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loading conditions. The stress distributions through the pipe thickness for various lay-ups are computed for fibre 

reinforced pipes under different outer pressure magnitudes.  
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1.  Introduction 

 

Having advantages over conventional materials in weight, strength, stiffness, corrosion resistance composite materials 

are becoming more and more attractive for structural and non-structural applications in the oil and gas industry. 

However, in spite of their undoubted advantages, the main of which may be the ability to be tailored for specific 

purpose, their introduction in the industry is a very slow process. Lack of appropriate performance information, 

regulatory requirements, efficient design procedures and reparability issues are the main obstacles. 

 

1.1. Use of composites in oil and gas industry 

Fibre reinforced composites are the alternatives of steel, metal and wood in many applications. This may be due to their 

high specific tensile and compressive strength, good fatigue and corrosion resistance and their suitability for the 

production of complex-shape components with reduced manufacture times compared to conventional metallic materials. 

Ease of handling, high adaptability, economy of fabrication, and damage tolerance are the driving force of the 

application of the fibre reinforced composite materials. 

High specific strength as well as overall weight-saving and resistance to a wide range of fluids (including 

seawater, aerated water, H2S, CO2, and hydrocarbons) which can attack metals results in growing interest in their use 

for applications within the oil and gas sector. The areas within the oil industry, where the composites are used include 

rigid pipework, coiled tubing, rigid and flexible risers, structural repairs and others. Gibson (2000) described composite 

pipework as one of the most established uses of composites within the oil and gas industry. One of the more recent 

papers on the topic was published by Taheri (2013), where fibre-reinforced composites for pipes and tanks manufacture 

and rehabilitation in oil and gas industry were considered. The author also outlined various applications of the FRPs in 

relation to pipes and risers. 

The exploitation of GFRP offshore was inhibited by the knowledge that the strength of most GFRP systems is 

reduced at elevated temperature and by the absorption of water. The results of the tests conducted to characterize the 

strength reduction of three GFRP composite materials as a function of temperature and testing environment can be 

found in Hale and Gibson (1998). Gu (2009a, 2009b) considered the behaviour of glass fibre reinforced unsaturated 

polyester laminates fabricated by using the vacuum assisted resin infusion technique after immersing in the artificial 

seawater for different durations of time. The biaxial failure envelope and creep testing of GFRP in high temperature (up 

to 160°C) liquids were investigated by Hale et al. (2002). The tests were made on dry and after exposure to saturation in 

various working environments (sea water, crude oil, water with dissolved CO2 and water with dissolved H2S) 

specimens, highlighting the sensitivity to loading direction with respect to fibre orientation. 
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The corrosive behaviour of PMC (polymer matrix composite) structure is much better than the steel structure in 

the marine environment.  In view of the wide application of polymeric composites in offshore structures, submersibles 

and highway infrastructure, the effect of seawater on deformation, strength and durability of materials was considered 

by Weitsman and Elahi (2000). The effect of moisture absorption on the compressive, tensile, and shear behaviours of 

PMC has been investigated by many researchers (Russell and Street (1989); Ogi and Takeda (1997); Weitsman (1998); 

Togo et al. (2000); Davies and Carlsson (2009)). It is known from their research results that moisture absorption causes 

plasticization and swelling of the epoxy, weakening the interfacial strength between fibres and epoxy, which results in 

the reduction of tensile and shear strength. However, the effect of moisture absorption on fracture behaviour is different 

depending on the studies conducted. 

Deniz et al. (2013) experimentally investigated the effect of seawater on failure pressure and impact behaviours 

of glass-epoxy pipes. The effect of seawater absorption on the interlaminar fracture behaviour of carbon/epoxy 

composites was investigated by Sloan and Seymour (1992). The effect of hydrostatic pressure on the compressive and 

shear behaviour of carbon/epoxy composites was considered by Shin and Pae (1992a, 1992b), Pae and Rhee (1995), 

Rhee and Pae (1995). The tensile behaviour of carbon/epoxy composites under a hydrostatic pressure environment was 

investigated by Zinoviev et al. (2001). It is generally accepted that the tensile and compressive strengths of polymeric 

composites increase as the applied hydrostatic pressure increases.  

The combined effect of seawater absorption and hydrostatic pressure on the mechanical behaviour of PMC 

materials was considered by Rhee et al. (2004, 2006). For this purpose, fracture tests were performed using seawater-

absorbed carbon/epoxy composite, whose seawater absorption capability was at a maximum absorption level, in a 

hydrostatic pressure environment. Compliance, fracture load and fracture toughness were determined as a function of 

applied hydrostatic pressure. After the fracture tests were performed, optical microscope examination was made on the 

fracture surfaces to determine the fracture mechanism of carbon/epoxy composites in a deep-sea environment. 

