Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

decentralizeとmapreduceに関するHeavyFeatherのブックマーク (5)

  • Scala on Hadoop: Hadoop Conference - stanaka's blog

    先日、Hadoop ConferenceでScala on Hadoopというタイトルで発表してきました。スライドを以下に置いておきます。 Scala on HadoopView more presentations from Shinji Tanaka. ダイジェストとして、ScalaをHadoopで動かすための方法を書いておきます。 まず、Hadoop上でScalaを実行させるためには、JavaScalaを接続するライブラリが必要となります。ここでは、SHadoop( http://code.google.com/p/jweslley/source/browse/#svn/trunk/scala/shadoop )を使用します。SHadoopは、型変換を行うシンプルなライブラリです。 よくあるWordCountのサンプル、WordCount.scala (http://blog.jo

    Scala on Hadoop: Hadoop Conference - stanaka's blog
  • 優良企業はなぜHadoopに走るのか

    ちなみに、この分析のために必要とされるMapReduceのコードであるが、そのサイズはわずか20ステップだという。Yahoo!のプレゼンテーターである、エリック・バルデシュバイラー氏によると、たとえ経験の浅いエンジニアであっても、MapReduceによるプログラミングは可能であるとされる。 また、VISAのジョー・カニンガム氏からも、貴重なデータが提供されていたので以下に紹介する。同社では、1日に1億トランザクションが発生するため、2年間で700億強のトランザクションログが蓄積され、そのデータ量は36テラバイトに至るという。こうしたスケールのデータを、従来のRDBを用いて分析するには、約1カ月の時間が必要とされてきたが、Hadoopを用いることで13分に短縮されたという。 これまでは、Yahoo!にしろVISAにしろ、膨大なデータをRDBに押し込むほかに方法はなく、その分析に数十日を要する

    優良企業はなぜHadoopに走るのか
  • クックパッドとHadoop - クックパッド開発者ブログ

    はじめまして。今年の5月に入社した勝間@さがすチームです。 入社してからは、なかなか大変なことも多いですが、最近はお酒好きが集まって月曜から飲み合う 「勝間会」なるものも発足して、仕事面でも仕事以外の面でも密度の高い毎日を過ごしています! さて、僕は「さがす」チーム所属ということで、普段はレシピを「さがす」ユーザの満足度を上げるために、 クックパッドの検索まわりについて、いろいろな開発を行っています。 一方で、ユーザの「さがす欲求」について深く知るために、大規模なデータ解析を行い、欲求の分析を行う機会も増えてきました。 ところが、クックパッドのログは膨大な数があるので、一口のデータ解析と言っても通常のバッチ処理だと間に合わないため、 分散処理環境の必要性が高まってきました。 そこで、まずは手軽に試せる分散処理の王道ということで、最近ではHadoopを使ったデータ解析環境を整備しています。

    クックパッドとHadoop - クックパッド開発者ブログ
  • アマゾン、ウィザードだけで使えるHadoopサービス開始 - @IT

    2009/04/02 米アマゾンの子会社、Amazon Web Services(AWS)は4月2日、多数のOSインスタンスを起動して大規模分散処理を行える「Amazon Elastic MapReduce」のベータサービスを開始した。 Amazon Elastic MapReduceは、オープンソースの分散処理フレームワークApache Hadoop 0.18.3を利用したサービスで、Webブラウザベースの管理コンソールやコマンドラインツール、APIを使ってジョブを投入することで、大量データの解析や計算量の多い科学計算、統計処理が可能。大量のログ処理や機械学習、金融計算、データマイニング、Webサイトのインデクシング処理などに使えるという。 ジョブを処理するノードは、従来からAWSが提供しているAmazon EC2で稼働し、データの入出力にはAmazon S3が使える。データの入力にはイ

  • Hadoop、hBaseで構築する大規模分散データ処理システム:CodeZine

    はじめに この連載では、大規模分散計算フレームワーク「Hadoop」と、その上につくられた大規模分散データベース「hBase」の仕組みと簡単なサンプルアプリケーションを紹介します。HadoopとhBaseは、Googleの基盤ソフトウェアのオープンソースクローンです。機能やコンセプトについては、Googleが発表している学術論文に依っています。 これらの学術論文によると、Googleでは大規模分散ファイルシステム「Google File System」、大規模分散計算フレームワーク「MapReduce」、大規模分散データベース「BigTable」、分散ロックサービス「Chubby」という4つのインフラソフトウェアが使われています。 図1にGoogleの基盤技術間の依存関係、そしてそれに対応するOSSの対応関係を示しました。まずは対応するGoogleの基盤技術それぞれの機能や特徴をざっくりと

  • 1