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Abstract— Circuits of threshold elements (Boolean input,
Boolean output neurons) have been shown to be surprisingly
powerful. Useful functions such as XOR, ADD and MULTIPLY
can be implemented by such circuits more efficiently than by
traditional AND/OR circuits. In view of that, we have designed
and built a programmable threshold element. The weights
are stored on polysilicon floating gates, providing long-term
retention without refresh. The weight value is increased using
tunneling and decreased via hot electron injection. A weight is
stored on a single transistor allowing the development of dense
arrays of threshold elements. A 16-input programmable neuron
was fabricated in the standard 2�m double-poly, analog process
available from MOSIS.

We also designed and fabricated the multiple threshold
element introduced in [5]. It presents the advantage of reducing
the area of the layout fromO(n2) to O(n); (n being the number
of variables) for a broad class of Boolean functions, in particular
symmetric Boolean functions such as PARITY.

A long term goal of this research is to incorporate
programmable single/multiple threshold elements, as building
blocks in field programmable gate arrays.

Index Terms—Boolean functions, circuit complexity, digital
logic, floating gate, hot electron injection, threshold logic, tun-
neling.

I. INTRODUCTION

I N the field of neuromorphic analog VLSI, most research
deals with implementing neurons that in some way learn

or adapt [8], [11], [12]. That is because it is believed that the
power of neural systems comes from their adaptive behavior.
In fact it has been shown that the function performed by a
neuron—the sum of weighted inputs followed by a thresh-
old—is by itself (without learning) a powerful building block.
For many years, theoretical computer science has studied
the power of such neurons, in issues related to polynomial
versus exponential size circuits and the general problem of
NP completeness. The basic problem—build Boolean input
Boolean output threshold circuits, to compute useful Boolean
functions efficiently. Threshold circuits have been shown to be
surprisingly powerful [1]. For example, integer division can be
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implemented by a polynomial-size threshold circuit of constant
depth [3], [23]. In other words, if one is to implement a
threshold circuit to compute the division of two-bit integers,
one needs polynomially many, in threshold elements. On
the other hand, using the traditional logic circuits, composed
of AND, OR, and NOT gates, requires exponentially many
gates. That is also the case with simpler functions such as
exclusive-OR and and integer addition.

Many results from the theory of threshold circuits could be
applied to the implementation of circuits on silicon. Results
such as the relationship between the maximal size allowed
for the weights and the power of the resulting element or
circuit [6], [9], not to mention efficient designs forXOR, ADD,
MULTIPLY, and other useful functions, see [13], [14], and
[17]. For example, a simple application of the theory led us
to the introduction of amultiple threshold element, [5]. The
latter reduces the area of the layout from to for
certain Boolean functions, in particular symmetric functions,
such as PARITY.

Our research has three distinct goals.

1) The implementation aspect. To design and implement
efficient threshold elements on silicon.

2) The theoretical aspect. To leverage the work done in
theoretical computer science in order to design high
performance threshold circuits in a systematic way.

3) The programmable aspect. To introduce threshold ele-
ments as building blocks in FPGA’s.

Implementations of threshold circuits were proposed already
in the 60’s and 70’s [2], [24], [27], and more recently in [14]
and [21]. To our knowledge, the theoretical results on threshold
circuits have not been linked to any work involving silicon
implementations. Programmable neuron-based hardware has
been recently proposed [20], [22]. In the implementation
section below, we show how those relate to our work. For a
short overview of FPGA’s see [25]. In Section II, we define the
linear threshold element. In Section III, we compare threshold
circuits to traditional logic circuits. In Section IV, we discuss
the programmable aspect of the design. Section V shows the
VLSI implementation and testing results. Finally, Section VI
presents the multiple threshold element mentioned above. This
element was presented in [5] from the theoretical point of view.
It was compared to traditional threshold circuits and (AND,
OR, NOT) circuits. Some of the results in [5] are summarized
in Section VI which also presents an implementation of the
element on a 2 m-technology 2 mm 2 mm chip.

II. M ATHEMATICAL SETTING

A linear threshold element computes a linear threshold
function as shown in Fig. 1.
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Fig. 1. Linear threshold elementy = sgn(�t +�n

i=1
wixi):

Fig. 2. Linear threshold gates for 5-inputAND, OR, and Majority.

