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Programmable Neural Logic
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Abstract— Circuits of threshold elements (Boolean input,
Boolean output neurons) have been shown to be surprisingly
powerful. Useful functions such as XOR, ADD and MULTIPLY
can be implemented by such circuits more efficiently than by
traditional AND/OR circuits. In view of that, we have designed
and built a programmable threshold element. The weights
are stored on polysilicon floating gates, providing long-term
retention without refresh. The weight value is increased using
tunneling and decreased via hot electron injection. A weight is
stored on a single transistor allowing the development of dense
arrays of threshold elements. A 16-input programmable neuron
was fabricated in the standard 2m double-poly, analog process
available from MOSIS.

We also designed and fabricated the multiple threshold
element introduced in [5]. It presents the advantage of reducing
the area of the layout from O(n?) to O(n), (n being the number
of variables) for a broad class of Boolean functions, in particular
symmetric Boolean functions such as PARITY.

A long term goal of this research is to incorporate
programmable single/multiple threshold elements, as building
blocks in field programmable gate arrays.

Index Terms—Boolean functions, circuit complexity, digital
logic, floating gate, hot electron injection, threshold logic, tun-
neling.

I. INTRODUCTION

N the field of neuromorphic analog VLSI, most research

implemented by a polynomial-size threshold circuit of constant
depth [3], [23]. In other words, if one is to implement a
threshold circuit to compute the division of twebit integers,

one needs polynomially many, in, threshold elements. On
the other hand, using the traditional logic circuits, composed
of AND, OR and NOT gates, requires exponentially many
gates. That is also the case with simpler functions such as
exclusiveOR and and integer addition.

Many results from the theory of threshold circuits could be
applied to the implementation of circuits on silicon. Results
such as the relationship between the maximal size allowed
for the weights and the power of the resulting element or
circuit [6], [9], not to mention efficient designs f&OR, ADD,
MULTIPLY, and other useful functions, see [13], [14], and
[17]. For example, a simple application of the theory led us
to the introduction of amultiple threshold elemenf5]. The
latter reduces the area of the layout fréain?) to O(n) for
certain Boolean functions, in particular symmetric functions,
such as PARITY.

Our research has three distinct goals.

1) The implementation aspect. To design and implement
efficient threshold elements on silicon.

2) The theoretical aspect. To leverage the work done in
theoretical computer science in order to design high
performance threshold circuits in a systematic way.

deals with implementing neurons that in some way learn ,
or adapt [8], [11], [12]. That is because it is believed that the 3) The programmable aspect. To introduce threshold ele-
power of neural systems comes from their adaptive behavior. MeNts as building blocks in FPGA's.

In fact it has been shown that the function performed by almplementations of threshold circuits were proposed already
neuron—the sum of weighted inputs followed by a thresin the 60’s and 70's [2], [24], [27], and more recently in [14]
old—is by itself (without learning) a powerful building block.and [21]. To our knowledge, the theoretical results on threshold
For many years, theoretical computer science has studfiteuits have not been linked to any work involving silicon
the power of such neurons, in issues related to p0|yn0mimplementations. Programmable neuron-based hardware has
versus exponential size circuits and the general problem kgen recently proposed [20], [22]. In the implementation
NP completeness. The basic problem—build Boolean inpsgction below, we show how those relate to our work. For a
Boolean output threshold circuits, to compute useful Boole&hort overview of FPGA’s see [25]. In Section II, we define the
functions efficiently. Threshold circuits have been shown to hi@ear threshold element. In Section I, we compare threshold
surprisingly powerful [1]. For example, integer division can bgircuits to traditional logic circuits. In Section 1V, we discuss
the programmable aspect of the design. Section V shows the
" _ ed March 22. 1998 revised A -+ 1098, Th VLSI implementation and testing results. Finally, Section VI
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Fig. 1. Linear threshold elemengt= sgn(—t + XI'_; w;x;).

n bits requires at least” ! + 1 gates. Usind_T, one needs
only n + 1 gates.

. N ! N -1 \ It is easy to see thaiT circuits are more powerful thaftON
il \ il \ 1 \ . . . . .
4 ] 5 |1 1= -3 1 circuits. The reason is that for any sing©ON gate there is
) S 4‘ X /an equivalent.T gate, computing the same function. Example
e — 1 shows thd T equivalent ofAND. On the contrary, modtT
AND OR MAJ gates do not have equivalents ADN
Fig. 2. Linear threshold gates for 5-inpAND, OR and Majority. Example 2: (Majority) Consider the function defined by the
weight vector(wo, - -, w;) = (=3,1,1,1,1,1)
Definition 1) (Linear Threshold Function)A linear thresh- [y, w5) = sen(=3 4 21 + 22 + 3 + T4 + 25).

old function ofn variables is a Boolean functioft {0,1}" — |t outputs 1 only when three or more of the inputs are 1. It
{0,1} that can be written, for any input worek:,- -, z,) €  cannot be implemented by a singd\D or OR gate, even if

{0,1}" and a fixed weight vectofuwo, - -+, w,) € Z"*1, 85 e allow some inputs to be negateddT). O
XY — son(F Xy = 4 1, for F(X) >0, One may argue that even thoudiT circuits are more
J(X) = sen(F(X)) = { 0 otherwise powerful, their building blocks are more complex and therefore

will require a larger area in the circuit layout. This argument is

correct to some extent. However, we hope that the exponential
to polynomial decrease in the number of required elements
dominates the penalty introduced by an increase in their size.