Comparative study of dry and seawater absorbed specimens showed that seawater-absorbed specimen has a lot more 

epoxy fracture than the dried one. There is a clear need in more precise modelling of underwater compressive behaviour 

of composites. It can be achieved, in particular, by incorporating into the modelling the exact analytical solutions 

developed by Guz (1998), Soutis and Guz (2001), Guz and Herrmann (2003), Guz and Rushchitsky (2004), Guz et al. 

(2008), Menshykova et al. (2009) and others. 

Composite cylinders are widely used in oil industry, designed to resist either internal pressure (e.g. fluid 

transport and storage, cooling systems) or external pressure (e.g. underwater or downhole applications). One of the 

main concerns with these structures is the propagation of interlaminar defects, produced during manufacture or service. 

Understanding the factors affecting the delamination resistance of the laminate used in the cylinders is essential if their 

safe working envelope is to be defined. In the work by Davies and Carlsson (2009) the influence of winding angle was 
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examined in order to optimize cylinder performance. In the paper the delamination resistance of filament wound 

composite cylinders and the influence of delamination damage on the failure of externally pressurized composite 

cylinders were considered. Pressure tests on cylinders without implanted defects and with impact damage and implanted 

defects to simulate fabrication and in-service damage, were performed. A series of external pressure tests was 

performed on the glass/epoxy, carbon/epoxy and carbon/PEEK cylinders to examine the influence of different types of 

delaminations. 

Full-scale application of composites in rigid risers is expected within the next decade. Since risers operate in 

seawater, effects of seawater are examined by aging carbon and glass reinforced epoxy laminates of different thickness 

and lay-up orientation at temperature experimentally (Grant and Bradley 1995; Ochoa and  Ross 1998). The analytical 

scaling methodology that depends on the geometry, constituent material properties as well as location, orientation 

hybridization of the reinforcing fibres was developed but not verified for full scale composite tubes (Chouchaoui and 

Ochoa 1999; Rodriguez and Ochoa 2004). This information is particularly important for another class of risers hybrid 

flexible tubulars which are in various stages of maturity in the oil industry. These risers are either fully filament wound 

composites with thermoplastic matrix or have stainless steel internal carcass with an extruded polymer fluid barrier, a 

carbon steel interlocked hoop strength layer, and helically wound composite tensile armour (e-glass, aramid, carbon 

fibres). Flexible risers are the tubes which achieve their flexibility by virtue of the fact that the load-bearing components 

are free to move relative to one another. There are significant opportunities for the use of unidirectional carbon fibre 

composite elements, which may be either thermoplastic or thermoset-based, in the armour for weight-saving, and 

because of corrosion problems with steel. This could represent a significant future application for composites (Gibson 

2000). 

The other use of composite materials in offshore industry is the insulation coating of the production 

infrastructure at great depths. To limit heat losses and so avoid the formation of hydrate and wax plugs inside subsea 

production flowlines or risers under high pressure and low external temperature conditions, even during production 

shutdowns, the pipelines need to be thermally insulated. One of the most efficient types of thermal insulation systems is 

the multilayered structure made of several materials of different thicknesses directly applied to the external surface of 

the steel pipe. Currently used materials in thermal insulating multilayered systems for deep sea applications include 

massive polymers and syntactic foams, composed of hollow glass microspheres embedded in a polymer matrix. These 

composites must combine thermal insulation function, low buoyancy while providing good compressive strength. 

Syntactic foam coatings are expected to fulfil today’s challenges as pipelines are required to operate in more and more 

severe conditions. Syntactic foam is a lightweight composite material made from tiny hollow microspheres in a 

polymeric resin binder, along with other fillers and additives. Because the micro-spheres are filled with air, syntactic 

foam is low in both density and thermal conductivity. Typically, the choice of syntactic materials includes rigid binders 
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and flexible binders. Rigid binders add support and reinforcement to the micro-spheres, giving greater strength. The 

most common rigid binder resin choice is epoxy, because of its superior strength and resistance to hot and wet 

conditions. However, excessive rigidity may result in cracking under thermal shock and cycling. Flexible binders 

reduce this prospect. Flexibility is desirable in many applications, and can offer some protection against cracking. 

However, flexible binders must be carefully designed to avoid degradation under hot, wet conditions, and they do not 

strongly reinforce micro-sphere fillers, detracting from their effectiveness in density and thermal conductivity (Song et 

al. 2005; Sauvant-Moynot et al. 2006, 2007; Bouchonneau et al. 2007, 2010; Grosjean et al. 2009). 

