introduces redundancy in
the coefficients, in order to ”smooth” the biorthonormal window h, for the
sake of numerical stability. These considerations are closely connected to the
theory of frames.

Example

Let us consider the Gabor coefficients of a linear chirp of N1=256 points
at the critical sampling case, and for a gaussian window of Ng=33 points :

>> N1=256; Ng=33; Q=1; // degree of oversampling.

>> sig=fmlin(N1); g=window(Ng,’gauss’); g=g/norm(g);

>> [tfr,dgr,h]=tfrgabor(sig,16,Q,g);

(tfrgabor generates as first output the squared modulus of the Gabor repre-
sentation, as second output the complex Gabor representation, and as third
output the biorthonormal window). When we look at the biorthonormal
window h (see fig. ??),

>> plot(h);

we can see how ”bristling” this function is. The corresponding Gabor decom-
position contains all the information about sig, but is not easy to interpret
(see fig. ??) :

>> t=1:256; f=linspace(0,0.5,128); grayplot(t,f,tfr(1:128,:)’);

>> xlabel(’Time’); ylabel(’Normalized frequency’);

>> title(’Squared modulus of the Gabor coefficients’);
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Figure 3.10: Biorthonormal window corresponding to the critical sampling
case and to a gaussian synthesis window : numerically unsteady

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Squared modulus of the Gabor coefficients

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 3.11: Gabor representation of a chirp, at the critical sampling rate :
we have as many coefficients in the time-frequency plane as in the signal (no
redundancy)

44 H. Nahrstaedt, F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine
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Figure 3.12: Biorthonormal window h corresponding to an oversampling of
Q = 4, and to a gaussian synthesis window g : the greater Q, the closer h
from g

If we now consider a degree of oversampling of Q=4 (there are four times
more Gabor coefficients than signal samples), the biorthogonal function is
then smoother (the greater Q, the closer h from g) (see fig. ??),

>> Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);

>> plot(h);

and the Gabor representation is much more readable (see fig. ??) :

>> grayplot(t,f,tfr(1:128,:)’);

>> xlabel(’Time’); ylabel(’Normalized frequency’);

>> title(’Squared modulus of the Gabor coefficients’);

3.3.3 The discrete wavelet transform

In the case of the wavelet transform, the natural way to sample the time-
frequency plane is to take samples on the non-uniform grid (lattice) defined
by

(t, a) = (nt0 a−m
0 , a−m

0 ) ; t0 > 0, a0 > 0 ; m,n ∈ Z.

Then, the discrete wavelet transform (DWT) is defined as

Tx[n,m; Ψ] = a
m/2
0

∫ +∞

−∞
x(u) Ψ∗

n,m(u) du ; m,n ∈ Z
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Figure 3.13: Gabor representation of the same chirp, but with a degree of
oversampling of 4 : some redundancy improve the readability of the repre-
sentation

where Ψn,m(u) = Ψ(am0 u − nt0). The common choice (a0 = 2, t0 = 1) cor-
responds to a dyadic sampling of the time-frequency plane (one set of co-
efficients per octave) (see fig. ??). Thanks to such a sampling, it is now
possible to obtain for the family {Ψn,m(u) ; m,n ∈ Z} an orthonormal basis

with a wavelet Ψ well localized in time and in frequency (the Balian-Low ob-
struction is no longer valid). This is strongly related to the multiresolution
analysis theory (we will not develop it here ; see for more details the tutorial
of the Wavelet Toolbox).

The main drawback of such a sampling is the loss of time-covariance.
Indeed, a signal analyzed by the DWT will not have the same pattern on the
dyadic grid whatever its initial position is.

As for the Gabor representation, a solution halfway between the over-
complete family of wavelets Ψn,m(u) used by the CWT and an orthonormal
basis of wavelets obtained on the dyadic grid and for a particular choice of Ψ
is given by the theory of frames (see [?] for an overview of this theory with
application to the wavelet transform).
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3.4 From atomic decompositions to energy

distributions

Up to this point, we presented time-frequency representations that de-
compose the signal into elementary components, the atoms, well localized in
time and in frequency. These representations were linear transforms of the
signal.

Another approach to this problem, which will be developed in the next
chapter, consists in distributing the energy of the signal along the two vari-
ables time and frequency. This gives rise to energy time-frequency distribu-
tions, which are naturally quadratic transforms of the signal.

We present in this section a natural transition between these two classes
of solutions through the spectrogram (for the Weyl-Heisenberg group) and
the scalogram (for the affine group).

3.4.1 The spectrogram

If we consider the squared modulus of the STFT, we obtain a spectral
energy density of the locally windowed signal x(u) h∗(u− t) :

Sx(t, ν) =
∣

∣

∣

∣

∫ +∞

−∞
x(u) h∗(u− t) e−j2πνu du

∣

∣

∣

∣

2

.

This defines the spectrogram, which is a real-valued and non-negative dis-
tribution. Since the window h of the STFT is assumed of unit energy, the
spectrogram satisfies the global energy distribution property :

∫ +∞

−∞

∫ +∞

−∞
Sx(t, ν) dt dν = Ex.

Thus, we can interpret the spectrogram as a measure of the energy of the
signal contained in the time-frequency domain centered on the point (t, ν)
and whose shape is independent of this localization.

• Properties

– Time and frequency covariance

A direct consequence of the definition of the spectrogram is that
it preserves time and frequency shifts :

y(t) = x(t− t0) ⇒ Sy(t, ν) = Sx(t− t0, ν)

y(t) = x(t) exp [j2πν0t] ⇒ Sy(t, ν) = Sx(t, ν − ν0).
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Thus, the spectrogram is an element of the class of quadratic time-
frequency distributions that are covariant by translation in time
and in frequency. This class, developed in the next chapter, is
called the Cohen’s class.

– Time-frequency resolution

The spectrogram being the squared magnitude of the STFT, it
is obvious that the time-frequency resolution of the spectrogram
is limited exactly as it is for the STFT. In particular, it exists
again a trade-off between time resolution and frequency resolu-
tion. This poor resolution property is the main drawback of this
representation.

– Interference structure

As it is a quadratic (or bilinear) representation, the spectrogram
of the sum of two signals is not the sum of the two spectrograms
(quadratic superposition principle) :

y(t) = x1(t)+x2(t) ⇒ Sy(t, ν) = Sx1
(t, ν)+Sx2

(t, ν)+2ℜ{Sx1,x2
(t, ν)}

where Sx1,x2
(t, ν) = Fx1

(t, ν)F ∗
x2
(t, ν) is the cross-spectrogram and

ℜ denotes the real part. Thus, as every quadratic distribution,
the spectrogram presents interference terms, given by Sx1,x2

(t, ν).
However, one can show [?] that these interference terms are re-
stricted to those regions of the time-frequency plane where the
auto-spectrograms Sx1

(t, ν) and Sx2
(t, ν) overlap. Thus, if the

signal components x1(t) and x2(t) are sufficiently distant so that
their spectrograms do not overlap significantly, then the interfer-
ence term will nearly be identically zero. This property, which is
a practical advantage of the spectrogram, is in fact a consequence
of the spectrogram’s poor resolution.

• Examples

To illustrate the resolution trade-off of the spectrogram and its in-
terference structure, we consider a two-component signal composed of
two parallel chirps, and we analyze it with the function tfrsp of the
Time-Frequency Toolbox (the function specgram of the Signal Process-
ing Toolbox is equivalent, except that tfrsp offers the possibility to
change the analysis window) (see fig. ?? and fig. ??).

>> sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);

>> h1=window(23,’gauss’);
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Figure 3.15: Spectrogram of two parallel chirps, using a short gaussian anal-
ysis window : cross-terms are present between the two FM components

>> scf(1); tfrsp(sig,1:128,128,h1,’plot’);

>> h2=window(63,’gauss’);

>> scf(2); tfrsp(sig,1:128,128,h2,’plot’);

In these two cases, the two FM components of the signal are not suf-
ficiently distant to have distinct spectrograms, whatever the window
length is. Consequently, interference terms are present, and disturb
the readability of the time-frequency representation. If we consider
more distant components (see fig. ?? and fig. ??),

>> sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);

>> h1=window(23,’gauss’);

>> scf(1); tfrsp(sig,1:128,128,h1,’plot’);

>> h2=window(63,’gauss’);

>> scf(2); tfrsp(sig,1:128,128,h2,’plot’);

the two auto-spectrograms do not overlap and no interference term
appear. We can also see the effect of a short window (h1) and a long
window (h2) on the time-frequency resolution. In the present case, the
long window h2 is preferable since as the frequency progression is not
very fast, the quasi-stationary assumption will be correct over h2 (so
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Figure 3.16: Spectrogram of two parallel chirps, using a long gaussian anal-
ysis window : cross-terms are still present, due to the too small distance in
the time-frequency plan between the FM components
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Figure 3.17: Spectrogram of two more distant parallel chirps, using a short
gaussian analysis window
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Figure 3.18: Spectrogram of two parallel chirps, using a long gaussian anal-
ysis window

time resolution is not as important as frequency resolution in this case)
and the frequency resolution will be quite good ; whereas if the window
is short (h1), the time resolution will be good, which is not very useful,
and the frequency resolution will be poor.

3.4.2 The scalogram

A similar distribution to the spectrogram can be defined in the wavelet
case. Since the continuous wavelet transform behaves like an orthonormal
basis decomposition, it can be shown that it preserves energy :

∫ +∞

−∞

∫ +∞

−∞
|Tx(t, a; Ψ)|2 dt

da

a2
= Ex

where Ex is the energy of x. This leads us to define the scalogram of x as
the squared modulus of the continuous wavelet transform. It is an energy
distribution of the signal in the time-scale plane, associated with the measure
dt da

a2
.

As for the wavelet transform, time and frequency resolutions of the scalo-
gram are related via the Heisenberg-Gabor principle : time and frequency
resolutions depend on the considered frequency. To illustrate this point, we
represent the scalograms of two different signals. The function tfrscalo
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Figure 3.19: Morlet scalogram of a Dirac impulse at time t = 64 : time
resolution depends on the considered frequency (or scale)

generates this representation. The chosen wavelet is a Morlet wavelet of
12 points. The first signal is a Dirac pulse at time t0 = 64 :

>> sig1=anapulse(128);

>> tfrscalo(sig1,1:128,6,0.05,0.45,128,1,’plot’);

Figure ?? shows that the influence of the behavior of the signal around t = t0
is limited to a cone in the time-scale plane : it is ”very” localized around t0
for small scales (large frequencies), and less and less localized as the scale
increases (as the frequency decreases).

The second signal is the sum of two sinusoids of different frequencies (see
fig. ??) :

>> sig2=fmconst(128,.15)+fmconst(128,.35);

>> tfrscalo(sig2,1:128,6,0.05,0.45,128,1,’plot’);

Here again, we notice that the frequency resolution is clearly a function of
the frequency : it increases with ν.

The interference terms of the scalogram, as for the spectrogram, are also
restricted to those regions of the time-frequency plane where the correspond-
ing auto-scalograms (signal terms) overlap. Hence, if two signal components
are sufficiently far apart in the time-frequency plane, their cross-scalogram
will be essentially zero.
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Figure 3.20: Morlet scalogram of two simultaneous complex sinusoids : fre-
quency resolution depends on the considered frequency (or scale)

3.4.3 Conclusion

Through this chapter, we presented a first class of time-frequency distri-
butions of non-stationary signals. These distributions decompose the signal
on a basis of elementary signals (the atoms) which have to be well localized
in time and in frequency. Two well known examples of such decompositions
are the short-time Fourier transform and the wavelet transform. After hav-
ing considered their properties, we discussed their formulation in the discrete
case. Finally, we presented a natural transition from this class of represen-
tations to the class of energy distributions.
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Chapter 4

Second class of solutions : the

energy distributions

In contrast with the linear time-frequency representations which decom-
pose the signal on elementary components (the atoms), the purpose of the
energy distributions is to distribute the energy of the signal over the two
description variables : time and frequency.

The starting point is that since the energy of a signal x can be deduced
from the squared modulus of either the signal or its Fourier transform,

Ex =
∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(ν)|2 dν, (4.1)

we can interpret |x(t)|2 and |X(ν)|2 as energy densities, respectively in time
and in frequency. It is then natural to look for a joint time and frequency

energy density ρx(t, ν), such that

Ex =
∫ +∞

−∞

∫ +∞

−∞
ρx(t, ν) dt dν, (4.2)

which is an intermediary situation between those described by (??). As
the energy is a quadratic function of the signal, the time-frequency energy
distributions will be in general quadratic representations.

Two other properties that an energy density should satisfy are the fol-
lowing marginal properties :

∫ +∞

−∞
ρx(t, ν) dt = |X(ν)|2 (4.3)

∫ +∞

−∞
ρx(t, ν) dν = |x(t)|2, (4.4)

which mean that if we integrate the time-frequency energy density along one
variable, we obtain the energy density corresponding to the other variable.

The main references for this chapter are [?], [?], [?], [?] and [?].
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4.1 The Cohen’s class

Since there is much more than one distribution satisfying properties (??),
(??) and (??), we can impose additional constraints on ρx so that this dis-
tribution satisfies other desirable properties. Among these, the covariance
principles are of fundamental importance. The Cohen’s class, to which is
dedicated this section, and whose definition can be found in subsection ??,
is the class of time-frequency energy distributions covariant by translations

in time and in frequency [?].
The spectrogram, that we considered in the previous part, is an element

of the Cohen’s class since it is quadratic, time- and frequency- covariant, and
preserves energy (property (??)). However, taking the squared modulus of
an atomic decomposition is only a restrictive possibility to define a quadratic
representation, and this definition presents the drawback that the marginal
properties (??) and (??) are not satisfied.

4.1.1 The Wigner-Ville distribution

Definition

A time-frequency energy distribution which is particularly interesting is
the Wigner-Ville distribution (WVD) defined as :

Wx(t, ν) =
∫ +∞

−∞
x(t + τ/2) x∗(t− τ/2) e−j2πντ dτ, (4.5)

or equivalently as

Wx(t, ν) =
∫ +∞

−∞
X(ν + ξ/2) X∗(ν − ξ/2) ej2πξt dξ.

This distribution satisfies a large number of desirable mathematical prop-
erties, as summarized in the next sub-section. In particular, the WVD is
always real-valued, it preserves time and frequency shifts and satisfies the
marginal properties.

An interpretation of this expression can be found in terms of probability
density : expression (??) is the Fourier transform of an acceptable form of
characteristic function for the distribution of the energy.

Before looking at the theoretical properties of the WVD, let us see what
we obtain on two particular synthetic signals.

