BigQuery は、AI に対応したフルマネージドのデータ分析プラットフォームで、データから最大限の価値を引き出すのに役立ちます。また、マルチエンジン、マルチフォーマット、マルチクラウド向けに設計されています。 1 か月あたり 10 GiB のデータを保存し、最大 1 TiB のクエリを無料で実行できます。新規のお客様には、BigQuery やその他の Google Cloud プロダクトでご利用いただける無料クレジット $300 分を差し上げます。
吉積:吉積情報 代表取締役 吉積礼敏。アクセンチュア出身で現在Google専門の開発会社を経営。Google社員以外の⽇本人として初めてGoogle Apps Certified Deployment Specialistを取得。2014年3⽉、日本人として初めてGCPのQualified Developer5種⽬合格。 上田:ソフトウェアエンジニア 上田哲広。Web系の開発でGoogle App Engineを使ったことがきっかけでコミュニティに参加し、現在はGoogle Developers Expertとして活動中。サーバーサイドでGCPやAWSを使っており、最近はAndroidやiOSのアプリも開発している。好きな言語はGoとPython。 得上:オークファンサービス基盤技術部長 得上竜一。新会社に移って、ますます意気盛んなML(Machine Learning)の第一人者。最近は
本書は、クラウド上でSQLを使ってビッグデータを解析するGoogle BigQueryについて包括的に解説する書籍です。Google BigQueryの使い方から内部動作、そしてBigQueryならではのSQLの活用法、サードパーティのツールとの連携までを詳しく解説します。また、BigQueryを支えるGoogleのインフラストラクチャについても総覧しており、現代最高の超巨大インフラストラクチャの姿を知ることができます。BigQueryの全体像をマスターできる本書は、ビッグデータをSQLで活用したいデータサイエンティスト、ソフトウェア開発者必携の一冊です。 訳者まえがき はじめに I部 BigQueryの基礎知識 1章 Googleにおけるビッグデータの物語 1.1 ビッグデータスタック 1.0 1.2 ビッグデータスタック 2.0(そしてその先にあるもの) 1.3 オープンソースのスタッ
なぜDMMがweb3に参入したのか。Seamoon Protocolが目指す新たなエンタメ体験の未来とは
gcp ja night #28 に参加してきたので、色々まとめるよー。スライド資料を見ればわかるようなことは書かない方向で。 懇親会の場で、Googler の佐藤さんに、前から気になってたことをいくつか質問できたので、その内容もこのエントリの最後にメモっとく。 イベントページ gcp ja night #28 - connpass 各種まとめ 2014.09.16 gcp ja night #28 #gcpja - Togetter gcp ja night #28 - 資料一覧 - connpass Managed VMのDocker対応とKubernetes最新動向 @briandorsey by Brian Dorsey, Developer Advocate, Google Inc. 僕の観測範囲では、スライド資料の公開はなし GAE などのような PaaS を使いつつ、IaaS
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
先日、有志で集まって「BigQuery Analytics」という書籍の読書会をやった。その名の通り Google BigQuery について書かれた洋書。 BigQuery を最近仕事で使い始めたのだが、BigQuery が開発された背景とかアーキテクチャーとかあまり調べもせずに使い始めたので今更ながらその辺のインプットを増やして以降と思った次第。 それで、読書会の第1回目は書籍の中でも Overview に相当するところを中心に読み合わせていった。それだけでもなかなかに面白かったので少しブログにでも書いてみようかなと思う。 BigQuery の話そのものも面白いが、個人的には Google のインフラが書籍『Google を支える技術』で解説されたものが "Big Data Stack 1.0" だとして、BigQuery は Big Data Stack 2.0 の上に構築されており
Twitterで「早く今流行のMPPの大まかな使い方の違い書けよ!」というプレッシャーが半端ないのでてきとうに書きます.この記事は俺の経験と勉強会などでユーザから聞いた話をもとに書いているので,すべてが俺の経験ではありません(特にBigQuery).各社のSAの人とかに聞けば,もっと良いアプローチとか詳細を教えてくれるかもしれません. オンプレミスの商用MPPは使ったことないのでノーコメントです. MPP on HadoopでPrestoがメインなのは今一番使っているからで,Impalaなど他のMPP on Hadoop的なものも似たような感じかなと思っています. もちろん実装の違いなどがあるので,その辺は適宜自分で補間してください. 前提 アプリケーションを開発していて,そのための解析基盤を一から作る. 簡単なまとめ データを貯める所が作れるのであれば,そこに直接クエリを投げられるPre
こんにちは。夏休みに長野に行って居酒屋で馬刺しをたらふく食べていたら 地元のおっさん人生の大先輩の絡み酒に付き合わされた祖山です。 4月に入社して以降、サーバサイドのWeb開発やスクラムの導入、サイト内検索の改善など様々な業務に 取り組んでいますが、最近の大きな案件としては、アクセスログ解析基盤の整備がありました。 nginxのアクセスログを分析しやすい環境を作るため、ElasticsearchとBigQueryにログを蓄積し始めたのですが、 その際に一番のキモとなるのは、みんな大好きfluentdです。 今回は、我々ハウテレビジョンがどのようにアクセスログを収集、保存しているのかについて、fluentdの設定を中心にご紹介します。 アクセスログ収集の目的 現在の我々のサービス環境を考慮すると、アクセスログの収集には下記2つの目的が存在します。 アクセス情報をもとにユーザーの行動を解析 閲
Twitter のタイムラインを保存しておくとなにかと便利なので、色々と保存形式を変えながら 4 年くらい記録し続けている。ツイートの保存が便利すぎるので、ツイセーブというサービス化までした。かつてはテキストで、MongoDB や MySQL とか Groonga とかいろいろやってきた。どれも問題ないんだけど、増え続けるログデータを保存する場所として考えると BigQuery が現代にマッチしてるようなのでそちらに移行した。 BigQuery に TL を保存するとできること TL の全てのデータをフルスキャンできる。これはかなり便利で、今回このブログ記事を書くにあたっても ‘BigQuery’ を TL から検索すれば、信頼できるフォローイングの人々の声を見ることができた。これにより「某 CA 社では 5000 台の MongoDB クラスタで BigQuery に対抗している」という