Composite spoolable or coiled tubing is also intensively utilized technology in oil industry. (Composite coiled or 

spoolable tubing refers specifically to Fiberspar and similar products.) Spoolable tube is thick-walled pipe which must 

withstand number of loads such as bending, thermal, axial loads, internal and external pressure etc. Tubing of this type 

can only be coiled by allowing the matrix to crack extensively, i.e. a brittle matrix composite is used with the matrix in 

an almost completely cracked condition. Of course, such a tube would leak unless it is equipped with a thermoplastic 

liner. With the increasing length of the boreholes the use of steel coiled tubing is limited by tensile load capacity, 

combined allowed axial force and pressure and tube dimension. Composite coiled tubing allows overcoming the steel 

coiled tubing limited working depth problem as they have such advantages as being lightweight, possessing high 

strength and low density. The coiled tube itself is the thick-walled pipe of several kilometres length. Consequently the 

continuous manufacturer processes such as pultrusion, pull winding or pull braiding technique is used for fibre 

reinforced composite coiled tubing fabrication. One of the applications of coiled tubing in oil industry is well 

intervention operation. To use composite coiled tubing for high-pressure down-hole applications it must be capable to 

withstand a high working pressure, high temperature, bending and axial load.  

The humid ageing of syntactic foams under hydrostatic pressure, up to 100 MPa, has been widely studied 

(Watkins 1988, Fine et al. 2003). But the combination of high pressure/high temperature conditions (up to 30 

MPa/130◦C) is a recent concern: a pioneering research program including ageing in hot wet conditions has shown that 

traditional industrial syntactic foams were undergoing rapid and severe degradation in seawater at temperatures as low 

as 60◦C (Choqueuse 2002). There is experimental evidence that a key factor may be the chemical degradation of glass 

microspheres due to the “entrance” of water (Kochetkov 1996). 

Functionally graded materials (FGMs) are becoming increasingly viable thanks to polymer composite materials. 

Syntactic foams have become attractive for aerospace and marine applications owing to low density, high water 

resistance and high strength offering a variety of options for the designer for creating property gradients. Three-

dimensional elasticity solution for a functionally graded simply supported plate subjected to transverse loading was 

obtained by Kashtalyan (2004). Several analytical and numerical studies are available on statically loading, impact 

loading, free vibration and thermoelasticity analysis of FG core sandwich panels. A paper by Kashtalyan and 
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Menshykova (2009) presents a three-dimensional elasticity analysis of sandwich panels with a FG core subjected to 

transverse loading. 

The application of composites in subsea industry is based on thermoset matrix composites, mainly epoxies. 

Potentially thermoplastic composites can replace these. In (Davies et al. 2005) the results from preliminary screening 

tests on the selection of thermoplastic composite materials were obtained. Based on these results glass/PEI and 

carbon/PEEK materials were selected for further evaluation. 

Composites are routinely used to repair metal structures as damaged or corroded pipelines. These repairs have 

been a common practice in oil industry and are generally easier and faster to carry out comparing to traditional metallic 

method. At the moment the research is focused on the development of effective subsea composite repair systems and 

was investigated by Alexander (2007), Shamsuddoha et al. (2013), Mally et al. (2013). The effectiveness of FRP 

composites for the subsea repair of steel pipeline was analysed by Shamsuddoha et al. (2013). The performance of a 

carbon/epoxy repair installed and cured underwater has been tested by Mally et al. (2013). 

 

1.2. Fibre reinforced composite pipes 

The composite pipes from glass fibre reinforced epoxy (GFRE) have been used onshore for both low- and high-pressure 

applications with a wide variety of fluids, including hydrocarbons. Offshore glass-fibre reinforced resin matrix 

composites are used for relatively low-pressure aqueous services. The effect of water absorption of the mechanical 

behaviour of fibreglass pipes used for offshore service waters was considered in d’Almeida (2008). Considering the fact 

that GFRE has the high specific strength and corrosion resistance, which make it ideal for the petrochemical industry, 

the use it offshore likely to change in the future (Gibson 2000). However, the wall thickness of high-pressure GFRE 

pipe tends to be inconvenient for manufacture and handling, because of the high effective safety factor on GFRE pipe. 

The development of steel strip laminate overcomes the problem (Friedrich1999). The effect of artificial seawater on the 

impact behaviour of filament-wound GRE pipes has been experimentally studied by Deniz and Karakuzu (2012). 