• Example 1 : The first signal is the academic linear chirp signal that
we already considered. The WVD is available thanks to the function
tfrwv of the Time-Frequency Toolbox (see fig. ??).
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10
20

30
40

50
60

0

0.1

0.2

0.3

0.4

-10

0

10

20

30

40

Time [s]Frequency [Hz]

A
m

pl
itu

de
TFRWV, lin. scale, Threshold=5%

Figure 4.1: Wigner-Ville distribution of a linear chirp signal : almost perfect
localization in the time-frequency plane

>> sig=fmlin(256);

>> tfrwv(sig,’plot’);

If we choose a 3-dimension plot to represent it, we can see that the
WVD can take negative values, and that the localization obtained in
the time-frequency plane for this signal is almost perfect.

• Example 2 : When a car goes in front of an observer with a constant
speed, the signal heard by this person from the engine changes with
time : the main frequency decreases (at a first level of approximation)
from one value to another. This phenomenon, known as the doppler ef-
fect, expresses the dependence of the frequency received by an observer
from a transmitter on the relative speed between the observer and the
transmitter. The corresponding signal can be generated thanks to the
function doppler of the Time-Frequency Toolbox. Here is an example
of such a signal (see fig. ??) :

>> [fm,am,iflaw]=doppler(256,50,13,10,200);

>> sig=am.*fm;

>> tfrwv(sig,’plot’);
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Figure 4.2: WVD of a doppler signal : many interference terms are present,
due to the bilinearity of the distribution

Looking at this time-frequency distribution, we notice that the energy
is not distributed as we could expect for this signal. Although the signal
term is well localized in the time-frequency plane, numerous other terms
(the interference terms, due to the bilinearity of the WVD) are present
at positions in time and frequency where the energy should be null. We
will see earlier how to get rid of these terms.

Properties

Here is a list of the main properties of the WVD [?].

1. Energy conservation : by integrating the WVD of x all over the time-
frequency plane, we obtain the energy of x :

Ex =
∫ +∞

−∞

∫ +∞

−∞
Wx(t, ν) dt dν

2. Marginal properties : the energy spectral density and the instantaneous
power can be obtained as marginal distributions of Wx :

∫ +∞

−∞
Wx(t, ν) dt = |X(ν)|2

∫ +∞

−∞
Wx(t, ν) dν = |x(t)|2
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3. Real-valued :
Wx(t, ν) ∈ R, ∀ t, ν

4. Translation covariance : the WVD is time and frequency covariant :

y(t) = x(t− t0) ⇒ Wy(t, ν) = Wx(t− t0, ν)

y(t) = x(t)ej2πν0t ⇒ Wy(t, ν) = Wx(t, ν − ν0)

5. Dilation covariance : the WVD also preserves dilations :

y(t) =
√
k x(kt) ; k > 0 ⇒ Wy(t, ν) = Wx(kt,

ν

k
)

6. Compatibility with filterings : it expresses the fact that if a signal y is
the convolution of x and h (i.e. the output of filter h whose input is
x), the WVD of y is the time-convolution between the WVD of h and
the WVD of x :

y(t) =
∫ +∞

−∞
h(t−s) x(s) ds ⇒ Wy(t, ν) =

∫ +∞

−∞
Wh(t−s, ν)Wx(s, ν) ds

7. Compatibility with modulations : this is the dual property of the previ-
ous one : if y is the modulation of x by a function m, the WVD of y is
the frequency-convolution between the WVD of x and the WVD of m :

y(t) = m(t) x(t) ⇒ Wy(t, ν) =
∫ +∞

−∞
Wm(t, ν − ξ) Wx(t, ξ) dξ

8. Wide-sense support conservation : if a signal has a compact support
in time (respectively in frequency), then its WVD also has the same
compact support in time (respectively in frequency) :

x(t) = 0, |t| > T ⇒ Wx(t, ν) = 0, |t| > T

X(ν) = 0, |ν| > B ⇒ Wx(t, ν) = 0, |ν| > B

9. Unitarity : the unitarity property expresses the conservation of the
scalar product from the time-domain to the time-frequency domain
(apart from the squared modulus) :

∣

∣

∣

∣

∫ +∞

−∞
x(t) y∗(t) dt

∣

∣

∣

∣

2

=
∫ +∞

−∞

∫ +∞

−∞
Wx(t, ν) W

∗
y (t, ν) dt dν.

This formula is also known as the Moyal’s formula.
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10. Instantaneous frequency : the instantaneous frequency of a signal x can
be recovered from the WVD as its first order moment (or center of
gravity) in frequency :

fx(t) =

∫ +∞
−∞ νWxa

(t, ν) dν
∫+∞
−∞ Wxa

(t, ν) dν

where xa is the analytic signal associated to x.

11. Group delay : in a dual way, the group delay of x can be obtained as
the first order moment in time of its WVD :

tx(ν) =

∫+∞
−∞ t Wxa

(t, ν) dt
∫ +∞
−∞ Wxa

(t, ν) dt

12. Perfect localization on linear chirp signals :

x(t) = ej2πνx(t)t with νx(t) = ν0 + 2βt ⇒ Wx(t, ν) = δ(ν − (ν0 + βt)).

Interferences

As the WVD is a bilinear function of the signal x, the quadratic superpo-

sition principle applies :

Wx+y(t, ν) = Wx(t, ν) + Wy(t, ν) + 2ℜ{Wx,y(t, ν)}

where

Wx,y(t, ν) =
∫ +∞

−∞
x(t + τ/2) y∗(t− τ/2) e−j2πντ dτ

is the cross-WVD of x and y. This can be easily generalized toN components,
but for the sake of clarity, we will only consider the two-component case.

Unlike the spectrogram interference terms, the WVD interference terms
will be non-zero regardless of the time-frequency distance between the two
signal terms. These interference terms are troublesome since they may over-
lap with auto-terms (signal terms) and thus make it difficult to visually
interpret the WVD image. However, it appears that these terms must be
present or the good properties of the WVD (marginal properties, instan-
taneous frequency and group delay, localization, unitarity . . . ) cannot be
satisfied. Actually, there is a trade-off between the quantity of interferences
and the number of good properties.

o Interference geometry

The rule of interference construction of the WVD can be summarized as
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Figure 4.3: Structure of the interferences between 2 components with differ-
ent locations in time and frequency : we can notice the change in the direction
of the oscillations, as well as the change in the period of these oscillations

follows : two points of the time-frequency plane interfere to create a con-
tribution on a third point which is located at their geometrical midpoint.
Besides, these interference terms oscillate perpendicularly to the line join-
ing the two points interfering, with a frequency proportional to the distance
between these two points.

This can be seen on the following example : we consider two atoms in
the time-frequency plane, analyzed by the WVD, whose relative distance is
increasing from one realization to the other, and then decreasing.

We can notice, from this movie, the evolution of the interferences when
the distance between the two interfering terms changes, and in particular the
change in the direction of the oscillations.

Pseudo-WVD

The definition (??) requires the knowledge of the quantity

qx(t, τ) = x(t+ τ/2) x∗(t− τ/2)
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from τ = −∞ to τ = +∞, which can be a problem in practice. That is why
we often replace qx(t, τ) in (??) by a windowed version of it, leading to the
new distribution :

PWx(t, ν) =
∫ +∞

−∞
h(τ) x(t + τ/2) x∗(t− τ/2) e−j2πντ dτ

where h(t) is a regular window. This distribution is called the pseudo Wigner-

Ville distribution (noted pseudo-WVD or PWVD in the following). This
windowing operation is equivalent to a frequency smoothing of the WVD
since

PWx(t, ν) =
∫ +∞

−∞
H(ν − ξ) Wx(t, ξ) dξ

whereH(ν) is the Fourier transform of h(t). Thus, because of their oscillating
nature, the interferences will be attenuated in the pseudo-WVD compared
to the WVD. However, the consequence of this improved readability is that
many properties of the WVD are lost : the marginal properties, the unitar-
ity, and also the frequency-support conservation ; the frequency-widths of the
auto-terms are increased by this operation.

* Example : The function tfrpwv calculates the pseudo-WVD of a signal,
with the possibility to change the length and shape of the smoothing window.
If we consider a signal composed of four gaussian atoms (obtained thanks to
atoms), each localized at a corner of a rectangle,

>> sig=atoms(128,[32,.15,20,1;96,.15,20,1;...

32,.35,20,1;96,.35,20,1]);

and compute its WVD (see fig. ??)

>> tfrwv(sig,’plot’);

we can see the four signal terms, along with six interference terms (two of
them are superimposed). If we now compute the pseudo-WVD (see fig. ??),

>> tfrpwv(sig,’plot’);

we can note the important attenuation of the interferences oscillating per-
pendicularly to the frequency axis, and in return the spreading in frequency
of the signal terms.
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Figure 4.4: WVD of 4 gaussian atoms : many interferences are present
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Figure 4.5: The frequency-smoothing operated by the pseudo-WVD attenu-
ates the interferences oscillating perpendicularly to the frequency axis
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Sampling the WVD ; the analytic signal

Because of the quadratic nature of the WVD, its sampling has to be done
with care. Let us write it as follows :

Wx(t, ν) = 2
∫ +∞

−∞
x(t + τ) x∗(t− τ) e−j4πντ dτ

If we sample x with a period Te, write x[n] = x(nTe), and evaluate the WVD
at the sampling points nTe in time, we obtain a discrete-time continuous-
frequency expression of it :

Wx[n, ν) = 2 Te

∑

k

x[n + k] x∗[n− k] e−j4πνk.

As this expression is periodic in frequency with period 1
2 Te

(contrary to pe-

riod 1
Te

obtained for the Fourier transform of a signal sampled at the Nyquist
rate), the discrete version of the WVD may be affected by a spectral aliasing,
in particular if the signal x is real-valued and sampled at the Nyquist rate.
Two alternatives to this problem can be found. The first one consists in
oversampling the signal by a factor of at least 2, and the second one in using
the analytic signal. Indeed, as its bandwidth is half the one of the real signal,
the aliasing will not take place in the useful spectral domain [0, 1/2] of this
signal. This second solution presents another advantage : since the spectral
domain is divided by two, the number of components in the time-frequency
plane is also divided by two. Consequently, the number of interference terms
decreases significantly. To illustrate this phenomenon, we consider the WVD
of the real part of a signal composed of two atoms (see fig. ??) :

>> sig=atoms(128,[32,0.15,20,1;96,0.32,20,1]);

>> tfrwv(real(sig),’plot’);

We can see that four signal terms are present instead of two, due to the
spectral aliasing. Besides, because of the components located at negative
frequencies (between -1/2 and 0), additional interference terms are present.
If we now consider the WVD of the same signal, but in its complex analytic
form (see fig. ??),

>> tfrwv(sig,’plot’);

the aliasing effect has disappeared, as well as the terms corresponding to
interferences between negative- and positive- frequency components.
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Figure 4.6: WVD of a real signal composed of 2 gaussian atoms : when the
analytic signal is not considered, spectral aliasing and additional interferences
appear in the time-frequency plane

-0.5

0

0.5

R
ea

l p
ar

t

Signal in time

0200400

E
ne

rg
y 

sp
ec

tr
al

 d
en

si
ty

Linear scale

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

F
re

qu
en

cy
 [H

z]

TFRWV, log. scale, Threshold=5%

Figure 4.7: WVD of the previous signal, but in its analytic form
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4.1.2 The Cohen’s class

Presentation

Among the desirable properties of an energy time-frequency distribution,
two of them are of particular importance : time and frequency covariance.
Indeed, these properties guaranty that, if the signal is delayed in time and
modulated, its time-frequency distribution is translated of the same quanti-
ties in the time-frequency plane. It has been shown that the class of energy
time-frequency distributions verifying these covariance properties possesses
the following general expression :

Cx(t, ν; f) =
∫ ∫ ∫ +∞

−∞
ej2πξ(s−t) f(ξ, τ) x(s+τ/2) x∗(s−τ/2) e−j2πντ dξ ds dτ,

where f(ξ, τ) is a two-dimensional function called the parameterization func-

tion. This class of distributions is known as the Cohen’s class, which can also
be written :

Cx(t, ν; Π) =
∫ +∞

−∞

∫ +∞

−∞
Π(s− t, ξ − ν) Wx(s, ξ) ds dξ, (4.6)

where

Π(t, ν) =
∫ +∞

−∞

∫ +∞

−∞
f(ξ, τ) e−j2π(ντ+ξt) dt dν

is the two-dimensional Fourier transform of the parameterization function
f . This class is of significant importance since it includes a large number
of the existing time-frequency energy distributions. Of course, the WVD is
the element of the Cohen’s class for which the function Π is a double Dirac :
Π(t, ν) = δ(t) δ(ν), i.e. f(ξ, τ) = 1.

In the case where Π is a smoothing function, expression (??) allows one
to interpret Cx as a smoothed version of the WVD ; consequently, such a
distribution will attenuate in a particular way the interferences of the WVD.

Before considering different kinds of smoothing functions Π, let us point
out the different advantages of such a unified formulation :

1. by specifying the parameterization function f arbitrarily, it is possible
to obtain most of the known energy distributions ;

2. it is easy to convert a constraint that we wish for the distribution in
an admissibility condition for the parameterization function ;

3. it is possible, by using such admissibility arguments, to check a pri-

ori the properties of a particular definition, or to construct a class of
solutions according to a specified schedule of conditions.
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Coupled smoothing

If we look at the Moyal’s formula (property 9. see page ??), it is easy to
express the spectrogram as a smoothing of the WVD :

Sx(t, ν) =
∫ +∞

−∞

∫ +∞

−∞
Wh(s− t, ξ − ν) Wx(s, ξ) ds dξ. (4.7)

Thus, the spectrogram is the element of the Cohen’s class for which Π(s, ξ) is
the WVD of the window h. This new formulation provides us with another
interpretation of the embarrassing trade-off between the time and frequency-
resolutions of the spectrogram : if we choose a short window h, the smoothing
function will be narrow in time and wide in frequency, leading to a good time
resolution but bad frequency resolution ; and vice-versa.

Separable smoothing

The problem with the previous smoothing function Π(s, ξ) = Wh(s, ξ) is
that it is controlled only by the short-time window h(t). If we add a degree
of freedom by considering a separable smoothing function

Π(t, ν) = g(t) H(−ν)

(where H(ν) is the Fourier transform of a smoothing window h(t)), we allow
a progressive and independent control, in both time and frequency, of the
smoothing applied to the WVD. The obtained distribution

SPWx(t, ν) =
∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(s− t) x(s+ τ/2) x∗(s− τ/2) ds e−j2πντ dτ

is known as the smoothed-pseudo Wigner-Ville distribution (noted smoothed-
pseudo-WVD or SPWVD). The previous compromise of the spectrogram
between time and frequency- resolutions is now replaced by a compromise
between the joint time-frequency resolution and the level of the interference
terms : the more you smooth in time and/or frequency, the poorer the reso-
lution in time and/or frequency.