From Fluentd Meetupに行ってきました これを読んだ時、BigQueryの検索スピードについてちょっと補足したくなった。確かにFluentd Meetupのデモでは9億件を7秒程度で検索していたが、BigQueryの真の実力はこれより1〜2ケタ上だからだ。ちょっと手元で少し大きめのテーブルで試してみたら、120億行の正規表現マッチ付き集計が5秒で完了した。論より証拠で、デモビデオ(1分16秒)を作ってみた: From The Speed of Google BigQuery これは速すぎる。何かのインチキである(最初にデモを見た時そう思った)。正規表現をいろいろ変えてみてもスピードは変わらない。つまり、インデックスを事前構築できないクエリに対してこのスピードなのである。 価格も安い。さすがに120億行のクエリは1回で200円もかかって気軽に実行できなさそうであるが、1.2億
HadoopのSQL対応分散クエリエンジン「Cloudera Impala」。Clouderaがオープンソースで公開 Hadoopのディストリビューションベンダとして知られるClouderaは10月25日、SQLに対応し、データの分析速度はMapReduceよりも何倍も高速だという新しい分散クエリエンジン「Cloudera Impala」(製品名「Cloudera Enterprise RTQ」)をオープンソースで公開しました。 これまでHadoopでは内部でMapReduceと呼ばれる処理が用いられていましたが、ImpalaではMapReduceを使わず、Clouderaが2年かけて開発した独自の分散クエリエンジンを用いて処理を行います。Hiveの上位互換のSQLが利用でき、Hive/MapReduceで数分かかっていた応答時間を数秒に短縮すると説明されています。 グーグルのDremel
『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day
グーグルのBigQuery、高速処理の仕組みは「カラム型データストア」と「ツリー構造」。解説文書が公開 SQLのクエリに対応し、3億件を超えるデータに対してインデックスを使わないフルスキャン検索で10秒以内に結果を出す。グーグルのBigQueryは大規模なクエリを超高速で実行する能力を提供するサービスです。その内部を解説する文書「An Inside Look at Google BigQuery」(PDF)を公開しました。 グーグルは大規模クエリを実行するサービスとして社内でコードネーム「Dremel」を構築しており、2010年にそのDremelを解説する文書「Dremel: Interactive Analysis of Web-Scale Datasets」を公開しています。BigQueryは、そのDremelを外部公開向けに実装したものです。 グーグルはこのDremel/BigQue
「数兆件のデータも対話的に、高速に分析できる」。グーグルは5月19日にこのような表現で新しいサービス「BigQuery」の登場を紹介するエントリを、ブログにポストしています。 グーグルが公開したBigQueryは、Hadoopやデータウェアハウスなどを用いて多くの企業が行おうとしている大規模データ(いわゆる「Big Data」)の分析を、グーグルのクラウドで可能にします。利用者はGoogle Storage経由で大規模データを転送し、SQLライクな命令によって抽出や分析を行います。 まるでグーグルが大規模データ処理のMapReduceをホスティングし、その機能をサービスとして提供するようなものがBigQueryといえます(ただし公開された「BigQuery」の説明には、内部でMapReduceを利用しているのかどうかの記述はないのため、MapReduce「的」なサービスと表現すべきかもしれ
Stay organized with collections Save and categorize content based on your preferences. BigQuery is Google Cloud's fully managed, petabyte-scale, and cost-effective analytics data warehouse that lets you run analytics over vast amounts of data in near real time. With BigQuery, there's no infrastructure to set up or manage, letting you focus on finding meaningful insights using GoogleSQL and taking
BigQueryはカラム型データストアの一種で、テラバイトクラスの大規模データに対して大量の並列処理を行うことで高速に結果を得ることが可能。グーグル 佐藤一憲氏の発言によると、 OLAP/DWH/Data Miningで行われるようなread onlyのad hocクエリをきわめて高速(数秒〜数十秒)に実行します。 とのこと。 SQLによる問い合わせが可能 この高速性に加え、BigQueryではSQLを問い合わせ言語に使えるという点にも大きな特徴があります。数秒程度のレスポンスとSQL文による記述は、大規模データに対するアドホックな処理を行うのに適したサービスだといえるでしょう。 BigQueryのSQLの構文は「Query Reference」で解説されていますが、SELECT文にFROM、WHERE、JOIN、HAVING、GROUP BY、ORDER BY、LIMITなどが使えるため
情報と技術は未来をどう変えるのか──IT、スマートデバイス、ロボット、電子工作、メディアのアーキテクチャ Google勤務のKazunori SatoさんがGoogle+に簡潔な解説をポストしてくれています。 ポスト1 BigQueryが一般公開されました!数100億件の全検索が数十秒で完了する超並列クエリサービスで、MapReduceと並びGoogleの根幹を支える虎の子技術です。 Google BigQuery brings Big Data analytics to all businesses - Google Developers Blog ポスト2 BigQueryプチ解説:BigQueryはGoogle社内では「Dremel」と呼ばれる超並列クエリインフラを利用した一般向けサービスです。DremelはSybase IQやOracle Exadataと同様のColumar DB
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く