Since the properties of the fibre composite are different along the fibre and in transverse direction, the properties 

of the filament wound composite pipe can be easily changed by changing the number of winding angles and the fibre 

direction in each layer. The studies of thin-walled fibre-reinforced composite pipes were made by a number of 

researchers. Works of Hull et al. (1978), Spencer and Hull (1978), Uemura and Fukunaga (1981), Rosenow (1984), 

Soden et al. (1989), Mistry et al. (1992) show that the winding angle plays an important role in filament-wounded pipes 

design. The failure processes of thin-walled glass-reinforced polyester pipes wounded at “ideal angle” of 55044′ were 

studied by Hull et al. (1978). The series of closed-end and unrestrained end internal pressure tests to failure of the pipes 

were conducted. In their next work Spencer and Hull (1978) extended their initial investigation and consider pipes 

wound at 350, 450, 650 and 750. Their investigation showed a pronounced effect of the winding angle on the micro-
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mechanisms associated with deformation, weepage and fracture.  Rosenow (1984) considered filament-wound pipes 

wounded at six different angles under different types of loading: biaxial pressure, hoop pressure and tensile loading. 

Comparing the results with classical lamination theory he got good agreement between theory and experiment. His 

investigation showed that the optimal winding angle depends primary on state of loading and should be 54.750 for 

biaxial pressure loading, 750 for hoop pressure loading and the lowest possible angle for tensile loading. Soden et al. 

(1989) considered ±550 thin-walled filament wounded tubes under combinations of internal pressure and axial tensile 

and compressive loads to get the failure envelope. The buckling behaviour of ±550 filament wound pipes under 

combinations of external pressure and axial loading were considered by Mistry et al. (1992). The analytical procedure 

for the orthotropic cylindrical shells was developed by Wild and Vickers (1997). The procedure allows assess the 

stresses and deformations of filament-wound structures and the effect of wind angle. Their procedure is based on the 

Leikhnitskii (1981) solution for the problem of plane stresses in multi-layered thin circular cylindrically orthotropic 

shell. 

The studies mentioned above were focused on thin-walled cylindrical fibre reinforced structures. The number of 

studies on the behaviour of thick-walled fibre reinforced tubular structures is more limited.  

Thermal stress analysis of a thick fibre reinforced laminated rings was made by Ajit (1991). Rodriguez and 

Ochoa (2004) have presented an evaluation of the behaviour of filament-wound spoolable composites. A combination 

of 4-point bending testing and FEA was used to determine minimum spool radii. An analytical solution for design and 

analysis of laminated composite tubes is given by Starbuck and Eberle (2000). Xia et al. (2002) considered the thick-

walled sandwich pipe with nonreinforced core layer and alternate-ply skin layers. In the paper the method for stress-

strain deformation under pure bending analysis is presented. The theoretical approach for the strength and failure mode 

prediction of filament-wound composite pipes under bending load was considered (Natsuki et al. 2003). Stress 

distribution in spoolable fibre reinforced composite pipes was investigated by Menshykova and Guz (2013). The cyclic 

internal pressure and temperature loading was considered by Ansari et al. (2010). The stress analysis of multi-layered 

filament-wound composite pipes was carried out obtaining the time-dependent stress, strain and deformation 

distribution. The analytical method to study the mechanical response of thick-walled composite pipe subjected to 

internal pressure was proposed by Bouhafs et al. (2012). The effect of random design variables on the pipe behaviour 

was analysed in the paper. Xia, Takayanagi and Kemmochi (2001) presented a simplified elastic solution to analyse the 

stress and deformation of multi-layered filament-wound composite pipes under internal pressure. The 

thermomechanical loading of thick-walled composite pipes was considered by Xia, Kemmochi and Takayanagi (2001), 

Bakaiyan et al. (2009). Xia, Kemmochi and Takayanagi (2001) analysed the  filament-wound sandwich pipe and 

Bakaiyan et al. (2009) considered the multi-layered filament-wound composite pipe under internal pressure and 
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thermomechanical loading with thermal variation. Guedes (2010) presented an analytical approach to time-dependent 

stress-strain state calculation in nonlinear viscoelastic multi-layered composite cylinders. 

The following sub-section will show how the usage of composite materials can contribute to tackling one of the 

challenging problems in oil and gas industry. 