Note that if we only consider a smoothing in frequency i.e. if g(t) = δ(t),
we obtain the pseudo-WVD.

* Example : The signal that we consider here is composed of two compo-
nents : the first one is a complex sinusoid (normalized frequency 0.15) and
the second one is a Gaussian signal shifted in time and frequency :

>> sig=fmconst(128,.15) + amgauss(128).*fmconst(128,0.4);
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Figure 4.8: WVD of a signal composed of a gaussian atom and a complex
sinusoid. Interferences are present between the two components

If we display the WVD, the pseudo-WV and the smoothed-pseudo-WVD of
this signal (see fig. ??, fig. ?? and fig. ??),

>> tfrwv(sig,’plot’);

>> tfrpwv(sig,’plot’);

>> tfrspwv(sig,’plot’);

we can make the following remarks : from the WVD, we can see the two sig-
nal terms located at the right positions in the time-frequency plane, as well
as the interference terms between them. As these interference terms oscillate
globally perpendicularly to the time-axis, the frequency smoothing done by
the pseudo-WVD degrades the frequency resolution without really attenuat-
ing the interferences. On the other hand, the time-smoothing carried out by
the smoothed-pseudo-WVD considerably reduces these interferences ; and as
the time resolution is not of fundamental importance here, this representation
is suitable for this signal.

An interesting property of the smoothed-pseudo WVD is that it allows a
continuous passage from the spectrogram to the WVD, under the condition
that the smoothing functions g and h are gaussian. The time-bandwidth
product then goes from 1 (spectrogram) to 0 (WVD), with an independent
control of the time and frequency resolutions. This is clearly illustrated
by the function movsp2wv, which considers different transitions, on a signal
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-1

0

1

2

R
ea

l p
ar

t

Signal in time

0716914338

E
ne

rg
y 

sp
ec

tr
al

 d
en

si
ty

Linear scale

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

F
re

qu
en

cy
 [H

z]
TFRPWV, Lh=16, Nf=128, log. scale, Threshold=5%

Figure 4.9: Pseudo-WVD of the same signal : the frequency smoothing
done by the pseudo-WVD degrades the frequency resolution without really
attenuating the interferences
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Figure 4.10: Smoothed-pseudo-WVD of the same signal : the time-smoothing
carried out by the smoothed-pseudo-WVD considerably reduces these inter-
ferences
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Figure 4.11: Different transitions from the spectrogram to the WVD, using
the smoothed-pseudo-WVD. The signal is composed of 4 gaussian atoms

composed of four atoms. This movie shows the effect of a (time/frequency)
smoothing on the interferences and on the resolutions : the WVD gives the
best resolutions (in time and in frequency), but presents the most important
interferences, whereas the spectrogram gives the worst resolutions, but with
nearly no interferences ; and the smoothed-pseudo WVD allows to choose the
best compromise between these two extremes.

4.1.3 Link with the narrow-band ambiguity function

Definition and properties

A function of particular interest, especially in the field of radar signal
processing, is the narrow-band ambiguity function (noted AF), defined as

Ax(ξ, τ) =
∫ +∞

−∞
x(s + τ/2) x∗(s− τ/2) e−j2πξs ds.

This function, also known as the (symmetric) Sussman ambiguity func-

tion, is a measure of the time-frequency correlation of a signal x, i.e. the de-
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gree of similarity between x and its translated versions in the time-frequency
plane. Unlike the variables ’t’ and ’ν’ which are ”absolute” time and fre-
quency coordinates, the variables ’τ ’ and ’ξ’ are ”relative” coordinates (re-
spectively called delay and doppler).

The AF is generally complex-valued, and satisfies the Hermitian even
symmetry :

Ax(ξ, τ) = A∗
x(−ξ,−τ).

An important relation exists between the narrow-band ambiguity function
and the WVD, which says that the ambiguity function is the two-dimensional
Fourier transform of the WVD :

Ax(ξ, τ) =
∫ +∞

−∞

∫ +∞

−∞
Wx(t, ν) e

j2π(ντ−ξt) dt dν.

Thus, the AF is the dual of the WVD in the sense of the Fourier transform.
Consequently, for the AF, a dual property corresponds to nearly all the prop-
erties of the WVD. Among these properties, we will restrict ourselves to only
three of them, which are important for the following :

• Marginal properties

The temporal and spectral auto-correlations are the cuts of the AF
along the τ -axis and ξ-axis respectively :

rx(τ) = Ax(0, τ) and Rx(ξ) = Ax(ξ, 0).

The energy of x is the value of the AF at the origin of the (ξ, τ)-plane,
which corresponds to its maximum value :

|Ax(ξ, τ)| ≤ Ax(0, 0) = Ex, ∀ξ, τ.

• TF-shift invariance

Shifting a signal in the time-frequency plane leaves its AF invariant
apart from a phase factor (modulation) :

y(t) = x(t− t0) e
j2πν0t ⇒ Ay(ξ, τ) = Ax(ξ, τ) e

j2π(ν0τ−t0ξ)

• Interference geometry

In the case of a multi-component signal, the elements of the AF cor-
responding to the signal components (denoted as the AF-signal terms)
are mainly located around the origin, whereas the elements correspond-
ing to interferences between the signal components (AF-interference

Time-Frequency Toolbox Tutorial, October 4, 2018



-0.5

0

0.5

R
ea

l p
ar

t

Signal in time

081162

E
ne

rg
y 

sp
ec

tr
al

 d
en

si
ty

Linear scale

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

F
re

qu
en

cy
 [H

z]

TFRWV, log. scale, Threshold=5%

Figure 4.12: WVD of 2 chirps with gaussian amplitudes and different slopes

terms) appear at a distance from the origin which is proportional to
the time-frequency distance between the involved components. This
can be noticed on a simple example :

* Example : The function ambifunb of the TF Toolbox implements the
narrow-band ambiguity function. We apply it on a signal composed of
two linear FM signals with gaussian amplitudes :

>> N=64; sig1=fmlin(N,0.2,0.5).*amgauss(N);

>> sig2=fmlin(N,0.3,0).*amgauss(N);

>> sig=[sig1;sig2];

Let us first have a look at the WVD (see fig. ??) :

>> tfrwv(sig,’plot’);

We have two distinct signal terms, and some interferences oscillating
in the middle. If we look at the ambiguity function of this signal (see
fig. ??),

>> ambifunb(sig,’plot’);
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Figure 4.13: Narrow-band ambiguity function of the previous signal : the
AF-signal terms are located around the origin, whereas the AF-interference
terms are located away from the origin

we have around the origin (in the middle of the image) the AF-signal
terms, whereas the AF-interference terms are located away from the
origin. Thus, applying a 2-D low pass filtering around the origin on
the ambiguity function, and returning to the WVD by 2-D Fourier
transform will attenuate the interference terms. Actually, this 2-D
filtering is operated, in the general expression of the Cohen’s class, by
the parameterization function f , as we discuss it now.

New interpretation of the Cohen’s class

The dual expression of the Cohen’s class formulation (expression (??)) in
terms of AF writes

Cx(t, ν; f) =
∫ +∞

−∞

∫ +∞

−∞
f(ξ, τ) Ax(ξ, τ) e

−j2π(ντ+ξt) dξ dτ (4.8)

(recall that f is the two-dimensional Fourier transform of Π). This expression
is very instructive about the role played by the parameterization function
f(ξ, τ). Indeed, f acts as a weighting function that tries to let the signal
terms unchanged, and to reject the interference terms. Actually, the change
from the time-frequency plane to the ambiguity plane allows a precise char-
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acterization of the weighting function f , and thus of the smoothing function
Π(t, ν).

For example, the WVD corresponds to a constant parameterization func-
tion : f(ξ, τ) = 1, ∀ ξ, τ : no difference is made between the different regions
of the ambiguity plane. For the spectrogram, f(ξ, τ) = A∗

h(ξ, τ) : the ambi-
guity function of the window h determines the shape of the weighting func-
tion. And for the smoothed-pseudo-WVD, we have f(ξ, τ) = G(ξ) h(τ) : the
weighting function is separable in time and frequency, which is very useful
to adapt it to the shape of the AF-signal terms.

We will end this section by presenting other energy distributions that are
members of the Cohen’s class.

4.1.4 Other important energy distributions

The Rihaczek and Margenau-Hill distributions

Another possible definition of a time-frequency energy density is given
by the Rihaczek distribution. If we consider the interaction energy between
a signal x restricted to an infinitesimal interval δT centered on t, and x
passed through an infinitesimal bandpass filter δB centered on ν, it can be
approximated by the following expression :

δT δB [x(t) X∗(ν) e−j2πνt].

This leads us to interpret the quantity

Rx(t, ν) = x(t) X∗(ν) e−j2πνt,

called the Rihaczek distribution, as a complex energy density at point (t, ν).
This distribution, which corresponds to the element of the Cohen’s class
for which f(ξ, τ) = ejπξτ , verifies many good properties (1-2, 4-11, see sec-
tion ??). However, it is complex valued, which can be awkward in prac-
tice. It is implemented under the name tfrri. The real part of the Ri-
haczek distribution is also a time-frequency distribution of the Cohen’s class
(f(ξ, τ) = cos (πξτ)), known as the Margenau-Hill distribution (see the func-
tion tfrmh). It has also numerous interesting properties : 1-5, 8, 10-11. As for
the WVD, we can define smoothed versions of the Rihaczek and Margenau-
Hill distributions. The function tfrpmh computes the pseudo Margenau-Hill
distribution.

The interference structure of the Rihaczek and Margenau-Hill distribu-
tions is different from the Wigner-Ville one : the interference terms corre-
sponding to two points located on (t1, ν1) and (t2, ν2) are positioned at the
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Figure 4.14: Margenau-Hill distribution of 2 atoms : the position of the
interferences is quite different from the one obtained with the WVD

coordinates (t1, ν2) and (t2, ν1). This can be seen on the following example
(see fig. ??) :

>> sig=atoms(128,[32,0.15,20,1;96,0.32,20,1]);

>> tfrmh(sig,’plot’);

Thus, the use of the Rihaczek (or Margenau-Hill) distribution for signals
composed of multi-components located at the same position in time or in
frequency is not advised, since the interference terms will then be superposed
to the signal terms.

The Page distribution

Motivated by the construction of a causal energy density, Page proposed
the following distribution (the Page distribution) :

Px(t, ν) =
d

dt

{

|
∫ t

−∞
x(u) e−j2πνu du|2]

}

= 2 ℜ
{

x(t)
(∫ t

−∞
x(u) e−j2πνudu

)∗
e−j2πνt

}

It is the derivative of the energy spectral density of the signal considered
before time t. It corresponds to the element of the Cohen’s class with pa-
rameterization function f(ξ, τ) = e−jπξ|τ |, and verifies the properties 1-5,
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7-10 (see section ??). Actually, it is the only distribution of the Cohen’s
class which is simultaneously causal, unitary, compatible with modulations,
and preserves time-support.

The function tfrpage computes this distribution. A frequency-smoothed
version of the Page distribution, called the pseudo-Page distribution, is also
available (see the function tfrppage).

Joint-smoothings of the WVD

The following distributions correspond to particular cases of the Cohen’s
class for which the parameterization function depends only on the product
of the variables τ and ξ :

f(ξ, τ) = Φ(τξ) (4.9)

where Φ is a decreasing function such that Φ(0) = 1 (the Rihaczek and
Margenau-Hill distributions are particular elements of this class). A di-
rect consequence of this definition is that the marginal properties will be
respected. Besides, since Φ is a decreasing function, f is a low-pass func-
tion, and according to (??), this parameterization function will reduce the
interferences. That is why these distributions are also known as the Reduced
Interference Distributions.

• The Choi-Williams distribution

One natural choice for Phi is to consider a gaussian function :

f(ξ, τ) = exp

[

−(πξτ)2

2σ2

]

.

The corresponding distribution,

CWx(t, ν) =

√

2

π

∫ ∫ +∞

−∞

σ

|τ | e
−2σ2(s−t)2/τ2 x(s+

τ

2
) x∗(s−τ

2
) e−j2πντ ds dτ

is the Choi-Williams distribution. Note that when σ −→ +∞, we ob-
tain the WVD. Inversely, the smaller σ, the better the reduction of the
interferences. This distribution verifies properties 1-5, 10-11, and can
be computed with the function tfrcw. The ”cross”-shape of the pa-
rameterization function of the Choi-Williams distribution implies that
the efficiency of this distribution strongly depends on the nature of the
analyzed signal. For instance, if the signal is composed of synchronized
components in time or in frequency, the Choi-Williams distribution
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Figure 4.15: Choi-Williams distribution of 4 atoms rotating around the mid-
dle of the time-frequency plane : when the time/frequency supports of the
atoms overlap, strong interferences appear on the overlap support

will present strong interferences. This can be observed on the follow-
ing example : we analyze four gaussian atoms positioned at the corners
of a rectangle rotating around the center of the time-frequency plane
(see fig. ??) : When the time/frequency supports of the atoms over-
lap, some AF-interference terms are not completely attenuated (those
present around the axes of the ambiguity plane), and the efficiency of
the distribution is quite poor.

• The Born-Jordan and Zhao-Atlas-Marks distributions

If we impose to the distributions defined by (??) the further condition
to preserve time- and frequency- supports, the simplest choice for f is
then :

f(ξ, τ) =
sin (πξτ)

πξτ

which defines the Born-Jordan distribution :

BJx(t, ν) =
∫ +∞

−∞

1

|τ |
∫ t+|τ |/2

t−|τ |/2
x(s + τ/2) x∗(s− τ/2) ds e−j2πντdτ.

Properties 1-5, 8, 10-11 are verified by this distribution, and the corre-
sponding function of the Time-Frequency Toolbox is tfrbj.
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If we smooth the Born-Jordan distribution along the frequency axis,
we obtain the Zhao-Atlas-Marks distribution, defined as

ZAMx(t, ν) =
∫ +∞

−∞

[

h(τ)
∫ t+|τ |/2

t−|τ |/2
x(s + τ/2) x∗(s− τ/2) ds

]

e−j2πντ dτ.

This distribution, also known as the Cone-Shaped Kernel distribution,
validates properties 3-4 and 8 (only for time) (see the function tfrzam

for its computation).