. The following section addresses the issue.
Although we could allow the weightsy;, to be real numbers,

it is known [18] that for an arbitrary linear threshold function |\ ProGRAMMABLE VERSUS HARDWIRED WEIGHTS
one can use integers and needs at n@gtlogn) bits per
weight, wheren is the number of inputs.

where

F(X) = —wo + szxz
=1

One can look at FPGA’s as circuits of elements in which
Example 1) (AND):We want to implemeniAND of five the function that each element computes can be programmed,

variables. Consider the function defined by the weight vect t_ig it can be c,hosen among a set of available functions. In
(wo, -+ ,ws) = (=5,1,1,1,1,1) traditional FPGA’s that set consists 8iND, OR and NOT.

We propose a larger collection of functions, namely the set of
flze, - @5) =sgn(=5+x1 + 22 + 23 + 4 + 5). Linear Threshold Functiong,T.
All the information about arL. T gate is contained in the

It outputs 1 only when all inputs are 1, therefore weights and threshold. We consider two ways of implementing

f(zy, -, x5) = AND(zq, -+, x5). the weights.
. . . 1) Hardwired weights are encoded in the width to length
Fig. 2 shows the blqck representation f)falpng with twq ratio of a transistor.
other Boolean functions that can be realized by a singley) programmable weights are stored as non volatile charge
threshold element, the conjunctiddR and the majorityMAJ. on a floating gate.

The latter is defined in Example 2 below. Hardwired weights cannot be changed once the circuit has

been fabricated, while programmable ones can. Hardwired
IIl. NEURAL LOGIC VERSUS CONVENTIONAL LOGIC weights present an interesting problem in terms of automated
Why bother use threshold elements given that any Boolekyout. Some functions such as the comparison function,
functions can be implemented, in a systematic way, by a circebmputer require weights ranging from 1 t6*2%. AND, OR
of AND, OR andNOT gates AON circuit ). The reason is that and all symmetric functions can be implemented with identical
for some functions, such as exclusi@® (XOR), the number weights. This difference implies that using hardwired weights,
of elements in théAON circuit will grow exponentially with someLT gates are larger than others.
the number of bits in the input, [26]. On the other hand, if one Using programmable weights simplifies the layout, and
uses linear threshold elements, the number of gates is linalows one to modify the function that tHel element com-
in the number of input bits. This is shown in Fig. 3 for a 3-biputes. In the next section we describe the details of the
input. In general, a depth-AON circuit computingXOR of  implementation.
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Fig. 4. Schematic of a programmable linear threshold element.

Fig. 6. Magnification of the area shown in Fig. 4 (20én x 350 xm); 4
X 16 transistor array. Inputs are fed through 16 vertical metal 2 lines.

A. Description of Operation

The input transistors serve as multipliers. The multiplication
relies on the fact that the inputs are Boolean, 0 V for a logical
0, and X volts for a logical 1, wher& can vary from1to 5 V.

An input generates current proportional to the corresponding
weight. The sumx? ; w;x; comes naturally as we connect
all transistors to the same drain and source. The threshold is
_ _ _ _ subtracted using a pFET (Fig. 4). That is another difference
Fig. 5. Photograph of the chip area corresponding to Fig. 4. Four thresh%ﬁth the approach of [21] where a capacitive sum of voltages
elements are shown, two programmable (top rows) and two non programmable . .

(bottom rows). The area shown is about 40® x 750 um. The chip was IS USed, rather than a sum of currents. Finally two inverters
fabricated using the 2 technology available from MOSIS. provide hard thresholding pulling the output to logical 0, or

logical 1.