 

 

2.  Thick-walled fibre composite pipe stress and failure analysis 

 

In oil and gas industry composite coiled tubing is used for different well intervention operations. In this case the 

main loads the pipe is subjected are bending load (when it is spooled on the drum), and the outer pressure and thermal 

loading in the well bore. Coiled tube is thick-walled pipe of several kilometres length. Pultrusion, pull winding and pull 

braiding processes can be used to manufacture the fibre reinforced pipe of such length. Pultrusion process is the 

cheapest and easiest one, however the resulting product is highly anisotropic. Pull braiding is the most expensive 

process and also the most difficult from manufacturer point of view. In this paper we will focus on a pipe, produced by 

the winding process, subjected to outer pressure loading, which is important for well intervention operations and subsea 

applications. However, in the applications of water depth over 1000 m, normally, the composite pipes include metal 

layers (such as subsea flexible pipe) to resist the high tensile load and external buckling load. The research on 

mechanical response of non-metal composite pipe in the offshore applications was published by Bai et al. (2014 a, 

2014b). The method presented in the paper can be modified to solve the problem of multi-layered thick-walled fibre 

reinforced pipes with metal layer under pressure loading. 

Let us consider a multilayered fibre reinforced filament-wound composite pipe under outer pressure. The number 

of layers in the pipe is N , inner radius of the pipe is denoted by 0r  and outer radius by ar . The pipe is subjected to the 

outer pressure ap . The radial, hoop and axial coordinates are denoted by r , θ  and z  respectively (see Fig. 1).  

As we consider the axisymmetric tube, all displacements, strains and stresses are independent of θ . The radial 

displacements, r , are independent on axial displacements, z , as well as axial displacements are not depend on the 

radial ones. Thus, the displacements are: 

)(ruu rr = ,    ),( zruu θθ = ,    )(zuu zz = ,                                                     (1) 

where ru , θu  and zu  are radial, hoop and axial displacements respectively. 

The strain-displacement relations can be written as (Xia, Takayanagi and Kemmochi 2001) 

dr
du k

rk
r

)(
)( =ε ,     

r
u k

rk
)(

)( =θε ,     0
)( εε =k

z ,                                          
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0)( =k
zrγ ,            0)( =k

rθγ ,        rk
z 0

)( γγ θ = ,                                                           (2) 

where 0γ  is a twist of the pipe per unit length and 0ε  is constant. 

The elastic constitutive equations in the global cylindrical coordinates ),,( rz θ  for the orthotropic layer k  can be 

written as (Xia, Takayanagi and Kemmochi 2001): 
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Each layer of the pipe is a unidirectional long fibre composite.  If we define 1 as the principal axis along the 

fibre, and 2 and 3 as transverse directions, the principal stiffness matrix can be written in terms of engineering constants 

as: 
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Using the stiffness transformation matrix ][ klA  (see Appendix 1) the off-axis stiffness constants can be calculated from 

stiffness constants along principal material directions as follows (Xia, Takayanagi and Kemmochi 2001): 

{ } [ ]{ })()( k
ijkl

k
ij CAC =  

where 

{ } { }Tkkkkkkkkkkkkkk
ij CCCCCCCCCCCCCC

)(
66

)(
55

)(
45

)(
44

)(
36

)(
33

)(
26

)(
23

)(
22

)(
16

)(
13

)(
12

)(
11

)(
,,,,,,,,,,,,= ,                          (5) 

{ } { }Tkkkkkkkkkk
ij GGGCCCCCCC )(

13
)(

12
)(

23
)(

23
)(

13
)(

12
)(

33
)(

22
)(

11
)( ,,,,,,,,= .                                         (6) 

The equilibrium equations in cylindrical coordinates for a long axisymmetric tube under prescribed loading have the 

following form (Xia, Takayanagi and Kemmochi 2001; Herakovich 1998): 

0
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Integration of the last two equations gives the shear stresses as (Xia, Takayanagi and Kemmochi 2001; Herakovich 

1998): 

2

)(
)(

r
U k

k
r =θτ ,      

r
W k

k
zr

)(
)( =τ ,                                                            (10) 

where )(kU  and )(kW  are unknown constants of integration. 

After combining the first equilibrium equation (7) with the elastic constitutive equations (3), the strain-

displacement relations (2) and the displacement field (1) we obtain the second-order ordinary differential equation (Xia, 

Takayanagi and Kemmochi 2001) the solution of which can be written as follows: 
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For the isotropic or transversely-isotropic layers the solution is expressed as (Herakovich 1998): 

1)()()( −+= rBrAu kkk
r .                                                                    (13) 

The boundary conditions for the laminated tube subjected to outer pressure are (Xia, Takayanagi and Kemmochi 2001): 
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From the traction continuity between the layers follows that the two interlaminate shear stresses ( rθτ  and zrτ ) were 

continuous from layer to layer. For a long laminated tube subjected to axisymmetric uniform loading along its length 

they are zeros. As the layers are perfectly bonded, all displacements must also be continuous from layer to layer. 