Comparison of the parameterization functions

To illustrate the differences between some of the presented distributions,
we represent their weighting (parameterization) function in the ambiguity
plane, along with the result obtained by applying them on a two-component
signal embedded in white gaussian noise : the signal is the sum of two linear
FM signals, the first one with a frequency going from 0.05 to 0.15, and the
second one from 0.2 to 0.5. The signal to noise ratio is 10 dB.

On the left-hand side of the figures ?? and ??, the parameterization
functions are represented in a schematic way by the bold contour lines (the
weighting functions are mainly non-zeros inside these lines), superimposed
to the ambiguity function of the signal. The AF-signal terms are in the
middle of the ambiguity plane, whereas the AF-interference terms are distant
from the center. On the right-hand side, the corresponding time-frequency
distributions are represented.

From these plots, we can conclude that the ambiguity plane is very en-
lightening with regard to interference reduction in the case of multicompo-
nent signals. On this example, we notice that the smoothed-pseudo-WVD
is a particularly convenient and versatile candidate. This is due to the fact
that we can adapt independently the time-width and frequency-width of its
weighting function. But in the general case, it is interesting to have several
distributions at our disposal since each one is well adapted to a certain type
of signal. Besides, for a given signal, as a result of the different interfer-
ence geometries, these distributions offer complementary descriptions of this
signal.

4.1.5 Conclusion

The Cohen’s class, which gather all the quadratic time-frequency distri-
butions covariant by shifts in time and in frequency, offers a wide set of
powerful tools to analyze non-stationary signals. The basic idea is to devise
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Figure 4.16: Two chirps embedded in a 10 dB white gaussian noise analyzed
by different quadratic distributions. On the left-hand side, the parameter-
ization function is represented by a bold contour line, superimposed to the
ambiguity function of the signal. The AF-signal terms are in the middle of
the ambiguity plane, whereas the AF-interference terms are distant from the
center. On the right-hand side, the corresponding time-frequency distribu-
tion is represented
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Figure 4.17: Two chirps embedded in a 10 dB white gaussian noise analyzed
by different quadratic distributions (concluding)

a joint function of time and frequency that describes the energy density or
intensity of a signal simultaneously in time and in frequency. The most im-
portant element of this class is probably the Wigner-Ville distribution, which
satisfies many desirable properties. Since these distributions are quadratic,
they introduce cross-terms in the time-frequency plane which can disturb the
readability of the representation. One way to attenuate these interferences is
to smooth the distribution in time and in frequency, according to their struc-
ture. But the consequence of this is a decrease of the time and frequency
resolutions, and more generally a loss of theoretical properties. The general
formulation proposed by Cohen is very useful to have a better understand-
ing of the existing solutions, as well as the connection with the ambiguity
function.

But there exists other time-frequency energy distributions, which are not
elements of the Cohen’s class, i.e. which are not covariant by shifts in time
or in frequency. This is the case for example of the affine distributions, which
are presented in the next chapter.
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4.2 The affine class

Important note : in all the following section, we will consider that the
signal (often denoted x) is analytic (see section ?? for the definition and the
computation of the analytic signal).

For this part, more information can be found in [?], [?], [?], [?], [?] and
[?].

4.2.1 Axiomatic definition

The affine group

The Cohen’s class, as presented in the previous section, is based on the
properties of covariance by shifts in time and in frequency. One important
element of this class is the Wigner-Ville distribution, noteworthy for its nu-
merous properties.

In order to favor a time-scale approach of the signal, one can also choose to
put forward, among these desirable properties, the covariance by translation

in time and dilation. The corresponding group of transforms, counterpart
of the Weyl-Heisenberg group (see section ??), is the affine group, noted A,
already introduced in the context of wavelet transform (see section ??). Its
action induced on a signal x(t) is given by

x(t) → xa′,b′(t) =
1

√

|a′|
x

(

t− b′

a′

)

,

and on its Fourier transform by

X(ν) → Xa′,b′(ν) =
√

|a′| e−j2πνb′X(a′ν).

General expressions

It is possible to show that if a bilinear time-scale distribution Ωx(t, a) is
covariant to affine transformations, i.e.

Ωxa′,b′
(t, a) = Ωx

(

t− b′

a′
,
a

a′

)

,

then, it is necessarily parameterized as

Ωx(t, a; Π) =
∫ +∞

−∞

∫ +∞

−∞
Π
(

s− t

a
, aξ

)

Wx(s, ξ) ds dξ (4.10)
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where Π(t, ν) is an arbitrary smoothing function. This distribution will also
preserve the signal energy provided that

∫ +∞

−∞

∫ +∞

−∞
Π(t, ν) dt

dν

|nu| = 1.

The set of such representations defines the affine class, which is the class
of time-frequency energy distributions covariant by translation in time and
dilation. From expression (??), it is straightforward that the Wigner-Ville
distribution is an element of the affine class : if we introduce an arbitrary non-
zero frequency ν0, and identify the scale with the inverse of the frequency :

a =
ν0
ν
,

then the WVD corresponds to the element for which

Π(t, ν) = δ(t) δ(ν − ν0).

A consequence of (??) is that the choice of an element in the affine class
can be reduced to the choice of an affine correlation kernel Π(t, ν). When Π is
a two-dimensional low-pass function, it plays the role of an affine smoothing
function which tries to reduce the interferences generated by the WVD.

Another equivalent expression for a generic element can be found in terms
of ambiguity :

Ωx(t, a; Φ) =
∫ +∞

−∞

∫ +∞

−∞
Φ(aξ, τ/a) Ax(ξ, τ) e

−j2πξt dξ dτ, (4.11)

where Φ(ξ, τ) is the weighting function corresponding to Π :

Φ(ξ, τ) =
∫ +∞

−∞

∫ +∞

−∞
Π(t, ν) ej2π(ντ+ξt) dt dν,

and Ax(ξ, τ) is the narrow-band ambiguity function already defined in section
??.

Finally, an alternative characterization of the class (??) may be given by
using the bi-frequency kernel Ψ(ν, f)

Ωx(t, a; Π) =
1

|a|
∫ ∫ +∞

−∞
Ψ(ν, f)X

(

f − ν
2

a

)

X∗
(

f + ν
2

a

)

e−j2πνt/a dνdf(4.12)

with

Ψ(ν, f) =
∫ +∞

−∞
Π(t, f) e−j2πνt dt,

where X(ν) is the Fourier transform of x(t). We will take advantage of these
different (but equivalent) expressions of the affine class in the following.
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Properties

As for the Cohen’s class, it can be useful to impose further constraints
on the class defined by (??), to obtain a sub-class of distributions which
validate particular properties (see page ??). We detail here some of the most
important ones.

1. Energy conservation : by integrating Ωx all over the time-scale plane,
we obtain the energy of x :

Ex =
∫ +∞

−∞

∫ +∞

−∞
Ωx(t, a; Π) dt

da

a2

2. Marginal properties : the energy spectral density and the instantaneous
power can be obtained as marginal distributions of Ωx :

∫ +∞

−∞
Ωx(t, a; Π) dt = |X(

ν0
a
)|2

∫ +∞

−∞
Ωx(t, a; Π)

da

a2
= |x(t)|2

3. Real-valued :
Ωx(t, a; Π) ∈ R, ∀t, a

4. Time localization :

X(ν) =
1√
ν
e−j2πνt0 U(ν) ⇒ Ωx(t,

ν0
ν
; Π) = ν δ(t− t0) U(ν)

where U(ν) is the Heaviside step function.

5. Unitarity : conservation of the scalar product from the time domain to
the time-scale domain (apart from the squared modulus) :

∣

∣

∣

∣

∫ +∞

−∞
x(t) y∗(t) dt

∣

∣

∣

∣

2

=
∫ +∞

−∞

∫ +∞

−∞
Ωx(t, a; Π) Ω

∗
y(t, a; Π) dt

da

a2

6. Group delay : we may want to obtain the group delay of x as the first
order moment in time of Ωx :

tx

(

ν0
a

)

=

∫+∞
−∞ t Ωx(t, a; Π) dt
∫+∞
−∞ Ωx(t, a; Π) dt

7. Narrow-band limit : it can also be desirable that, for narrow-band sig-
nals, the affine distribution Ωx coincides with the Wigner-Ville distri-
bution :

Ωx(t, a; Π) = Wx

(

t,
ν0
a

)

.
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4.2.2 Some examples

The scalogram

A first example of affine distribution is given by the scalogram (see section
??). Indeed, it is possible to express it as a smoothed version of the WVD :

|Tx(t, a; Ψ)|2 =
∫ +∞

−∞

∫ +∞

−∞
Wx(s, ξ) WΨ

(

s− t

a
, aξ

)

ds dξ. (4.13)

Thus, the scalogram corresponds to the distribution of the affine class for
which Π(t, ν) = WΨ(t, ν). Expression (??), to be compared with expression
(??), shows that the scalogram is the affine counterpart of the spectrogram.
The scalogram validates properties 1. and 3. and is always positive.

To illustrate the importance of the smoothing operated by Π on the WVD
of x, let us consider the case of a Morlet wavelet Ψ. If we note δT and δB
the respectively time and frequency widths of the smoothing operated by
the spectrogram of window Ψ (δT and δB are constant values), these widths
become variable with the frequency in the case of the scalogram :

δT (ν) = ν0 δT/ν ; δB(ν) = ν δB/ν0

(ν0 is the central frequency of the wavelet). This result, already made out
in the context of the wavelet transform analysis, is a characteristic of any
constant-Q analysis (see section ??) : at a high frequency, since the signal
changes rapidly, a short analysis window is sufficient, whereas at a low fre-
quency, a large window is necessary to identify correctly the pulsation of the
signal which changes slowly. However, the importance of the joint smoothing
operated by the scalogram is still equivalent to the one of the spectrogram :

δT (ν) δB(ν) = δT δB.

Besides, the trade-off between time and frequency resolutions, following from
the Heisenberg-Gabor inequality and which applies to the spectrogram, is
also valid for the scalogram.

So as to see the effect of this frequency-dependent smoothing, we ana-
lyze with the scalogram (Morlet wavelet) a signal composed of two gaussian
atoms, one with a low central frequency, and the other one with a high one
(see fig. ??) :

>> sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);

>> tfrscalo(sig,’plot’);
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Figure 4.18: Morlet scalogram of 2 atoms : the time- and frequency- resolu-
tions depend on the frequency (or scale)

By default, the function tfrscalo uses an interactive mode in which you
have to specify, from the plot of the spectrum, the approximate lower and
higher frequency bounds, as well as the number of samples you wish in fre-
quency (you should indicate here a lower frequency lower than 0.05 and a
higher frequency greater than 0.4). The result obtained brings to the fore
dependency, with regard to the frequency, of the smoothing applied to the
WVD, and consequently of the resolutions in time and frequency.

The product kernel distributions

The formal identification ”scale=inverse of the frequency” can be ex-
tended to other distributions than the WVD. If we consider kernels of the
form

Φ(ξ, τ) = Φ(ξτ) e−j2πν0τ

where ν0 is some nonzero frequency, we then have the following equivalence
between the Cohen’s class and the affine class :

Ωx(t, a; Φ) = Cx

(

t,
ν0
a
; Φ
)

.

The corresponding representations, and in particular the Wigner-Ville, Born-
Jordan, Rihaczek and Choi-Williams distributions, are elements of the inter-
section of these two classes.
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The affine smoothed pseudo Wigner distribution : separable kernel

One way to overcome the trade-off between time and frequency resolutions
of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing
function which is separable in time and frequency. The resulting distribution
is called the affine smoothed pseudo Wigner distribution (noted ASPWD),
and writes

ASPWx(t, a) =
1

a

∫ ∫ +∞

−∞
h
(

τ

a

)

g
(

s− t

a

)

x(s+
τ

2
) x∗(s− τ

2
) ds dτ.(4.14)

It allows a flexible choice of time and scale resolutions in an independent
manner through the choice of the windows g and h. Properties 1. and 3.
(see page ??) are satisfied by this distribution provided that g is real and h
is hermitian.

As for the SPWVD (see section ??), the ASPWD allows a continuous pas-
sage from the scalogram to the WVD, under the condition that the smoothing
functions g and h are gaussian. The time-bandwidth product then goes from
1 (scalogram) to 0 (WVD), with an independent control of the time and
frequency resolutions. This is illustrated by the function movsc2wv, which
considers different transitions, on a signal composed of four atoms. Here
again, the WVD gives the best resolutions (in time and in frequency), but
presents the most important interferences, whereas the scalogram gives the
worst resolutions, but with nearly no interferences ; and the ASPWD allows
to choose the best compromise between these two extremes.

To summarize, we have seen that on one hand, the spectrogram is a time-
frequency distribution obtained from the WVD by smoothing, and that on
the other hand, the scalogram is a time-frequency distribution obtained from
the WVD by affine smoothing. The WVD is therefore at the intersection of
both classes of time-frequency and time-scale distributions. Besides, it is
possible to construct a continuous transition from the spectrogram to the
scalogram via the WVD, by changing the smoothing function Π acting on
the WVD. The equivalent area of such function Π will vary from zero (we then
obtain the ”unsmoothed” WVD) to a limit fixed by the Heisenberg-Gabor
uncertainty principle (spectrogram and scalogram). This choice corresponds
to using the SPWVD’s or the ASPWD’s with gaussian smoothing functions.
The time-bandwidth product then runs from 0 (WVD) to 1 (spectrogram or
scalogram) and truly controls both transitions.

Figure ?? illustrates different transitions between the spectrogram and
the scalogram on a synthetic signal composed of three gaussian atoms, for
different values of BT .
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Figure 4.19: Different transitions between the scalogram and the WVD
thanks to the ASPWD. The analyzed signal is composed of 4 gaussian atoms
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Figure 4.20: From the spectrogram to the scalogram via the WVD
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This analysis brings us to the conclusion that, instead of looking at
the two extreme representations (spectrogram and scalogram) separately, a
deeper insight can be gained by considering a whole continuum between the
two extremes, with the WVD as a necessary intermediate step. Moreover,
the transition allows a trade-off between joint resolutions and interferences
reduction.

The localized bi-frequency kernel distributions

A useful subclass of the affine class consists in characterization functions
which are perfectly localized on some curve f = H(ν) in their bi-frequency
representation (see (??)) :

Ψ(nu, f) = G(ν) δ(f −H(ν)) ⇔ Φ(ν, τ) = G(ν) ej2πH(ν)τ

where G(ν) is an arbitrary function. The corresponding time-scale distribu-
tions, which are referred to as localized bi-frequency kernel distributions, then
read

Ωx(t, a; Π) =
1

|a|
∫ +∞

−∞
G(ν)X

(

H(ν)− ν/2

a

)

X∗
(

H(ν) + ν/2

a

)

e−j2πνt/a dν.