Definition 1) (Linear Threshold Function):A linear thresh-
old function of variables is a Boolean function

that can be written, for any input word
and a fixed weight vector as

for
otherwise

where

Although we could allow the weights, to be real numbers,
it is known [18] that for an arbitrary linear threshold function
one can use integers and needs at most bits per
weight, where is the number of inputs.

Example 1) (AND):We want to implementAND of five
variables. Consider the function defined by the weight vector

It outputs 1 only when all inputs are 1, therefore

Fig. 2 shows the block representation ofalong with two
other Boolean functions that can be realized by a single
threshold element, the conjunction,OR, and the majority,MAJ.
The latter is defined in Example 2 below.

III. N EURAL LOGIC VERSUSCONVENTIONAL LOGIC

Why bother use threshold elements given that any Boolean
functions can be implemented, in a systematic way, by a circuit
of AND, OR, andNOTgates (AONcircuit ). The reason is that
for some functions, such as exclusive-OR (XOR), the number
of elements in theAON circuit will grow exponentially with
the number of bits in the input, [26]. On the other hand, if one
uses linear threshold elements, the number of gates is linear
in the number of input bits. This is shown in Fig. 3 for a 3-bit
input. In general, a depth-2,AON circuit computingXOR of

Fig. 3. Neural versus conventional logic. Two circuits computingXOR.

bits requires at least gates. UsingLT, one needs
only gates.

It is easy to see thatLT circuits are more powerful thanAON
circuits. The reason is that for any singleAON gate there is
an equivalentLT gate, computing the same function. Example
1 shows theLT equivalent ofAND. On the contrary, mostLT
gates do not have equivalents inAON.

Example 2: (Majority) Consider the function defined by the
weight vector

It outputs 1 only when three or more of the inputs are 1. It
cannot be implemented by a singleAND or OR gate, even if
we allow some inputs to be negated (NOT).

One may argue that even thoughLT circuits are more
powerful, their building blocks are more complex and therefore
will require a larger area in the circuit layout. This argument is
correct to some extent. However, we hope that the exponential
to polynomial decrease in the number of required elements
dominates the penalty introduced by an increase in their size.
The following section addresses the issue.

IV. PROGRAMMABLE VERSUSHARDWIRED WEIGHTS

One can look at FPGA’s as circuits of elements in which
the function that each element computes can be programmed,
that is it can be chosen among a set of available functions. In
traditional FPGA’s that set consists ofAND, OR, and NOT.
We propose a larger collection of functions, namely the set of
Linear Threshold Functions,LT.

All the information about anLT gate is contained in the
weights and threshold. We consider two ways of implementing
the weights.

1) Hardwired weights are encoded in the width to length
ratio of a transistor.

2) Programmable weights are stored as non volatile charge
on a floating gate.

Hardwired weights cannot be changed once the circuit has
been fabricated, while programmable ones can. Hardwired
weights present an interesting problem in terms of automated
layout. Some functions such as the comparison function,
computer, require weights ranging from 1 to 2 AND, OR
and all symmetric functions can be implemented with identical
weights. This difference implies that using hardwired weights,
someLT gates are larger than others.

Using programmable weights simplifies the layout, and
allows one to modify the function that theLT element com-
putes. In the next section we describe the details of the
implementation.
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Fig. 4. Schematic of a programmable linear threshold element.

Fig. 5. Photograph of the chip area corresponding to Fig. 4. Four threshold
elements are shown, two programmable (top rows) and two non programmable
(bottom rows). The area shown is about 400�m � 750 �m. The chip was
fabricated using the 2� technology available from MOSIS.

V. IMPLEMENTATION AND RESULTS

In [22] the authors have fabricated a neuron-based circuit
that implements an arbitrary Boolean function. We implement
an arbitrary threshold element (a limited set of Boolean
functions). The actual function is selected by modifying the
weights. Fig. 4 shows the schematic. The threshold element
consists of 16 nFET transistors with common source and drain,
one pFET and two inverters. In the case of the programmable
LT element, the 16 transistors are pbase nFET’s with an
isolated poly layer (floating gate). Also for the programmable
case, an additional nonfloating gate nFET is included. It is
used for programming the weights as explained below.