V. IMPLEMENTATION AND RESULTS . .
) . B. Programming the Weights
In [22] the authors have fabricated a neuron-based circuit

that implements an arbitrary Boolean function. We implement e Store the weights on polysilicon floating gates, using
an arbitrary threshold element (a limited set of Boolea® Single transistor per weight, providing long-term retention
functions). The actual function is selected by modifying th&ithout refresh. To program in a new function one modifies the
weights. Fig. 4 shows the schematic. The threshold elemdyRights via tupngllng anq hqt electron Injection, see [14], [.12]'
consists of 16 nFET transistors with common source and dra@fid [28] for similar applications of floating gates. There is a
one pFET and two inverters. In the case of the programmafSi@9le tunneling line pet T element by means of which one
LT element, the 16 transistors are pbase nFET's with AN clear its weights. To program the weight separately we use
isolated poly layer (floating gate). Also for the programmabl@t-électron injection. For example, the weight corresponding
case, an additional nonfloating gate nFET is included. It { €lément: and input ; (transistor (z,7) on Fig. 6), is
used for programming the weights as explained below. addressed t_’y selecting ,I'”’e(F'g' AT) and inputj. In cher
The 16-input threshold element was fabricated using tHgords the pins used as inputs during normal operation of the
standard 2um double-poly, analog process available fronqNip are also used to program in the function, no extra pins
MOSIS. Fig. 5 shows a photograph of the region corresporfd€ Needed (except for one select line per element).
ing to the schematic. It covers an area of about 460 x As shown in [7] an analog memory cell, which is slightly

750 um. Four elements are shown. The input transistors dfP'e complex than the single transistor storage used here, can
on the left, the inverter stage on the right. The 16 inpugore up to 14 _blts of information, an amount largely sufficient
(vertical lines) are fed to all four threshold elements via metfff MOst practical threshold functions.

2, such layout allows one to build dense arrays of threshold ) )

elements. Fig. 6 is a closer view on the<416 array of input C- Measurements and Discussion

transistors. Its dimensions are 2@ x 350 pzm. The top Fig. 7 shows the normal operation of thd element. All

two rows correspond to the two programmable elements, whitguts are set to the same voltage which is varied. The pre-
the bottom two are the fixed weight elements. Notice that timverter and post inverter outputs are shown for different
floating gate transistors (top two rows) are about twice as largalues of the threshold. The latter is set to 1-3, and 4 V. As
as the standard ones (bottom two rows). expected, increasing the input voltage decreases the output.
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Input/Output characteristic of a single element

S5—— -1 T T T T T 1o T

Output voltages, (Volts)
- n w =
— n n o w n ~ o
T : T T T T T

o
o

0 L I L 1 ! | i e
0.5 086 07 0.8 0.9 1 11 1.2 1.3 14

Input voltage, (Volts)

Fig. 7.
= 1-3, and 4 V going from right to left.

Vdd - Threshold (Volts)  Transition Point (Digital Input)
22 f f f t t

} t
[ ]
®
[ ]
2.0 [ ]
[ ]
[ ]
[ ]
1.8 ®
[ ]
[ ]
1.6 [ ]
[ ]
[ ]
L4+
[}
1.2
®

1.0 b ot t } } = }

[ 2 4 6 8 10 12 14

Number of Inputs at 1 Volt

Fig. 8. Vdd — T'hreshold versus the number of 1's in the input.

349
Response to a square wave input at 1Mhz

B 1 ! L A e A v

5
@
g 4T
=
H
[=%
5 3h
[=4
=3
o
@
£ 2j
e}
=
©
=1
g1

of i

- . | | . . . | | )
0 0.2 0.4 06 0.8 1 1.2 1.4 1.8 1.8 2

Time, (seconds)

Input/output operation at different values of the threshold. Threshaigy. 9. Response to a 1 MHz square wave input on all 16 pins.

Hardwired weights are encoded as tHé&/L ratio of the
transistor to which bothg and I, are proportional [15].
That in turn makes the values of the weights lineaiif L
irrespective of the region of operation of the transistor. In the
case of programmable weights, the value of the weights can be
guadratic or exponential in the voltage stored on the floating
gate (see Fig. 8). Such nonlinearities result in a large dynamic
range.

The maximum clock rate was found to be 1 MHz. Both the
input and output are shown. The output is taken after the first
inverter (see Fig. 4). The 16 input pins are all connected to
the same input signal. The output signal is attenuated and lags
behind the input. That is also due in part to the pads used.
Fig. 9 shows the response.

The static power dissipation depends on the particular
value of the inputs and threshold. By varying them a power
dissipation of the order of 1 mW was observed. The maximal
power dissipation occurs at values &f such that the sum
3 w;z; is close to the threshold. At those values we also may
get an unstable behavior; noise may bring the output to either

The lower the voltage on the threshold pin (corresponding kegical 0 or 1. In general in such situations the circuit-delay
a higher threshold of theT element), the higher the voltageis high, since it takes a long time for the output to stabilize.
needed on the input pins, to trigger a transition. The po$dne can avoid this problem by selecting the weighis,in

inverter response is sharper.

such a way that the above situation never occurs. That is, for

We tested the linearity of our threshold element by detectig inputs X, [ w;z;| > ¢, wheree is the margin. For more

details on how to set the margin see [4].