Actually, it has been shown that the only group delay laws on which a
localized bi-frequency kernel distribution can be perfectly localized are power
laws (i.e. tx(ν) = t0 + cνk−1) and logarithmic laws (i.e. tx(ν) = t0 + c log ν).

As for the product-kernel distributions, with the formal identification
a = ν0/ν, we can associate to every time-scale distribution of that kind a
time-frequency distribution according to

Cx(t, ν; Φ) = Ωx(t, ν0/ν; Φ).

We give in the following particular examples of such distributions.

• Bertrand distribution

If we further impose to these distributions the a priori requirements of
time localization and unitarity, we obtain

G(ν) =
ν/2

sinh
(

ν
2

) and H(ν) =
ν

2
coth

(

ν

2

)

,

which leads to the Bertrand distribution, defined as

Bx(t, a) =
1

|a|
∫ +∞

−∞

ν/2

sinh
(

ν
2

) X





ν e−ν/2

2a sinh
(

ν
2

)





×X∗





ν e+ν/2

2a sinh
(

ν
2

)



 e−j2πνt/a dν(4.15)
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Figure 4.21: Bertrand distribution of an hyperbolic group delay signal

It validates properties 1. to 7., except the time-marginal property
(see page ??). Besides, we can show that this distribution is the only
localized bi-frequency kernel distribution which localizes perfectly the
hyperbolic group delay signals :

X(ν) =
ejΦx(ν)

√
ν

U(ν)

with Φx(ν) = −2π
[

νt0 + α log
ν

νc

]

⇒ Bx(t, a =
ν0
ν
) = ν δ(t−tx(ν)) U(ν)

where tx(ν) = − 1
2π

dΦx(ν)
dν

is the group delay. To illustrate this property,
consider the signal obtained using the function gdpower (taken for k =
0), and analyze it with the function tfrbert (see fig. ??) :

>> sig=gdpower(128);

>> tfrbert(sig,1:128,0.01,0.22,128,1,’plot’);

Note that the distribution obtained is well localized on the hyperbolic
group delay, but not perfectly : this comes from the fact that the func-
tion tfrbert works only on a subpart of the spectrum, between two
bounds fmin and fmax. Note that the larger the frequency bandwidth,
the more needed samples, and consequently the longer the computation
time.
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• D-Flandrin distribution

If we now look for a localized bi-frequency kernel distribution which is
real, localized in time and which validates the time-marginal property,
we obtain

G(ν) = 1− (ν/4)2 and H(ν) = 1 + (ν/4)2.

The corresponding distribution then writes :

Dx(t, a) =
1

|a|
∫ +∞

−∞
(1− (ν/4)2) X

(

[1− ν/4]2

a

)

×X∗
(

[1 + ν/4]2

a

)

e−j2πνt/a dν,

which defines the D-Flandrin distribution. It validates properties 1-4.,
6. and 7. (see page ??), and is the only localized bi-frequency kernel
distribution which localizes perfectly signals having a group delay in
1√
ν
:

X(ν) =
ejΦx(ν)

√
ν

U(ν)

with

Φx(ν) = −2π[νt0 + 2α
√
ν] ⇒ Dx

(

t, a =
ν0
ν

)

= ν δ(t− tx(ν)) U(ν).

This can be illustrated using the functions gdpower with k = 1/2 and
tfrdfla, as following (see fig. ??) :

>> sig=gdpower(128,1/2);

>> tfrdfla(sig,1:128,0.01,0.22,128,1,’plot’);

Here again, the distribution is almost perfectly localized.

• Unterberger distributions

Finally, the choice of

G(ν) = 1 and H(ν) =

√

1 +
(

ν

2

)2

corresponds to the active Unterberger distribution :

U (a)
x (t, a) =

1

|a|
∫ +∞

0
(1 +

1

α2
) X

(

α

a

)

X∗
(

1

αa

)

ej2π(α−1/α) t
a dα,
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Figure 4.22: D-Flandrin distribution of a signal with a group delay in 1/ν1/2

which verifies properties 1-4., 6-7. (see page ??) except the time-
marginal ; and the choice of

G(ν) =
1

√

1 +
(

ν
2

)2
and H(ν) =

√

1 +
(

ν

2

)2

corresponds to the passive Unterberger distribution :

U (p)
x (t, a) =

1

|a|
∫ +∞

0

2

α
X
(

α

a

)

X∗
(

1

αa

)

ej2π(α−
1

α
) t
a dα,

which verifies properties 1-3., 6-7. The active Unterberger distribution
is the only localized bi-frequency kernel distribution which localizes
perfectly signals having a group delay in 1/ν2 :

X(ν) =
ejΦx(ν)

√
ν

U(ν)

with

Φx(ν) = −2π[νt0 − α/ν] ⇒ U (a)
x (t, a = ν0/ν) = ν δ(t− tx(ν)) U(ν).

The functions gdpower, considered for k = −1, and tfrunter give us
(see fig. ??) :
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Figure 4.23: Active Unterberger distribution of a signal with a group delay
in 1/ν2

>> sig=gdpower(128,-1);

>> tfrunter(sig,1:128,’A’,0.01,0.22,172,1,’plot’);

We will go back over these distributions later on (sub-section ??) in a
different context.

4.2.3 Relation with the ambiguity domain

Need of specific tools for broad-band signals

The WVD, as we have seen in the previous chapter, is a very satisfactory
distribution when applied to narrow-band signals. Its use for the description
of broad-band signals is also possible, but can lead to surprising images. For
example, for an analytic signal whose real part is δ(t− t0), the WVD equals
to

W (t, ν) = 4
sin(4πν(t− t0))

π(t− t0)
U(ν)

where U(ν) is the Heaviside function, and thus is not well localized in the
neighborhood of t = t0 (see fig. ??) :

>> sig=anapulse(128);

>> tfrwv(sig,’plot’);
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Figure 4.24: WVD of a Dirac impulse at time t = 64

Actually, the group of translations in time and frequency (theWeyl-Heisenberg
group, see section ??) on which the WVD is based, and more generally all the
Cohen’s class, is responsible for these bad localization properties on broad-
band signals : since the use of the analytic signal is admitted, the translation
in frequency of broad-band signals fails to preserve the frequency support
of the signal (the support of its Fourier transform can not be limited to the
positive frequency axis). This suggests to replace the WVD by a distribution
more fundamentally based on the affine group.

The Doppler effect, which is an important physical phenomenon, provides
an additional motivation to use specific methods based on the affine group
to analyze broad-band signals. Indeed, it characterizes the fact that a signal
returned by a moving target is dilated (or compressed) and delayed compared
to the emitted signal. If, for narrow-band emitted signals and low-speed
targets (compared to the sound speed in the medium) this phenomenon can
be approximated by a translation in time and frequency, for broad-band
signals, the dilation of the spectrum has to be taken into account. This is
particularly the case in radar and sonar problems where the time-bandwidth
product of the emitted signal is important and where the speed of the moving
target is often not negligible compared to the wave speed in the medium.
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From the Fourier transform to the Mellin transform

A second argument encourages one to find more specific tools to analyze
broad-band signals : the eigenvectors of the Weyl-Heisenberg group are the
familiar complex exponentials, on which the Fourier transform decomposes a
signal, whereas for the affine group, the eigenvectors are hyperbolas. From a
slightly different point of view, the Fourier transform is invariant in modulus
to translations in frequency, but not to dilations. Therefore, the Fourier
transform is no longer the appropriate transform to change the representation
space of these signals. It has to be replaced by a new transform, the Mellin

transform, which is invariant in modulus to dilations, and decomposes the
signal on a basis of hyperbolic signals. This transform can be defined as :

MX(β) =
∫ +∞

0
X(ν) νj2πβ−1 dν

where X(ν) is the Fourier transform of the analytic signal corresponding to
x(t). We can show easily that

Y (ν) = X(aν) ⇒ MY (β) = a−j2πβ MX(β),

which demonstrates the invariance by dilation. The basic elements are waves
of the form ν−j2πβ , whose group delay is hyperbolic :

tx(ν) =
β

ν
.

Thus, the β-parameter can be interpreted as a hyperbolic modulation rate,
and has no dimension ; it is called the Mellin’s scale.

In the discrete case, the Mellin transform can be calculated rapidly using
a fast Fourier transform. Its algorithm, called the fast Mellin transform, is
computed thanks to the function ffmt. For further details on this transform,
see for example [?]. This transform is often used in the Time-Frequency
Toolbox to implement functions which are connected to the affine class.

From the narrow-band AF to the wide-band AF

When the signal under analysis can not be considered as narrow-band
(i.e. when its bandwidth B is not negligible compared to its central fre-
quency ν0), the narrow-band ambiguity function is no longer appropriate
since the Doppler effect can not be approximated as a frequency-shift. We
then consider a wide-band ambiguity function (WAF), which can be defined
as :

Ξx(a, τ) =
1√
a

∫ +∞

−∞
x(t) x∗(t/a− τ) dt =

√
a
∫ +∞

−∞
X(ν) X∗(aν) ej2πaτν dν.
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Figure 4.25: Wide-band ambiguity function of an Altes signal

It corresponds to the wavelet transform of the signal x, whose mother wavelet
is the signal x itself. It is then an affine correlation function, which measures
the similarity between the signal and its translated (in time) and dilated
versions. This ambiguity function can be easily calculated using two Mellin
transforms. The function ambifuwb of the Time-Frequency Toolbox com-
putes this expression of the wide-band ambiguity function. To see how it
behaves on a practical example, let us consider an Altes signal (see the func-
tion altes) (see fig. ??) :

>> sig=altes(128,0.1,0.45);

>> ambifuwb(sig,’plot’);

The WAF is maximum at the origin of the ambiguity plane.

We can also introduce a symmetric form of the WAF :

Ξ(s)
x (α, τ) =

√

1− α2/4
∫ +∞

−∞
x
(

(1 + α/2)t+
τ

2

)

x∗
(

(1− α/2)t− τ

2

)

dt

where a = (1 + α/2)(1− α/2). This expression can be related to the WVD
by the following formula :

Ξ(s)
x (α, τ) =

∫ +∞

−∞

∫ +∞

−∞

√

1− α2/4 ej2π(τ+αt)ν Wx(t, ν) dν.
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From the WVD to the Bertrand distribution

Now that we defined the symmetric wide-band ambiguity function, it
would be interesting to obtain an expression equivalent to the one linking the
WVD and the narrow-band ambiguity function, but replaced in the affine
context. This can be done by applying a Fourier transform to the delay
variable of the symmetric WAF, and a Mellin transform to the α variable :

Bx(t, ν) =
∫ +∞

0

∫ +∞

−∞
Ξ(s)
x (α, τ) e−j2πντ αj2πt−1 dτ dα

= ν
∫ +∞

−∞

u/2

sinh
(

u
2

) X





ν u e−u/2

2 sinh
(

u
2

)



 X∗





ν u e+u/2

2 sinh
(

u
2

)



 e−j2πνut du (4.16)

which corresponds to the Bertrand distribution, already introduced in section
?? (the equivalence between formula (??) and (??) is obtained by identifying
ν as the inverse of the scale : ν = ν0

a
with ν0 = 1Hz).

4.2.4 The affine Wigner distributions

Introduction

The Bertrand distribution Bx given by (??) or (??) is in fact covariant by
a larger group than the affine group A : this group, G0, of transformations
g = (a, b, c), where (a, b) is an element of A and c is real, acts on the signal
X as :

X(ν) → Xg(ν) =
√

|a| e−j2π(νb+c ln(ν)) X(aν).

The resulting change on Bx is :

Bx → Bg
x(t, ν) = Bx

(

t− b− c/ν

a
, aν

)

.

Actually, it is possible to generalize this extended covariance property to a
sub-class of affine distributions, not only restricted to the Bertrand distri-
bution. It can be shown that the only three-parameter groups, noted Gk,
including the affine group, are defined as follows : for k 6= 1, Gk is the group
of elements g = (a, b, c) with composition law :

gg′ = (aa′, b+ ab′, c+ akc′).

Group G1 has a slightly different composition law :

gg′ = (aa′, b+ ab′ + a ln(a)c′, c+ ac′).
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The action of these groups on the analytic signal X(ν) is then dependent on
k according to :

X(ν) → Xg(ν) =
√

|a| X(aν) e−j2π(νb+cνk) for k 6= 0, 1 ;

X(ν) → Xg(ν) =
√

|a| X(aν) e−j2π(νb+c ln(ν)) for k = 0 ;

X(ν) → Xg(ν) =
√

|a| X(aν) e−j2π(νb+cν ln(ν)) for k = 1.

The distributions P k
x covariant by these three-parameter solvable groups Gk,

and satisfying the time-reversal invariance (Y (ν) = X∗(ν) ⇒ P k
y (t, ν) =

P k
x (−t, ν)), are then found to be :

P k
x (t, ν) =

∫ +∞

−∞
ν µk(u) X(λk(u)ν) X

∗(λk(−u)ν) ej2π(λk(u)−λk(−u))tν du,(4.17)

where λk(u) =

(

k(e−u − 1)

e−ku − 1

)
1

k−1

and µk(u) is a real positive and even function. The definition (??) is valid for
any real k provided that λk(u) is defined by continuity for k = 0 and k = 1 :

λ0(u) = − u

e−u − 1
and λ1(u) = exp

(

1 +
ue−u

e−u − 1

)

.

Expression (??) defines the class of affine Wigner distributions. As we will
see in the next section, this class, introduced on mathematical considerations,
is equivalent to the class of localized bi-frequency kernel distributions (see
section ??). We now investigate special cases of µk leading to distributions
satisfying unitarity and/or localization properties.

Some examples

Two special families of affine Wigner distributions can be determined by
imposing constraints on P k

x . The first one is unitarity (see page ??, property
5.), which is satisfied if µk is given by

µk(u) =

√

λk(u) λk(−u)
d(λk(u)− λk(−u))

du
.

The second one is time-localization (property 4.), which implies that

µk(u) =
√

λk(u) λk(−u)
d(λk(u)− λk(−u))

du
.
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• k = 0 : the Bertrand distribution

The choice of k = 0 under one or the other (or both) constraints leads
to the Bertrand distribution, already defined in sections ?? and ?? :
P 0
x (t, ν) = Bx(t, ν). In fact, it is the only affine Wigner distribution

which satisfies simultaneously the unitarity and the time localization.

• k = 2 : the Wigner-Ville distribution

The unitary affine Wigner distribution corresponding to k = 2 is the
Wigner-Ville distribution (see section ??) provided that x is analytic :
P 2
x (t, ν) = Wx(t, ν).