Consequently, the continuity conditions for the considered problem are (Xia, Takayanagi and Kemmochi 2001): 

0)()( == kk WU ,                 Nk ,1= ,                                                         (15) 

0)()( 0
)(

0
)( == rr k

zr
k
r ττθ ,       Nk ,1= ,                                                         (16) 

),()(  ),()( )1()()1()(
k

k
rk

k
rk

k
rk

k
r rrruru ++ == σσ        1,1 −= Nk .                                      (17) 

The axial force at the end of the tube is determined by integrating the axial stress over the area of cross section. For the 

N-layered tube with axial force equal to zero the expression has the form: 
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Similarly one can determine the torque, by integrating the moment of the shear stress θτ z  over the cross-

sectional area of the tube. In the considered problem the torque is equal to zero, consequently the expression is written 

as follows (Xia, Takayanagi and Kemmochi 2001): 
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From the strain-displacement relations (2) and the expression for displacements (11) the layer strains can be 

determined as: 
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The expressions for layer stresses are obtained from constitutive equation (3) and layer strains: 
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Substituting layer stresses (21) into boundary conditions (14) we obtain: 
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After substitution of the expression for displacement (11) and layer stresses (21) into continuity conditions (17) we 

obtain for 1,1 −= Nk : 
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The expressions for the axial force and torque after layer stresses substitution have the following form: 
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Consequently we derive the following system of equations solving which the stress in the pipe can be obtained: 
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where X , F  and Z  are given in Appendix 2. 

To calculate failure the stress in pipe are transformed into stresses in principal material directions: 
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where θcos=m , θsin=n  (θ  is the angle between the pipe axis and filament). 

A comprehensive analysis of failure criteria for composite materials was given in the World Wide Failure 

Exercise (Hinton et al. 2004), where their advantages, drawbacks and the applicability issues were considered in detail. 

In this study, for the failure prediction we use the Tsai-Hill failure criterion introducing some appropriate modifications 

to this criterion found in literature.  

The Tsai-Hill failure coefficient ( FC ) has the form 
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where TX  and TY  are longitudinal and transverse tensile strength respectively and S  is shear strength.  

It is generally recognized that Tsai-Hill failure criterion underestimates the failure stress because the transverse 

tensile strength of a unidirectional lamina is generally much less than its transverse compressive strength and the 

compressive strengths are not used in the Tsai-Hill failure theory. The modified form of Tsai-Hill failure criterion was 

formulated by Kawai and Saito (2009). For off-axis tensile loading it agrees with the original formulae, however it takes 

a modified form for off-axis compressive loading: 
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where Lµ  is a material constant that characterizes the in-plane shear strength differential (SD) effect. 

According to the criterion the failure occurs when the failure coefficient becomes greater than 1. The criterion 

can be expressed as follows: 

failure  1
failure no  1

⇒≥
⇒<

FC
FC                                                                       (28) 

 

 

3.  Numerical results and discussion 

 

As a numerical example the pipes of different designs made of carbon/epoxy fibre composite (T300/LY5052) subjected 

to outer pressure are considered. Taking the outer pressure into account is particularly important for well intervention 

operations and subsea applications. The properties of the composite are given in Table 1.  

The comparison of stress distribution through the wall thickness in the pipes of different designs subjected to the 

outer pressure of 30MPa is given below (Figures 2, 3). The pipes have 3 cm outer diameter and 2 cm inner diameter.  

First we compared the stress distribution in the pipes of following designs: [60,-60,60,-60,0] and [60,-60,0]. In 

both designs the inner layers have properties of opposite fibre orientations (60,-60) and outer layer is unidirectional 

layer of 00 fibre orientation. The difference in designs is the thickness of the outer 00 fibre layer. We are interested in the 

influence of the 00 fibre layer thickness on the stress distribution in the pipe. The biggest jump in axial and hoop 

stresses for both designs is between 00 fibre layer and (60,-60) inner layers (Figure 2). However it is not true for shear 

stress where the jump in stresses between 600 an -600 layers is nearly twice higher than between 00 fibre layer and (60,-
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60) layers. For the pipe with thicker 00 outer fibre layer the axial stress in outer layer is lower, then for the pipe with 

thinner 00 outer fibre layer. However the axial stresses in (60,-60) layers are slightly higher. For hoop stresses the 

difference in stress distribution in inner layers is more significant. It can reach 100 MPa at some points of the inner 

diameter. The hoop and shear stresses in outer 00 fibre layer for both designs are the same. 

