どもっす。林岳彦です。ファミコンソフトの中で一番好きなのは『ソロモンの鍵』です*1。 さて。 今回は、因果関係と相関関係について書いていきたいと思います。「因果関係と相関関係は違う」というのはみなさまご存知かと思われますが、そこをまともに論じていくとけっこう入り組んだ議論となります。 「そもそも因果とは」とか「因果は不可知なのか」のような点について論じるとヒュームから分析哲学(様相論理)へと語る流れ(ここのスライド前半参照)になりますし、統計学的に因果をフォーマルに扱おうとするとRubinの潜在反応モデルやPearlのdo演算子やバックドア基準(ここのスライド後半参照)の説明が必要になってきます。 その辺りのガッツリした説明も徐々に書いていきたいとは考えておりますが(予告)、まあ、その辺りをいちどきに説明しようというのは正直なかなか大変です。 なので今回は、あまり細かくて遭難しそうな話には
どもお久しぶりです。林岳彦です。ローソンなどで売ってるいなばのタイカレーはそうめんのつけ汁として使ってもマジうまいのでオススメです。 さて。 今回は前々回の記事: 因果関係がないのに相関関係があらわれる4つのケースをまとめてみたよ(質問テンプレート付き) - Take a Risk:林岳彦の研究メモ の続編として、逆のケースとなる「因果関係があるのに相関関係が見られない」ケースについて見ていきたいと思います。あんまり長いと読むのも書くのも大変なので、今回はまずは前編として「検定力の問題」に絞って書いていきます。 (*今回は上記の前々回の記事での記述を下敷きに書いていきますので、分からないところがあったら適宜前々回の記事をご参照ください) まずは(今回の記事における)用語の定義:「相関」と「因果」 今回も少しややこしい話になると思うので、まずは用語の定義をしておきたいと思います。(*細かいと
ビジネス書の杜 令和 大人のビジネスパーソンのための書籍紹介をコンセプトに、パソコン通信の時代から25周年になるのを機に、ブログ版として復活させます。 ビクター・マイヤー=ショーンベルガー、ケネス・クキエ(斎藤 栄一郎訳)「ビッグデータの正体 情報の産業革命が世界のすべてを変える」、講談社 (2013) <紙版><Kindle版> お奨め度:★★★★★+α ビックデータについて論じた唯一の本だと言われている「Big Data: A Revolution That Will Transform How We Live, Work, and Think」の翻訳。ビックデータについて、その本質を知りたい人は、必読。最近、JR東日本がSuicaのデータの販売を始めて話題になっている。これが何を意味しているかをきちんと理解できていないのであれば、自分のためにも読んでおくことをお奨めしたい一冊。 まず
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く