• k = 1/2 : The D-Flandrin distribution

The time-localization constraint together with the choice k = 1/2
leads to the D-Flandrin distribution, already defined in section ?? :
P 1/2
x (t, ν) = Dx(t, ν).

• k = −1 : The active Unterberger distribution

Another known example of time-localized distribution is obtained for
k = −1 : it corresponds to the active Unterberger distribution (see
section ??). While this form is non-unitary, it cooperates with its
passive form to produce an isometry-like relation :

∫ +∞

−∞

∫ +∞

0
U (a)
x (t, ν) U (p)∗

y (t, ν) dν dt =

∣

∣

∣

∣

∫ +∞

−∞
x(u) y∗(u) du

∣

∣

∣

∣

2

.

• k → ±∞ : The Margenau-Hill distribution

Finally, under the unitarity constraint, it is interesting to consider the
two distributions obtained for k → −∞ and k → +∞ : if we note re-
spectively P− and P+ these two distributions and take their arithmetic
mean, we obtain exactly the Margenau-Hill distribution (see section
??) :

P+
x (t, ν) + P−

x (t, ν)

2
= ℜ{Rx(t, ν)} .

Interference structure

The interference structure of the affine Wigner distributions can be de-
termined thanks to the following geometric argument : two points (t1, ν1)
and (t2, ν2) belonging to the trajectory on which a distribution is localized
interfere on a third point (ti, νi) which is necessarily located on the same
trajectory. Consequently, using the result of section ?? which says that the
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Figure 4.26: Locus of the interferences between 2 points for the affine Wigner
distributions (parameterized by k). For k = 2, which corresponds to the
Wigner-Ville distribution, we obtain the geometric mid-point

localized bi-frequency kernel distributions are localized on power law group
delays of the form tx(ν) = t0 + cνk−1, one can show that the coordinates
(ti, νi) are determined by the relation ([?])

ωi =

(

ωk
2 − ωk

1

k(ω2 − ω1)

) 1

k−1

where ω = ν or ω = (t− t0)
1

k−1 . These ”mid-point” coordinates can be com-
puted using the function midpoint of the Time-Frequency Toolbox. Figure
?? represents the location of interference point corresponding to two points
of the time-frequency plane (t1, f1) and (t2, f2), for different values of k. In
particular, for k = 2, corresponding to the Wigner-Ville distribution, we
obtain the geometric mid-point.

To illustrate this interference geometry, let us consider the case of a signal
with a sinusoidal frequency modulation :

>> [sig,ifl]=fmsin(128);

The function plotsid allows one to construct the interferences of an affine
Wigner distribution perfectly localized on a power-law group-delay (speci-
fying k), for a given instantaneous frequency law (or the superposition of
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Figure 4.27: Theoretical diagram of the interferences of the Bertrand distri-
bution for a sinusoidal frequency modulation

different instantaneous frequency laws). For example, if we consider the case
of the Bertrand distribution (k = 0) (see fig. ??),

>> plotsid(1:128,ifl,0);

we obtain an interference structure completely different from the one ob-
tained for the Wigner-Ville distribution (k = 2) (see fig. ??) :

>> plotsid(1:128,ifl,2);

For the active Unterberger distribution (k = −1), the result is the following
(see fig. ??) :

>> plotsid(1:128,ifl,-1);

We can notice the presence of an inflexion point (corresponding to the
intersection of an infinite number of lines joining two symmetric points from
the sinusoid) in the case of the WVD distribution, which disappears in the
other distributions.

4.2.5 The pseudo affine Wigner distributions

The affine Wigner distributions (??) show great potential as flexible tools
for time-varying spectral analysis. However, as for some distributions of
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Figure 4.28: Theoretical diagram of the interferences of the Wigner-Ville
distribution for a sinusoidal frequency modulation
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Figure 4.29: Theoretical diagram of the interferences of the active Unter-
berger distribution for a sinusoidal frequency modulation
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the Cohen’s class, they present two major practical limitations : first the
entire signal enters into the calculation of these distributions at every point
(t, ν), and second, due to their nonlinearity, interference components arise
between each pair of signal components. To overcome these limitations, a
set of (smoothed) pseudo affine Wigner distributions has been introduced
recently. We present here the main results relative to this new class of affine
distributions.

Derivation

Recall from section ?? that we obtained the pseudo Wigner-Ville distribu-
tion by introducing a window function into the Wigner-Ville distribution. An
analogous windowing operated on the affine Wigner distributions (??) leads
to the pseudo affine Wigner distributions. But in contrast to the pseudo
Wigner-Ville case, this windowing must be frequency-dependent, to ensure
that the resulting time-scale distribution remains scale-covariant. As a result,
the smoothing in frequency is constant-Q, rather than constant-bandwidth
as in the pseudo Wigner-Ville distribution. The general expression of this
new class of distributions, expressed in the time-domain, writes:

P̃ k
x (t, ν) = ν

∫ +∞

−∞
µk(u)

[∫ +∞

−∞
x(τ) h[νλk(u)(τ − t)] e−j2πλk(u)ν(τ−t) dτ

]

×
[∫ +∞

−∞
x(τp) h[νλk(−u)(τp − t)] e−j2πλk(−u)ν(τp−t) dτp

]∗
du(4.18)

where h is the time-windowing function. By analogy with the pseudo Wigner-
Ville distributions, we call these distributions the pseudo affine Wigner dis-
tributions.

An efficient online implementation can be obtained if we reorder (??) to
yield

P̃ k
x (t, ν) =

∫ +∞

−∞

µk(u)
√

λk(u)λk(−u)
Tx(t, λk(u)ν; Ψ) T ∗

x (t, λk(−u)ν; Ψ) du,(4.19)

where Tx(t, ν; Ψ) is the continuous wavelet transform (see section ??), and
Ψ(τ) = h(τ) ej2πτ is a bandpass wavelet function.

Time-frequency smoothing interpretation

The time-windowing function h introduced in (??) or (??) attenuates
interference components that oscillate in the frequency direction. To suppress
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interference terms oscillating in the time direction, we must smooth in that
direction with a low-pass function G. The resulting distributions

P̃ k
x (t, ν) =

∫ +∞

−∞
G(u)

µk(u)
√

λk(u)λk(−u)
Tx(t, λk(u)ν; Ψ)

×T ∗
x (t, λk(−u)ν; Ψ) du, (4.20)

are called the smoothed pseudo affine Wigner distributions. It is important to
notice that, like the (smoothed) pseudo Wigner-Ville case with the localiza-
tion on linear chirps, (smoothed) pseudo affine Wigner distributions are no
longer localized on power-law group delays. Nevertheless, as Q (the quality
factor of the wavelet Ψ) tends towards infinity and G(u) to the all-pass func-
tion, this localization property is asymptotically recovered since P̃ k

x converges
to P k

x . Besides, since (??) can be implemented efficiently, this convergence
property provides us with an efficient-implementation approximation of any
affine Wigner distribution (by considering the corresponding pseudo affine
Wigner distribution with a large Q).

Expression (??) is used in the function tfrspaw which computes these
(smoothed) pseudo affine Wigner distributions.

Examples

Finally, we present two examples of such distributions for different values
of k, and analyze the results obtained on a real echolocation signal from a
bat. This signal is obtained from the file bat.mat :

>> loadmatfile("bat.mat"); N=128;

>> sig=hilbert(bat(801:7:800+N*7)’);

For each value of k, we compute the corresponding affine Wigner distribution
and smoothed pseudo affine Wigner distribution.

• k = 2 : affine smoothed pseudo Wigner distribution

In this case, (??) becomes the affine smoothed pseudo Wigner distri-
bution, already introduced in section ?? on separable kernel consider-
ations.

>> tfrwv(sig,’plot’);

>> tfrspaw(sig,1:N,2,24,0,0.1,0.4,N,1,’plot’);

On figure ??, the WVD presents interference terms because of the non-
linearity of the frequency modulation, whereas on figure ??, the affine
frequency smoothing operated by the affine smoothed pseudo Wigner
distribution almost perfectly suppresses the interference terms.
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Figure 4.30: WVD of a bat sonar signal
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Figure 4.31: Affine smoothed pseudo Wigner distribution of the bat sonar
signal
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Figure 4.32: Bertrand distribution of the bat sonar signal

• k = 0 : pseudo Bertrand distribution

This value of k reduces (??) to a simple expression

P̃ 0
x (t, ν) =

∫ +∞

−∞
G(u) Tx(t, λk(u)ν; Ψ) T ∗

x (t, λk(−u)ν; Ψ) du

which is called the (smoothed) pseudo Bertrand distribution.

>> tfrbert(sig,1:N,0.1,0.4,N,1,’plot’);

>> tfrspaw(sig,1:N,0,32,0,0.1,0.4,N,1,’plot’);

Figure ?? represents the Bertrand distribution. The approximate hy-
perbolic group delay law of the bat signal explains the good result
obtained with this distribution (compared to the WVD). However, it
remains some interference terms, which are almost perfectly cancelled
on figure ?? (pseudo Bertrand distribution).

4.2.6 Conclusion

The constraint of affine covariance has been shown in this part to be
relevant for the derivation of time-frequency representations. It leads to a
class of affine distributions which is the counterpart of the Cohen’s class
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Figure 4.33: Pseudo-Bertrand distribution of the bat sonar signal

associated to time and frequency translations. These two classes can also be
seen as a result of some 2D correlation acting on the WVD. We have thereby
derived a large class of time-scale and time-frequency representations, on
which many possible (and sometimes exclusive) properties may be imposed.
We have studied several specific requirements (such as energy normalization,
time marginals . . . ) and associated parameterization of the representation.
There is obviously a great versatility for the choice of representations, which
may be appropriate for various applications. Each one is appropriate to
describe properly specific characteristics of a signal, and one has to benefit
from the complementarity of these tools. Vice versa, a good interpretation
of the time-frequency and time-scale images necessitates a deep knowledge
of the mechanisms of information’s allocation in the plane.

4.3 The reassignment method

4.3.1 Introduction

Bilinear time-frequency distributions, presented in the previous two sec-
tions, offer a wide range of methods designed for the analyze of non stationary
signals. Nevertheless, a critical point of these methods is their readability,
which means both a good concentration of the signal components and no mis-
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leading interference terms. Some efforts have been made recently in that di-
rection, and in particular a general methodology referred to as reassignment.
The purpose of this section is to present this methodology, to illustrate it on
different examples, and to make the link with connected approaches (see [?],
[?] and [?] for more details on reassignment).

4.3.2 The reassignment of the spectrogram

The original idea of reassignment was introduced in an attempt to im-
prove the spectrogram. Indeed, as any other bilinear energy distribution,
the spectrogram is faced with an unavoidable trade-off between the reduc-
tion of misleading interference terms and a sharp localization of the signal
components.

Let us recall the expression of the spectrogram as a 2D-convolution of the
Wigner-Ville distribution of the signal by the WVD of the analysis window :

Sx(t, ν; h) =
∫ +∞

−∞

∫ +∞

−∞
Wx(s, ξ) Wh(t− s, ν − ξ) ds dξ. (4.21)

Therefore, this distribution reduces the interference terms of the signal’s
WVD, but at the expense of opposed time and frequency resolutions, and
of biased marginals and first order moments. However, a closer look at ex-
pression (??) shows that Wh(t− s, ν − ξ) delimits a time-frequency domain
at the vicinity of the (t, ν) point, inside which a weighted average of the sig-
nal’s WVD values is performed. The key point of the reassignment principle
is that these values have no reason to be symmetrically distributed around
(t, ν), which is the geometrical center of this domain. Therefore, their aver-
age should not be assigned at this point, but rather at the center of gravity of
this domain, which is much more representative of the local energetic distri-
bution of the signal. Reasoning with a mechanical analogy, the local energy
distribution Wh(t − s, ν − ξ)Wx(s, ξ) (as a function of s and ξ) can be con-
sidered as a mass distribution, and it is much more accurate to assign the
total mass (i.e. the spectrogram value) to the center of gravity of the domain
rather than to its geometrical center.

This is exactly how the reassignment method proceeds : it moves each
value of the spectrogram computed at any point (t, ν) to another point (t̂, ν̂)
which is the center of gravity of the signal energy distribution around (t, ν) :

t̂(x; t, ν) =

∫ +∞
−∞

∫+∞
−∞ s Wh(t− s, ν − ξ) Wx(s, ξ) ds dξ

∫+∞
−∞

∫ +∞
−∞ Wh(t− s, ν − ξ) Wx(s, ξ) ds dξ

(4.22)

ν̂(x; t, ν) =

∫+∞
−∞

∫+∞
−∞ ξ Wh(t− s, ν − ξ) Wx(s, ξ) ds dξ

∫+∞
−∞

∫+∞
−∞ Wh(t− s, ν − ξ) Wx(s, ξ) ds dξ

(4.23)
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and thus leads to a reassigned spectrogram, whose value at any point (t′, ν ′)
is the sum of all the spectrogram values reassigned to this point :

S(r)
x (t′, ν ′; h) =

∫ +∞

−∞

∫ +∞

−∞
Sx(t, ν; h) δ(t

′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν(4.24)

One of the mostly interesting properties of this new distribution is that it
also uses the phase information of the short-time Fourier transform, and not
only its squared modulus as in the spectrogram. This can be seen from the
following expressions of the reassignment operators :

t̂(x; t, ν) = −dΦx(t, ν; h)

dν

ν̂(x; t, ν) = ν +
dΦx(t, ν; h)

dt

where Φx(t, ν; h) is the phase of the STFT of x : Φx(t, ν; h) = arg(Fx(t, ν; h)).
However, these expressions do not lead to an efficient implementation, and
have to be replaced by the following ones :

t̂(x; t, ν) = t−ℜ
{

Fx(t, ν;Th) F
∗
x (t, ν; h)

|Fx(t, ν; h)|2
}

ν̂(x; t, ν) = ν −ℑ
{

Fx(t, ν;Dh) F
∗
x (t, ν; h)

|Fx(t, ν; h)|2
}

where Th(t) = t × h(t) and Dh(t) = dh
dt
(t). Reassigned spectrograms are

therefore very easy to implement, and do not require a drastic increase in
computational complexity.

Finally, it should also be underlined that the reassigned spectrogram,
though no longer bilinear, satisfies the time and frequency shifts covariance,
the energy conservation (provided that h(t) is of unit energy), and the non-
negativity property. It cans also be shown that, since the WVD is perfectly
localized on linear chirp signals and impulses, any reassigned spectrogram
also satisfies this property :

x(t) = A exp
{

j{ν0t+ αt2/2}
}

⇒ ν̂ = ν0 + αt̂

x(t) = A δ(t− t0) ⇒ t̂ = t0.