The 16-input threshold element was fabricated using the
standard 2 m double-poly, analog process available from
MOSIS. Fig. 5 shows a photograph of the region correspond-
ing to the schematic. It covers an area of about 400m
750 m. Four elements are shown. The input transistors are
on the left, the inverter stage on the right. The 16 inputs
(vertical lines) are fed to all four threshold elements via metal
2, such layout allows one to build dense arrays of threshold
elements. Fig. 6 is a closer view on the 416 array of input
transistors. Its dimensions are 200m 350 m. The top
two rows correspond to the two programmable elements, while
the bottom two are the fixed weight elements. Notice that the
floating gate transistors (top two rows) are about twice as large
as the standard ones (bottom two rows).

Fig. 6. Magnification of the area shown in Fig. 4 (200�m � 350 �m); 4
� 16 transistor array. Inputs are fed through 16 vertical metal 2 lines.

A. Description of Operation

The input transistors serve as multipliers. The multiplication
relies on the fact that the inputs are Boolean, 0 V for a logical
0, and X volts for a logical 1, where can vary from 1 to 5 V.
An input generates current proportional to the corresponding
weight. The sum, comes naturally as we connect
all transistors to the same drain and source. The threshold is
subtracted using a pFET (Fig. 4). That is another difference
with the approach of [21] where a capacitive sum of voltages
is used, rather than a sum of currents. Finally two inverters
provide hard thresholding pulling the output to logical 0, or
logical 1.

B. Programming the Weights

We store the weights on polysilicon floating gates, using
a single transistor per weight, providing long-term retention
without refresh. To program in a new function one modifies the
weights via tunneling and hot electron injection, see [11], [12],
and [28] for similar applications of floating gates. There is a
single tunneling line perLT element by means of which one
can clear its weights. To program the weight separately we use
hot-electron injection. For example, the weight corresponding
to element and input (transistor on Fig. 6), is
addressed by selecting line(Fig. 4) and input In other
words the pins used as inputs during normal operation of the
chip are also used to program in the function, no extra pins
are needed (except for one select line per element).

As shown in [7] an analog memory cell, which is slightly
more complex than the single transistor storage used here, can
store up to 14 bits of information, an amount largely sufficient
for most practical threshold functions.

C. Measurements and Discussion

Fig. 7 shows the normal operation of theLT element. All
inputs are set to the same voltage which is varied. The pre-
inverter and post inverter outputs are shown for different
values of the threshold. The latter is set to 1–3, and 4 V. As
expected, increasing the input voltage decreases the output.
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Fig. 7. Input/output operation at different values of the threshold. Threshold
= 1–3, and 4 V going from right to left.

Fig. 8. V dd � Threshold versus the number of 1’s in the input.

The lower the voltage on the threshold pin (corresponding to
a higher threshold of theLT element), the higher the voltage
needed on the input pins, to trigger a transition. The post-
inverter response is sharper.

We tested the linearity of our threshold element by detecting
the value of the threshold, at which
0, while varying the number of 1’s in the input vector. 1 V
was used as the value of logical 1. Fig. 8 shows the result.
Notice the square root shape of the data. This illustrates an
important point, the voltage one needs to apply in order to get
a certain value of is not linear in For annFET, operating
above or below threshold the contributions of a single input
are, respectively

where is the thermal voltage and and are constants.

Fig. 9. Response to a 1 MHz square wave input on all 16 pins.

Hardwired weights are encoded as the ratio of the
transistor to which both and are proportional [15].
That in turn makes the values of the weights linear in
irrespective of the region of operation of the transistor. In the
case of programmable weights, the value of the weights can be
quadratic or exponential in the voltage stored on the floating
gate (see Fig. 8). Such nonlinearities result in a large dynamic
range.

The maximum clock rate was found to be 1 MHz. Both the
input and output are shown. The output is taken after the first
inverter (see Fig. 4). The 16 input pins are all connected to
the same input signal. The output signal is attenuated and lags
behind the input. That is also due in part to the pads used.
Fig. 9 shows the response.