The comparison of the stress distribution in the pipes with inner layer of 00 fibre angle is shown in Figure 3. The 

considered pipe lay-ups are [0,60,-60,60,-60] and [0,60,-60]. Here we compare the stress distributions when the outer 

layers of the pipe have opposite fibre orientations and inner layers are 00 fibre layers of different thicknesses. For these 

designs the biggest jump in axial and hoop stresses is (as well as in previous case) between 00 fibre layer and (60,-60) 

layers. For hoop stresses this jump is lower than the jump in stresses between 600 and -600 layers. For axial stress in 00 

fibre layer we have the similar to previous case picture, axial stress in thicker layer is lower than in thinner layer. 

However the magnitude of the axial stresses is lower when 00 fibre layer is inner layer. The same is true for hoop, radial 

and shear stresses. For example, if we compare the maximum absolute magnitude of radial stress for pipes with outer 

and inner 00 fibre layer, we can see that for a pipe with 00 inner fibre layer it is twice lower. 

To predict the failure the Tsai-Hill failure criterion and the modified Tsai-Hill failure criterion are used. The 

failure occurs when the failure coefficient, equations (26) and (27), is equal to 1, consequently, there is no failure when 

the failure coefficient is lower than 1. The difference between Tsai-Hill failure criterion coefficient and modified Tsai-

Hill failure criterion coefficient (with 7.0=Lµ , Kawai and Saito 2009) is shown in Figures 4, 5 for the pipe with lay-

up ]0,,,0[ αα −  subjected to different pressure. We can see that the higher the pressure, the higher the difference 

between failure coefficients. 

Variations of the modified Tsai-Hill failure criterion coefficient depending on the winding angle are shown in 

Figures 6–12. The results are presented for different stuck sequences and pressure loads. Figure 6 demonstrates that for 

the pipe design with outer 00 fibre layer and inner layers of opposite fibre orientation the angles which allow the pipe to 

withstand outer pressure of 30MPa vary from 250 to 900. If for the same pipe design the working pressure is two times 

higher, the suitable winding angles would be from 430 to 900 (see Figure 7). For the pipe with ]0,,[ αα −  lay-up 

subjected to outer pressure the failure coefficient is higher on the outer radius than on the inner radius for the range of 

winding angles between 350 to 900 (Figures 6 and 7) and lower for the range between 00 to 350. The difference between 

failure coefficients on the inner and the outer radii is high when the winding angles range between 00 to 100. For the 

winding angles in the range from 700 to 900, the failure coefficients on the outer and the inner radii are nearly constant 

and the difference between them is much lower than for winding angles close to 00. 
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In Figures 8 and 9 the modified Tsai-Hill failure criterion coefficient variation with the winding angle and outer 

pressure is considered for the pipe design with inner and outer 00 fibre layers and middle layers of opposite fibre 

orientation. The suitable winding angles vary from 450 to 900 for 60MPa outer pressure and from 580 to 900 for 80MPa. 

Figures 10-12 give a more detailed through the thickness variation of failure criterion coefficient as a function of 

winding angle. The suitable winding angles for pipe with inner 00 fibre layer and outer layers of opposite fibre 

orientation vary from around 450 to 900 for 60MPa outer pressure (Figure 10). A small jump in failure coefficient 

distribution occurs on the interface of 00 and α  fibre layers. 

Figure 11 shows that if we add outer layer of 900 fibre orientation, the pipe will be able to withstand the outer 

pressure of 60MPa. However the failure coefficient distribution will not be as smooth, having more jumps. In Figure 12 

the distribution for ],[ αα −  lay-up is presented. This pipe design gives a very smooth distribution of failure criterion 

coefficient, however not all winding angles are suitable to withstand outer pressure. The winding angles which allow 

the pipe withstand 60MPa outer pressure are vary from around 450 to 900.  

For the winding angles close to 00 the failure coefficient smoothly decreases from the inner to the outer pipe 

radius for ],[ αα −  lay-up (Figure 12). For pipe with ],,0[ αα −  lay-up the failure coefficient decreases with the small 

jump between 00 and α  fibre layers from the inner to the outer pipe radius for the winding angles close to 00 (Figure 

10). However, for the pipe with ]90,,,0[ αα −  lay-up the failure coefficient for the winding angles close to 00 decreases 

from the inner to the outer radius in the 00, α  and α−  layers and increases in the outer 900 fibre layer (Figure 11). For 

the winding angles close to 900 the failure coefficient increases from the inner to the outer pipe radius for all three 

considered cases (Figure 10-12). 