Before presenting the generalization of this method to the Cohen’s class and
to the affine class, let us have a look at the readability improvement obtained
by the reassigned spectrogram on an example of multi-component signal. The
reassigned spectrogram is available thanks to the function tfrrsp. The result
is compared to the spectrogram and to the ”ideal” representation tfrideal

based on the knowledge of the instantaneous frequency law of each component
:
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Figure 4.34: Reassignment of the spectrogram on a synthetic signal com-
posed of a sinusoidal frequency modulation simultaneously with a hyperbolic
frequency modulation : comparison with the “ideal” time-frequency repre-
sentation and with the spectrogram

>> N=128; [sig1 ifl1]=fmsin(N,0.15,0.45,100,1,0.4,-1);

>> [sig2 ifl2]=fmhyp(N,[1 .5],[32 0.05]);

>> sig=sig1+sig2;

>> tfrideal([ifl1 ifl2],’plot’);

>> scf; tfrrsp(sig,’plot’);

The function tfrrsp allows you to display the spectrogram itself or its
reassigned version. The improvement given by the reassignment method is
obvious : the two components are much better localized and almost perfectly
concentrated, and there are very few cross-terms.

4.3.3 Reassignment of the Cohen’s class representa-

tions

The presentation of the reassignment principle done above allows a straight-
forward extension of its use to other distributions. Indeed, if we consider the
general expression of a distribution of the Cohen’s class as a 2D-convolution
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of the WVD,

Cx(t, ν; Π) =
∫ +∞

−∞

∫ +∞

−∞
Π(t− s, ν − ξ) Wx(s, ξ) ds dξ,

replacing the particular smoothing kernel Wh(u, ξ) in expressions (??), (??)
and (??) by an arbitrary kernel Π(s, ξ) simply defines the reassignment of
any member of the Cohen’s class :

t̂(x; t, ν) =

∫ +∞
−∞

∫+∞
−∞ s Π(t− s, ν − ξ) Wx(s, ξ) ds dξ

∫+∞
−∞

∫ +∞
−∞ Π(t− s, ν − ξ) Wx(s, ξ) ds dξ

ν̂(x; t, ν) =

∫ +∞
−∞

∫+∞
−∞ ξ Π(t− s, ν − ξ) Wx(s, ξ) ds dξ

∫ +∞
−∞

∫+∞
−∞ Π(t− s, ν − ξ) Wx(s, ξ) ds dξ

C(r)
x (t′, ν ′; Π) =

∫ +∞

−∞

∫ +∞

−∞
Cx(t, ν; Π) δ(t

′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν.

The resulting reassigned distributions efficiently combine a reduction of the
interference terms provided by a well adapted smoothing kernel and an in-
creased concentration of the signal components achieved by the reassignment.
From a theoretical point of view, these distributions are covariant by time
and frequency shifts, and are perfectly localized for linear chirp signals and
impulses. Finally, for the most common cases, such as the SPWVD and
the Reduced Interference Distributions (see section ?? and ??), the reassign-
ment operators t̂(x; t, ν) and ν̂(x; t, ν) are almost as easy to compute as for
the spectrogram.

4.3.4 Reassignment of the affine class representations

Similarly, the reassignment method can also be applied to the time-scale
energy distributions. Starting from the general expression :

Ωx(t, a; Π) =
∫ +∞

−∞

∫ +∞

−∞
Π(s/a, ν0 − aξ) Wx(t− s, ξ) ds dξ

we can see that the representation value at any point (t, a = ν0/ν) is the
average of the weighted WVD values on the points (t − s, ξ) located in a
domain centered on (t, ν) and bounded by the essential support of Π. In
order to avoid the resultant signal components broadening while preserving
the cross-terms attenuation, it seems once again appropriate to assign this
average to the center of gravity of these energy measures, whose coordinates
are :

t̂(x; t, ν) = t−
∫+∞
−∞

∫ +∞
−∞ s Π(s/a, ν0 − aξ) Wx(t− s, ξ) ds dξ

∫+∞
−∞

∫ +∞
−∞ Π(s/a, ν0 − aξ) Wx(t− s, ξ) ds dξ

Time-Frequency Toolbox Tutorial, October 4, 2018



ν̂(x; t, ν) =
ν0

â(x; t, ν)

=

∫ +∞
−∞

∫+∞
−∞ ξ Π(s/a, ν0 − aξ) Wx(t− s, ξ) ds dξ

∫ +∞
−∞

∫+∞
−∞ Π(s/a, ν0 − aξ) Wx(t− s, ξ) ds dξ

rather than to the point (t, a = ν0/ν) where it is computed. The value of the
resulting modified time-scale representation on any point (t′, a′) is then the
sum of all the representation values moved to this point :

Ω(r)
x (t′, a′; Π) =

∫ +∞

−∞

∫ +∞

−∞
a′

2
Ωx(t, a; Π) δ(t

′ − t̂(x; t, a)) δ(a′ − â(x; t, a)) dt
da

a2
.

As for the Cohen’s class, it can be shown that these modified distributions
are no longer bilinear, but are covariant by time shifts and time scalings,
distribute the energy of the signal on the whole time-scale plane, and are
also perfectly localized for chirps and impulses.

4.3.5 Numerical examples

In order to evaluate the benefits of the reassignment method in practical
applications, a comparison of the experimental results provided by some time-
frequency representations and their modified versions is shown in this section.
The analyzed signal is a 128-points signal made up of a sinusoidal frequency
modulation followed by a pure tone simultaneously with a chirp component
:

>> [sig1 ifl1]=fmsin(60,0.15,0.35,50,1,0.35,1);

>> [sig2 ifl2]=fmlin(60,0.3,0.1);

>> [sig3 ifl3]=fmconst(60,0.4);

>> sig=[sig1;zeros(8,1);sig2+sig3];

>> iflaw=zeros(128,2);

>> iflaw(:,1)=[ifl1;%nan*ones(8,1);ifl2];

>> iflaw(:,2)=[%nan*ones(68,1);ifl3];

We first plot the instantaneous frequency laws (obtained by tfrideal), to
which the proposed solutions should be as near as possible, and the WVD of
this signal (see the first two plots of figure ??) :

>> tfrideal(iflaw,’plot’);

>> scf; tfrwv(sig,’plot’);

With the WVD, the signal components are well localized, but the numerous
cross-terms make the figure hardly readable. If we now consider the smoothed
pseudo-WVD and its reassigned version (see the third and fourth plots of fig.
??),
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>> tfrrspwv(sig,’plot’);

we can see that the smoothing done by the SPWVD almost completely sup-
press the cross terms, but the signal components localization becomes coarser.
The improvement given by the reassignment method is obvious : all compo-
nents are much better localized, leading to a nearly ideal representation. The
next distributions we consider are the spectrogram (see the first two plots of
fig. ??) and the Morlet scalogram (see the third and fourth plots of fig. ??) :

>> scf(1); tfrrsp(sig,’plot’);

>> scf(2); tfrrmsc(sig,’plot’);

These two distributions present nearly no cross terms, except at the bot-
tom of the sinusoid and around time t = 64. But the time and frequency
resolutions are not good, especially at low frequencies in the case of the scalo-
gram. The reassignment method improves considerably these localizations,
and the reassigned spectrogram is even perfectly concentrated for the chirp
components. The result obtained with the modified scalogram is less good,
especially at low frequencies where the time-resolution is really inadequate.

Finally, we represent the pseudo-Page and the pseudo Margenau-Hill dis-
tributions with their reassigned version (see fig. ??) :

>> scf(1); tfrrppag(sig,’plot’);

>> scf(2); tfrrpmh(sig,’plot’);

These representations (before reassignment) are hardly readable since some
cross-terms are superimposed on the signal components. Their modified ver-
sions give much better localized signal components, but less concentrated
than in the case of the spectrogram or the SPWVD.

4.3.6 Connected approaches

Connections of the reassignment method has been found with other tech-
niques which extract relevant information from the time-frequency plane.

Friedman’s instantaneous frequency density

A first example is the instantaneous frequency density : so as to take
advantage of the phase structure of the short-time Fourier transform (STFT),
Friedman simply computed at each time t the histogram of the frequency
displacements ν̂(x; t, ν) of the spectrogram. The resulting time-frequency
representation is no more an energy distribution, and could be derived as
well from any other reassigned distribution.
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Figure 4.35: Comparison of different time-frequency distributions and their
reassigned version (1/3) : the analyzed signal is composed of three compo-
nents, as can be clearly seen on the first plot representing the instantaneous
frequency laws of the components. The other plots are the Wigner-Ville dis-
tribution, the smoothed pseudo Wigner-Ville distribution and its reassigned
version
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Figure 4.36: Comparison of different time-frequency distributions and their
reassigned version (2/3) : the spectrogram and the Morlet scalogram
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Figure 4.37: Comparison of different time-frequency distributions and their
reassigned version (3/3) : the pseudo Page distribution and the pseudo
Margenau-Hill distribution
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Figure 4.38: Instantaneous frequency density defined by Friedman, computed
from the frequency displacements ν̂(x; t, ν) of the pseudo-WVD

Here is an example of this instantaneous frequency density, obtained with
the function friedman on the pseudo-WVD of the previous signal (see fig.
??) :

>> t=1:2:127; [tfr,rtfr,hat]=tfrrpwv(sig,t);

>> friedman(tfr,hat,t,’tfrrsp’,1,’plot’);

Although some cross terms are still present, the localization of the compo-
nents is quite good, especially for the chirp components.

Extraction of ridges and skeleton

Another related approach is the extraction of ridges and skeleton. This
method extracts from either the STFT or the continuous wavelet transform
(CWT) some particular sets of curves deduced from the stationary points of
their phase (see [?] for more information about the stationary phase prin-
ciple). Indeed, applying the stationary phase theorem to the signal recon-
struction formula of the CWT Tx(t, a; Ψ) expressed in the frequency domain
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:

X(ν) =
∫ +∞

−∞

∫ +∞

−∞

√
a H(aν) Tx(t, a; Ψ) e−j2πνt dt

da

a2

leads to particular points such that

t̂(x; t, a) = t− Φ′
h(ν0) and â(x; t, a) = a, (4.25)

with Φh(ν) = arg{H(ν)}, and which constitute a set of curves called the
horizontal ridges of the representation.

Similarly, applying the stationary phase principle to the signal reconstruc-
tion formula of the CWT expressed in the time domain leads to particular
points such that

t̂(x; t, a) = t and â(x; t, a) = a
ν0

φ′
h(0)

, (4.26)

with φh(t) = arg{h(t)}, and which constitute a set of curves called the ver-

tical ridges of the representation. These relations between the ridges and
the reassignment operators suggest to extract the ridges of any reassigned
distribution by a straightforward generalization of expressions (??), (??).

For example, let us extract the ridges from the spectrogram of the previ-
ous signal (see fig. ??) :

>> [tfr,rtfr,hat]=tfrrsp(sig);

>> ridges(tfr,hat,’plot’);

The result is interesting : apart from some “gaps” present in particular on
the sinusoidal frequency modulation, this method concentrates and localizes
nearly ideally the signal in the time-frequency plane, even when there are
two components present at the same time (or at the same frequency).

4.3.7 Conclusion

The reassignment method creates a modified version of a time-frequency
representation by moving the representation values away from where they
are computed. These displacements depend on the signal and on the rep-
resentation, forcing the bilinearity to be lost, but they are still consistent
with many of the representation properties. The principle of reassignment
exploits the local structures of a distribution in both time and frequency di-
rections. The experimental results show that this method provides a higher
concentration in the time-frequency plane, but of course does not remove all
the cross terms.
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Chapter 5

Extraction of information from

a time-frequency image

Up to this point, we have examined the main solutions proposed to the
problem of representing a non-stationary signal in the time-frequency plane.
We now consider the problem of the interpretation of the time-frequency
image which describes the evolution with time of the frequency content of the
signal. Even if they all tend to the same goal, each representation has to be
interpreted differently, according to its own properties. For example, some of
them present important interference terms, other are only positive, other are
perfectly localized on particular signals. . . So the extraction of information
has to be done with care, from the knowledge of these properties. We give in
the following some general guide lines to profit from a time-frequency image.

5.1 Moments and marginals

The moments and marginals of some representations provide important
information about the signal, like its amplitude modulation or its instanta-
neous frequency, for example with the aim of demodulating the signal.

5.1.1 Moments

The first and second order moments, in time and in frequency, of a time-
frequency energy distribution tfr are defined as

fm(t) =

∫+∞
−∞ f tfr(t, f) df
∫+∞
−∞ tfr(t, f) df

B2(t) =

∫+∞
−∞ f 2 tfr(t, f) df
∫ +∞
−∞ tfr(t, f) df

− fm(t)
2;
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for the time moments, and as

tm(f) =

∫ +∞
−∞ t tfr(t, f) dt
∫+∞
−∞ tfr(t, f) dt

T 2(f) =

∫ +∞
−∞ t2 tfr(t, f) dt
∫+∞
−∞ tfr(t, f) dt

− tm(f)
2;

for the frequency moments. They describe the averaged positions and spreads
in time and in frequency of the signal. For some particular distributions, if
the signal is considered in its analytic form, the first order moment in time
also corresponds to the instantaneous frequency, and the first order moment
in frequency to the group delay of the signal. These moments can be obtained
numerically thanks to the functions momttfr and momftfr.

5.1.2 Marginals

It can also be interesting to consider the marginal distributions of a time-
frequency representation. These marginals are defined as :

mf(t) =
∫ +∞

−∞
tfr(t, f) df time marginal

mt(f) =
∫ +∞

−∞
tfr(t, f) dt frequency marginal

and express, by integrating the representation along one variable, the repar-
tition of the energy along the other variable. A natural constraint for a
time-frequency distribution is that the time marginal corresponds to the in-
stantaneous power of the signal, and that the frequency marginal corresponds
to the energy spectral density :

mf (t) = |x(t)|2 and mt(f) = |X(f)|2.

The function margtfr computes the marginal distributions of a given time-
frequency representation.

5.2 More on interferences : information on

phase

The interference terms present in any quadratic time-frequency repre-
sentation, even if they disturb the readability of the representation, contain
some information about the analyzed signal. The precise knowledge of their
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Figure 5.1: Two simultaneous complex sinusoids analyzed by the pseudo-
WVD : the position of the interferences depends on the phase-shift between
the two components. These phase-shifts are respectively π/4, 3π/4, 5π/4
and 7π/4

structure and construction rule is useful to interpret the information that
they contain.