the value of the thresholdyg, at which wy + X8, z; =
0, while varying the number of 1's in the input vector. 1 V The above measurements are meant to provide a qualitative
was used as the value of logical 1. Fig. 8 shows the resifiharacterization of the prototype. In our initial implementation
Notice the square root shape of the data. This illustrates @@ steps were taken in order to optimize parameters such as
important point, the voltage one needs to apply in order to ge@wer dissipation, speed and noise margin. For example, using
a certain value of is not linear inZ. For annFET, operating larger inverter transistors can increase the speed of the circuit,
above or below threshold the contributions of a single inpat the expense of power.
are, respectively

VI. LTM: LT E LEMENT WITH MULTIPLE THRESHOLDS

3
I I%(Vg — Vi)?

I =Ioe"ve/Vr

In [5], the authors introduce a new computing element
based on the linear threshold element. It can be viewed as
a multiple threshold neuron, see [10] and [19]. Instead of
whereVr is the thermal voltage and, 7, andx are constants. the sign function in the LT element it computes an arbitrary
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The output consists of a 4-bit bus addressing a 4-bit memory
W 1 cell. The weighted sum is implemented in the Neuron MOPS
%V‘V ol fashion, as a capacitive sum of voltages, see [16], [21], as
i opposed to a sum of currents used in the layout of ltfie
LT gate LTM gate gate; F|g 4
Fig. 10. Block representation &fT and LTM computing elements.
VII. CONCLUSION
We have fabricated and tested a 16-input programmable lin-
X f1 1 ear threshold element using floating gates to store the weights.
i;:i 24 Such storage requires no refresh and allows the weights to
X5 {8 0 be modified via tunneling and injection. We have fabricated a
v |, 16 n SUM3 second chip implementing a 16-input multi-threshold element.
Y?f 2 . A single multi-threshold element can implemeXOR and
}(2 4 0 integer addition. It takes advantage of the fact that some useful
378 Boolean functions can be implemented by a two-lai@r

circuit in which all elements of the first layer have the same
weights. That allows to reduce the area fréMn?) to O(n),
by implementing the weighted sum only once.
) ] -~ . We focused on a qualitative characterization of the proto-
(Wl_th polynomlaly_mqny transmons_) Boolean function of theiype, as a proof of concept, rather than a quantitative com-
weighted sum of its inputs (see Fig. 10). parison with traditional digital logic. The theoretical results in
What is the advantage &fTM with respect td.-T? We Show  {hreshold logic suggest that the number of elements used in a
that LTM circuits are more amenable in implementation thaireshold circuit is significantly smaller than the corresponding
LT circuits. In particular, the area of the VLSI layout is reducef,mper for digital logic circuits, for certain useful Boolean
from O(n?) in LT circuits toO(n) in LTM circuits, forn input  gynctions, as the number of inputs grows. However, for
symmetric Boolean functions. practical purposes, a thorough, qualitative comparison between

Definition 2: (LT gate with multiple transitions+TM) e “threshold element” and the “traditional digital logic”
A function f is in LTM if there exists a set of weights gjement is required.

w; € Z,1 <4 <n and a functionh: 7 — {0,1} such that

Fig. 11. Addition of two 4-bit integers, using a single layerLdfM gates.
Only bit 3 is shown.

From the practical point of view one possible extension of
this research is to devise a systematic (maybe automated) way
of generating the layout of threshold circuits with hardwired
weights. Another direction of research is to incorporate pro-
The only constraint omh is that it undergoes polynomialy grammable threshold elements as building blocks in FPGA's.
many transitions.

A single LTM element can implement the-input parity
function. A single layer produces multiple addition. Fig. 11
shows theLTM element used to compute bit 3 of the addition The authors would like to thank the reviewers for their
of two 4-bit integers. For more details, examples and proot9mments and V. Koosh for helping with the testing and
to the above claims refer to [4] and [5]. analysis of the chip.

The theoretical results abowfTM can be applied to the
VLSI implementation of Boolean functions. The idea of a
gate with multiple thresholds came to us as we were looking
for an efficient VLS| implementation of symmetric Boolean 1]
functions. Even though a singleT gate is not powerful [2] j 3. Amodei, R. O. Winder, D. Hampel, and T. R. Mayhew, “Digital
circuit techniques,” irProc. Int. Solid-State Circuits Confreb. 1967.

enough to implement any symmetric function, a 2-lay@r s gs.’ Irbroc. Int. Solid-Sta (s ConfFeb. 1967.
it : : ; . W. Beame, S. A. Cook, and H. J. Hoover, “Log depth circuits for
circuit is. The LT; layout of a symmetric function requires division and related problems,” iRroc. 25th IEEE Symp. Foundations

area of O(n?), while using LTM one needs only area of Comput. Scj. 1984.

(X)) = h(Z wzxz> for all X € {0,1}".
i=1
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