Through the thickness variations of failure criterion coefficient for a range of outer pressures (30MPa – 80MPa) 

are shown in Figures 13–16 for different lay-ups. The pipe with [0,30,-30,30,-30,0] lay-up can withstand outer pressure 

no more than 30 MPa (Figure 13). However for the pipe with only outer layer of 00 fibre orientation (Figure 14) the 

maximum outer pressure increases to 35 MPa. 

Figures 15 and 16 show that if we change the winding angle in previous designs from 300 to 600, the pipe will be 

able to withstand the outer pressure up to 80 MPa. 

 

 

4. Conclusions 

 

The paper presents a review of the application of composite materials in oil and gas industry. In particular the potential 

use of different types of composite materials (such as GFRP, PMC, syntactic foams etc.) in the industry is considered. 
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Special attention is paid to long fibre reinforced pipes, focusing on thin and thick walled filament-wound pipes under 

different types of loading.  

As an example of modelling composite pipes, the problem of thick-walled multi-layered filament-wound pipe 

subjected to outer pressure was solved analytically. Taking the outer pressure into account is particularly important for 

well intervention operations and subsea applications. Stress and failure analysis was performed for the pipes with 

different lay-ups subjected to outer pressure of various magnitudes.  

The method presented in this paper can be adopted in the future for modelling multi-layered thick-walled pipes 

with metal layers. The latter would be important for the deep-water offshore applications (such as subsea flexible pipes) 

since for the installations of water depth over 1000m, the composite pipes usually include metal layers to resist the high 

tensile load and external buckling load. 
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Appendix 1. 

 

The stiffness transformation matrix for the coordinate system between the principal material axis and the cylindrical 

axis [63]: 
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where ϕcos=m  and ϕsin=n  (angle ϕ  is the angle between material principal axis along the fibre and cylindrical 

axial axis). 
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Table 1. Properties of carbon/epoxy unidirectional fibre composite (T300/LY5052) [65] 

E1 (GPa) 135 

E2 (GPa) 8 

G12 (GPa) 3.8 

ν12  0.27 

ν23  0.49 

Longitudinal tensile strength (MPa) 1860 

Transverse tensile strength (MPa) 76 

Longitudinal compressive strength (MPa) 1470 

Transverse compressive strength (MPa) 85 

Shear strength (MPa) 98 
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Figure captions. 

Figure 1. Multi-layered filament-wound pipe in cylindrical coordinates (adapted from [64]). 

Figure 2. Through the thickness distribution of stresses. Dashed line is for [60,-60,0] and solid line is for  

[60,-60,60,-60,0] lay-up. 

Figure 3. Through the thickness distribution of stresses. Dashed line is for [0,60,-60] and solid line is for [0,60,-60,60,-

60] lay-up. 

Figure 4. Difference between Tsai-Hill and modified Tsai-Hill failure criterion coefficients (FC modified-FC) vs 

winding angle at outer pressure of 60MPa for ]0,,,0[ αα −  lay-up. 

Figure 5. Difference between Tsai-Hill and modified Tsai-Hill failure criterion coefficients (FC modified-FC) vs 

winding angle at outer pressure of 80MPa for ]0,,,0[ αα −  lay-up. 

Figure 6. Variations of failure criterion coefficient vs winding angle at outer pressure of 30MPa for ]0,,[ αα −  lay-up. 

Figure 7. Variations of failure criterion coefficient vs winding angle at outer pressure of 60MPa for ]0,,[ αα −  lay-up. 

Figure 8. Variations of failure criterion coefficient vs winding angle at outer pressure of 60MPa for ]0,,,0[ αα −  lay-up. 

Figure 9. Variations of failure criterion coefficient vs winding angle at outer pressure of 80MPa for ]0,,,0[ αα −  lay-up. 

Figure 10. Through the thickness variations of failure criterion coefficient for ],,0[ αα − lay-up and 60MPa outer 

pressure. 

Figure 11. Through the thickness variations of failure criterion coefficient for ]90,,,0[ αα − lay-up and 60MPa outer 

pressure. 

Figure 12. Through the thickness variations of failure criterion coefficient for ],[ αα − lay-up and 60MPa outer pressure. 

Figure 13. Through the thickness distribution of failure criterion coefficient for a range of outer pressures with 

]0,30,30,30,30,0[ −−  lay-up. 

Figure 14. Through the thickness distribution of failure criterion coefficient for a range of outer pressures with 

]0,30,30,30,30[ −−  lay-up. 

Figure 15. Through the thickness distribution of failure criterion coefficient for a range of outer pressures with 

]0,60,60,60,60,0[ −−  lay-up. 

Figure 16. Through the thickness distribution of failure criterion coefficient for a range of outer pressures with

]0,60,60,60,60[ −−  lay-up. 
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