For instance, the interference terms contain some information about the
phase of a signal. Let us consider the pseudo WVD of the superposition
of two constant frequency modulations, with a phase shift between the two
sinusoids. If we compare the pseudo WVD for different phase shifts, we
can observe a time-sliding of the oscillating interferences. Each snapshot
corresponds to the pseudo WVD with a different phase shift between the
two components.

A second example of signature of the phase is given by the influence of a
jump of phase in a signal analyzed by the (pseudo) Wigner-Ville distribution :
for instance, if we consider a constant frequency modulation presenting a
jump of phase in its middle (see fig. ??) : the pseudo WVD presents a
pattern around the jump position which is all the more important since this
jump of phase is close to π. This characteristic can be used to detect a jump
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Figure 5.2: Complex sinusoid presenting a jump of phase in its middle,
analyzed by the pseudo-WVD : the shape of the PWVD-pattern changes
with the importance of the jump. These jumps of phase are respectively
π/4, π/2, 3π/4 and pi
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of phase in a signal.

5.3 Renyi information

Another interesting information that one may need to know about an
observed non-stationary signal is the number of elementary signals composing
this observation. This also leads us to the following question : how much
separation between two elementary signals must one achieve in order to be
able to conclude that there are two signals present rather than one ?

A solution to this problem is given by applying an information measure
to a time-frequency distribution of the signal. Unfortunately, the well known
Shannon information, defined as

Ix = −
∫ +∞

−∞
f(x) log2 f(x) dx

where f(x) is the probability density function of x, can not be applied to some
time-frequency distributions due to their negative values. The generalized
form of information, which admits negative values in the distribution, will
then be used. This information, known as Renyi information, is given by

Rα
x =

1

1− α
log2

{∫ +∞

−∞
fα(x) dx

}

in the continuous case, where α is the order of the information. First order
Renyi information (α = 1) reduces to Shannon information. Third order
Renyi information, applied to a time-frequency distribution Cx(t, nu), is de-
fined as

R3
C = −1

2
log2

{∫ +∞

−∞

∫ +∞

−∞
C3

x(t, ν) dt dν
}

.

The result produced by this measure is expressed in bits : if one elementary
signal yields zero bit of information (20), then two well separated elementary
signals will yield one bit of information (21), four well separated elementary
signals will yield two bits of information (22), and so on. This can be ob-
served by considering the WVD of one, two and then four elementary atoms,
and then by applying the Renyi information on them. The function renyi

computes this information measure :

>> sig=atoms(128,[64,0.25,20,1]);

>> [TFR,T,F]=tfrwv(sig);

>> R1=renyi(TFR,T,F) ------> -0.2075
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>> sig=atoms(128,[32,0.25,20,1;96,0.25,20,1]);

>> [TFR,T,F]=tfrwv(sig);

>> R2=renyi(TFR,T,F) ------> 0.779

>> sig=atoms(128,[32,0.15,20,1;96,0.15,20,1;...

32,0.35,20,1;96,0.35,20,1]);

>> [TFR,T,F]=tfrwv(sig);

>> R3=renyi(TFR,T,F) ------> 1.8029

We can see that if R is set to 0 for one elementary atom by subtracting R1,
we obtain a result close to 1 for two atoms (R2-R1=0.99) and close to 2 for
four atoms (R3-R1=2.01). If the components are less separated in the time-
frequency plane, the information measure will be affected by the overlapping
of the components or by the interference terms between them (see [?] for
more details on this analysis). In particular, it is possible to show that the
Renyi information measure provides a good indication of the time separation
at which the atoms are essentially resolved, with a better precision than with
the time-bandwidth product.

5.4 Time-frequency analysis : help to deci-

sion

5.4.1 General considerations

The decision problem that one can have to solve when analyzing a signal
is threefold :

• detect if an observed signal contains a given information (i.e. say, for a
given false alarm probability, if yes or no the information is present) ;

• estimate the parameters of a signal that we know to be present in an
observation ;

• classify a signal in one among different classes.

This problem, well known in theory in the general case, can be reconsidered
when dealing with non-stationary signals, emphasized by the theory of time-
frequency representations. Without going into details, it has been shown
that some of the known optimal strategies of decision can be reformulated
equivalently in the time-frequency plane (like the matched-filter with the
WVD for example). This result is interesting for two reasons :
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• on one hand, the time-frequency approach, compared to the classical
one (formulated in the time-domain in general), usually provides a
simpler interpretation of the decision test ;

• on the other hand, when the optimal solution for a given criterion is not
known in the decision theory, the time-frequency analysis can be useful
to formulate a sub-optimal solution based on the better comprehension
of the analyzed signal (for example, a time-frequency detector can be
easily modified to take into account variations of the non-stationary
signal to be detected, in order to improve the robustness of the detec-
tor).

The proposed solutions in the literature construct a decision test (statistic)

• either as a general time-frequency correlation between a time-frequency
representation of the analyzed signal and some two dimensional tem-
plate, constructed using the a priori information available on the signal,

• or by applying a transform on the TF representation of the analyzed
signal, which brings to the fore some characteristic pattern of the signal
to be detected (or estimated or classified), and by applying a test on
this new space of decision. We consider in the following an example
of such approach, for the problem of the detection and estimation of
a linear frequency modulated signal embedded in some white gaussian
noise.

5.4.2 An example : detection and estimation of linear

FM signals

As we have seen in section ??, the WVD ideally concentrates the linear
chirp signals in the time-frequency plane. Thus, the problem of detection
and estimation of such a signal, which is not easily recognizable in the time-
domain, is reduced to the problem of detection and estimation of a line
in an image, which is a well known and easy-to-solve problem in pattern
recognition. This can be done by using the Hough transform, dedicated to
the detection of lines ([?]).

The Hough transform for lines

Consider the polar parameterization of a line

x cos θ + y sin θ = ρ
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(this parameterization is much more adapted to this problem than the Carte-
sian one). For each point (x, y) of an image I, the Hough transform associates
a sinusoid in the plane (ρ, θ), whose points have an amplitude equal to the
intensity of the pixel (x, y). So to all the points in I, the Hough transform
associates a pencil of sinusoids which intersect themselves in the plane (ρ, θ).
In other words, the HT performs integrations along lines on the image I,
and the value of each integral is affected to the point (ρ, θ) corresponding to
the parameters of this line. Therefore, if on the image I some pixels with
high intensities are concentrated along a straight line, we will observe in the
domain (ρ, θ) a peak whose coordinates are directly related to the parameters
of the lines.

This method can be easily applied to other parametric curves, like hyper-
bola for example. This transform is computed in the function htl.

The Wigner-Hough transform

When applying the Hough transform to the Wigner-Ville distribution of
the signal

x(t) = ej2π(ν0t+β/2t2) + n(t)

observed during an observation time T (n(t) is a noise assumed white and
gaussian), we obtain a new transform called the Wigner-Hough transform

(WHT), whose expression is

WHx(ν0, β) =
∫

T
Wx(t, ν0 + βt) dt (5.1)

=
∫ +∞

−∞

∫

T
x(t + τ/2) x∗(t− τ/2) e−j2π(ν0+βt)τ dt dτ

The comparison of the WHT to a threshold is the proposed detection test,
and the estimates of the unknown parameters ν0 and β are given by the coor-
dinates of the detected peak in the space of the parameters (ν0, β). Thanks to
the unitarity property of the WVD (Moyal’s formula), it is possible to show
that this detection test is asymptotically the optimal detector (i.e. optimal
when T tends to infinity). Besides, the estimators are asymptotically efficient

(i.e. they asymptotically reach the Cramer-Rao lower bounds). Compared to
the classical decision test usually used in this case, the generalized likelihood
ratio test (GLRT), this method presents the following advantages in the case
of multicomponent signals :

• it is free from the estimation of the initial phase and amplitude of each
component, which usually do not bring any information, and
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Figure 5.3: WVD of a noisy chirp signal (SNR=1 dB) : while the chirp is
hardly readable in the time-representation, the line still clearly appear in the
WVD

• its complexity do not increase with the number of components Nc,
unlike the GLRT whose complexity increases linearly with Nc.

Here is an illustration of this decision test : first, we consider a linear
chirp signal embedded in a white gaussian noise, with a 1 dB signal-to-noise
ratio :

>> N=64; sig=sigmerge(fmlin(N,0,0.3),noisecg(N),1);

Now, if we analyze it with the WVD followed by the Hough transform (see
fig. ?? and ??),

>> tfr=tfrwv(sig);xset("fpf"," "); contour2d(1:N,1:N,tfr,5); xgrid

>> htl(tfr,N,N,1,’plot’);

we obtain, in the parameters’ space (ρ, θ), a peak representing the chirp sig-
nal, significantly more energetic than the other peaks corresponding to the
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Figure 5.5: WVD of two simultaneous chirp signals : interference terms
appear between the two components

noise. The decision test is then very simple : it consists in applying a thresh-
old on this representation, positioned according to a detection criterion ; if
the peak is higher than the threshold, then the chirp is said to be present,
and the coordinates of that peak (ρ̂, θ̂) provide estimates of the chirp param-
eters (the change from (ρ̂, θ̂) to (ν̂0, β̂) corresponds to the change from polar
to Cartesian coordinates).

In the case of a multi-component signal, the problem of interference terms
appear. However, due to the oscillating structure of these terms, the inte-
gration (??) operated by the Hough transform on the WVD will attenuate
them. This can be observed on the following example : we superpose two
chirp signals with different initial frequencies and sweep rates (see fig. ??

and ??) :

>> sig=sigmerge(fmlin(N,0,0.4),fmlin(N,0.3,0.5),1);

>> tfr=tfrwv(sig);xset("fpf"," "); contour2d(1:N,1:N,tfr,5); xgrid

>> htl(tfr,N,N,1,’plot’);
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We can see that the components are well separated in the parameter space,
in spite of the use of a nonlinearity in the WHT. Again, the coordinates of
the two peaks provide estimates of the different parameters.

5.5 Analysis of local singularities

If the time-frequency representations are useful to bring to the fore the
progression with time of the frequency of a signal, the time-scale represen-
tations are more adapted to the analysis of irregular structures and singu-
larities, or of signals presenting self-similarities (such as fractional Brownian
motion, [?]). We give in the following such an example with the analysis of
local singularities, thanks to the scalogram and the Unterberger distribution.

The local regularity of a signal can be characterized by its Holder (or
Lipschitz or scaling) exponent : for a signal x(t) which is uniformly Holder

H , there exists a constant C such that

|x(s)− x(t)| ≤ C |s− t|H , 0 < H < 1.

H then represents the exponent of regularity of the signal. If we consider the
wavelet transform Tx(t, a; Ψ) of this signal, with an analyzing wavelet Ψ such
that t Ψ(t) is absolutely integrable, then one can show that

|Tx(t, a; Ψ)| ≤ C |a|H+1/2
∫ +∞

−∞
|t|H |Ψ(t)| dt

= O(|a|H+1/2) ∀ t,

or, in terms of scalogram and behavior when a tends to 0,

E
[

|Tx(t, a; Ψ)|2
]

∼ |a|2H+1, a → 0.

where E[.] refers to the expectation. This means that the regularity of the
signal can be recovered from the behavior of its scalogram at small scales,
and it is possible to show that the reciprocal is true.

Since they are time-dependent in nature, the wavelet-based techniques
also allow an estimation of the local regularity of a signal. In some sense,
time-scale methods offer in this respect a framework similar to the one pro-
vided by time-frequency analysis for tracking the time evolution of spectral
features. Indeed, if we now have, at a given time t0,

|x(t0 + τ)− x(t0)| ≤ C |τ |H(t0), 0 < H(t0) < 1, (5.2)
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then we can establish the inequality

|Tx(t, a; Ψ)| ≤ C |a|H(t0)+1/2
∫ +∞

−∞
|t|H(t0) |Ψ(t)| dt

+C |t− t0|H(t0)
∫ +∞

−∞
|Ψ(t)| dt

= O(|a|H(t0)+1/2 + |t− t0|H(t0)).

We then obtain an image of the signal’s regularity at the small scales of its
wavelet transform (or scalogram), but accompanied with a time localization.
The reciprocal is also true, which means that an appropriate decrease of the
wavelet (scalogram) coefficients in a cone-shaped region of the time-frequency
plane allows one to estimate the local regularity of a signal.

If we further impose to condition (??) that the signal presents an asymp-
totic spectral decrease,

X(ν) ∼ |ν|−(1+2H(t0)) ej2πνt0 for |ν| → ∞,

then we have the following approximation for the active Unterberger distri-
bution :

Ux(t, a) ∼ |a|2(1+H(t0)) δ(t− t0), a → 0.

Thus, the Unterberger distribution follows a law along scales which gives ac-
cess to the strength of the singularity (H), and along time to the localization
of this singularity.

The function holder estimates the Holder exponent of any signal from
an affine time-frequency representation of it.

o Example

For instance, we consider a 64-points Lipschitz singularity (see anasing) of
strength H = 0, centered at t0 = 32,

>> sig=anasing(64);

and we analyze it with the scalogram (Morlet wavelet with half-length = 4,
see fig. ??),

>> [tfr,t,f]=tfrscalo(sig,1:64,4,0.01,0.5,256,1);

The time-localization of the singularity can be clearly estimated from the
scalogram distribution at small scales :

>> H=holber(tfr,f,1,256,32) ------> H=-0.0381
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Figure 5.7: Scalogram of a Lipschitz singularity at time t = 32, of strength
H = 0
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Figure 5.8: Scalogram of a Lipschitz singularity at time t = 32, of strength
H = −0.5
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If we now consider a singularity of strength H=-0.5 (see fig. ??),

>> sig=anasing(64,32,-0.5);

>> [tfr,t,f]=tfrscalo(sig,1:64,4,0.01,0.5,256,1);

we notice the different behavior of the scalogram along scales, whose decrease
is characteristic of the strength H . The estimation of the Holder exponent
at t = 32 gives :

>> H=holber(tfr,f,1,256,32) ------> H=-0.5107

which is close to 0.5.
The same conclusions can be observed from the active Unterberger dis-

tribution.
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of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

139



This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The ”Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as ”you”. You
accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

The ”Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.
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Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as ”Acknowledgements”,
”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the

Title” of such a section when you modify the Document means that it re-
mains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these War-
ranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
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3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Mod-
ified Version under precisely this License, with the Modified Version filling
the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
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there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled ”History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.
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K. For any section Entitled ”Acknowledgements” or ”Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled ”Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and
one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
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You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled ”History”
in the various original documents, forming one section Entitled ”History”;
likewise combine any sections Entitled ”Acknowledgements”, and any sec-
tions Entitled ”Dedications”. You must delete all sections Entitled ”En-
dorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an ”aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant Sec-
tions in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
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any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c©YEAR YOURNAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.
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