The static power dissipation depends on the particular
value of the inputs and threshold. By varying them a power
dissipation of the order of 1 mW was observed. The maximal
power dissipation occurs at values of such that the sum

is close to the threshold. At those values we also may
get an unstable behavior; noise may bring the output to either
logical 0 or 1. In general in such situations the circuit-delay
is high, since it takes a long time for the output to stabilize.
One can avoid this problem by selecting the weights,in
such a way that the above situation never occurs. That is, for
all inputs where is the margin. For more
details on how to set the margin see [4].

The above measurements are meant to provide a qualitative
characterization of the prototype. In our initial implementation
no steps were taken in order to optimize parameters such as
power dissipation, speed and noise margin. For example, using
larger inverter transistors can increase the speed of the circuit,
at the expense of power.

VI. LTM: LT E LEMENT WITH MULTIPLE THRESHOLDS

In [5], the authors introduce a new computing element
based on the linear threshold element. It can be viewed as
a multiple threshold neuron, see [10] and [19]. Instead of
the sign function in the LT element it computes an arbitrary
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Fig. 10. Block representation ofLT andLTM computing elements.

Fig. 11. Addition of two 4-bit integers, using a single layer ofLTM gates.
Only bit 3 is shown.

(with polynomialy many transitions) Boolean function of the
weighted sum of its inputs (see Fig. 10).

What is the advantage ofLTM with respect toLT? We show
that LTM circuits are more amenable in implementation than
LT circuits. In particular, the area of the VLSI layout is reduced
from in LT circuits to in LTM circuits, for input
symmetric Boolean functions.

Definition 2: (LT gate with multiple transitions—LTM)
A function is in LTM if there exists a set of weights

and a function such that

The only constraint on is that it undergoes polynomialy
many transitions.

A single LTM element can implement the-input parity
function. A single layer produces multiple addition. Fig. 11
shows theLTM element used to compute bit 3 of the addition
of two 4-bit integers. For more details, examples and proofs
to the above claims refer to [4] and [5].

The theoretical results aboutLTM can be applied to the
VLSI implementation of Boolean functions. The idea of a
gate with multiple thresholds came to us as we were looking
for an efficient VLSI implementation of symmetric Boolean
functions. Even though a singleLT gate is not powerful
enough to implement any symmetric function, a 2-layerLT
circuit is. The layout of a symmetric function requires
area of while using LTM one needs only area of

Implementing a generalized symmetric function in
requires up to LT gates in the first layer. Those have the same
weights except for the threshold Instead of laying out

times the same linear sum we do it once and
compare the result to different thresholds. The resulting
circuit corresponds to a singleLTM gate. The layout is
redundant, it has copies of each weight, requiring area of
at least On the other hand,LTM performs a single
weighted sum, its area requirement is

One such element was fabricated on a 2 mm2 mm
chip, using 2 m technology from MOSIS. It has 16 inputs.

The output consists of a 4-bit bus addressing a 4-bit memory
cell. The weighted sum is implemented in the Neuron MOPS
fashion, as a capacitive sum of voltages, see [16], [21], as
opposed to a sum of currents used in the layout of theLT
gate; Fig. 4.

VII. CONCLUSION

We have fabricated and tested a 16-input programmable lin-
ear threshold element using floating gates to store the weights.
Such storage requires no refresh and allows the weights to
be modified via tunneling and injection. We have fabricated a
second chip implementing a 16-input multi-threshold element.
A single multi-threshold element can implementXOR and
integer addition. It takes advantage of the fact that some useful
Boolean functions can be implemented by a two-layerLT
circuit in which all elements of the first layer have the same
weights. That allows to reduce the area from to
by implementing the weighted sum only once.

We focused on a qualitative characterization of the proto-
type, as a proof of concept, rather than a quantitative com-
parison with traditional digital logic. The theoretical results in
threshold logic suggest that the number of elements used in a
threshold circuit is significantly smaller than the corresponding
number for digital logic circuits, for certain useful Boolean
functions, as the number of inputs grows. However, for
practical purposes, a thorough, qualitative comparison between
the “threshold element” and the “traditional digital logic”
element is required.

From the practical point of view one possible extension of
this research is to devise a systematic (maybe automated) way
of generating the layout of threshold circuits with hardwired
weights. Another direction of research is to incorporate pro-
grammable threshold elements as building blocks in FPGA’s.
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