NumPyは、多次元配列を扱う数値演算ライブラリです。機械学習だけでなく画像処理、音声処理などコンピュータサイエンスをするならNumPyを学んでおくことで、あなたの日々の研究や開発の基礎力は格段にアップするはずです。 プログラミングの初心者から、Webエンジニア、これから研究する人など、初学者にも分かりやすく優しく説明することを心がけて必要な知識が身につくように解説しています。 腰を据えて学習する時間と余裕のある方は、Step1から順に進めていくことで、苦手意識のあった方でも一通り読み終わる頃には理解できなかったPythonとNumPyのソースコードがスラスラと読めるようになるはずです。 上級者の方は、分からない記事だけ読むだけでも、力になると思われます。あなたのプログラミング能力を向上する手助けになることをお約束します。このサイトを通して、コンピュータサイエンスに入門しましょう。 Ste
皆さんこんにちは お元気ですか。 Twitter上で突然賑わった、Autogradについて 書いてみることにします。 Autogradとは Autogradについての説明 github.com Autogradはnumpyらしく書くことができ、その記載した式を微分してくれるライブラリです。(in Python) 現状、Pythonとtorch(lua)にて実装があるようです。 Theanoとの違いはシンボルを定義せず、数値計算した内容を直接渡すことができます。といったところでしょうか。正直自動微分は新しくないものです。(Theanoがありますので) 悲しいことにPythonのAutogradは現状、GPU演算を行うことができません。 testの中にGPU関係の内容はあるようですが、 一応featureにGPU operationsのサポートとして掲載されていますね。 Install sud
このところ、たびたび NumPy 後継が...とか 並列処理が...という話を聞くので、この秋 注目の多次元配列パッケージをまとめたい。 バックエンド系 NumPy のように数値計算処理を自前で実装しているパッケージ。 DyND Blaze プロジェクトのひとつ。C++ 実装 + Python バインディング。GitHub にいくつか Example があがっているが、複合型やカテゴリカル型、GroupBy 操作がサポートされていて熱い。ラベルデータも NumPy より簡単に実装できそうだ。 speakerdeck.com 並列分散系 自身では直接 数値計算処理を行わず、バックエンド ( 主に NumPy )を利用して並列/分散処理を行うパッケージ。1 物理PC/複数コアでの並列計算を主用途とし、NumPy, pandas では少し苦しいが PySpark などを使うほどじゃない...とい
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く