※1 Pythonコードは、Google Colaboratoryのジュピター・ノートブックの環境で実行することにより動作します。 詳細は、本教材の「参考テキスト」p.159~を参照ください。 ※2「clst.csv」のデータの一部については、自然科学研究機構 国立天文台より2次利用の許可を得て掲載しております。 出典:国立天文台編「理科年表2021」,丸善出版(2020)
※随時更新、本記事は、親記事「 anond:20211018163759 」も合わせて読むことを推奨しております。 色々なぶくまで紹介される Python 等の資料について、一応初心者は脱している身として、私見を元に初心者に向けたおすすめ度を紹介していく。 ★~★★★★★ で個人的なおすすめ度も示している。 ゼロからのPython入門講座:★★★★URL: https://www.python.jp/train/index.html Python 情報サイトの老舗である Python Japanの初心者向けコンテンツ。若干覚える量が多いので挫折が心配になる分量ではあるが、普通の初心者を意識した内容であり、初学者にもおすすめできる範囲の内容と考える。 勿論、有償の書籍のほうが充実したものも多いだろうが、無償の中では比較的初心者向け。 paiza ラーニング:★★★★URL: https://
はじめに みなさん競馬はお好きでしょうか? 私は今年から始めた初心者なのですが、様々な情報をかき集めて予想して当てるのは本当に楽しいですね! 最初は予想するだけで楽しかったのですが、『負けたくない』という欲が溢れ出てきてしましました。 そこで、なんか勝てる美味しい方法はないかな〜とネットサーフィンしていたところ、機械学習を用いた競馬予想というのが面白そうだったので、勉強がてら挑戦してみることにしました。 目標 競馬の還元率は70~80%程度らしいので、適当に買っていれば回収率もこのへんに収束しそうです。 なのでとりあえず、出走前に得られるデータを使って、回収率100パーセント以上を目指したいと思います! 設定を決める 一概に競馬予測するといっても、単純に順位を予測するのか、はたまたオッズを考えて賭け方を最適化するのかなど色々とあると思います。また、買う馬券もいろいろな種類があります。 今回
画像は「巣ごもりDXステップ講座情報ナビ」より 経済産業省は、人工知能(AI)やデータサイエンスなどのデジタルスキルを学べる、無料オンライン講座を紹介する「巣ごもりDXステップ講座情報ナビ」を公開している。 この記事では、同サイトに載っている無料の学習コンテンツのなかから、AIおよびデータサイエンス関連の入門講座を5つ抜粋して紹介する。 1.DXの事例や何をすべきか学べる講座が無料に 株式会社チェンジが提供する「デジタルトランスフォーメーションの基礎」では、DXの基礎について、DXとは何か、DXの事例、DXに向けて何をすれば良いのかを学べる。 受講対象者は「デジタルを活用し、事業や会社を変化させたい人」「DXという言葉は知っているが、なぜ重要なのか、また何から始めたら良いかわからない人」。前提知識は特になし。標準受講時間は各コンテンツが約10~15分程度で、総視聴時間は約38分。 2.AI
画像はUnsplashより 在宅時間が増加したであろう現在は、学生や社会人が人工知能(AI)やデータサイエンスについて身につける絶好のチャンスと言える。「AIについて何か勉強したい」「統計学について知りたい」という人も少なくないのでは。 近頃、Pythonなどのプログラミングについて勉強したり、データサイエンスについて知識を深めたりできる学習コンテンツが無料で公開される機会が増えつつある。そこで、2021年1月27日現在、無料で学べるAIやデータサイエンス関連の学習コンテンツを集めてみた。 総務省、社会人のためのデータサイエンス入門を無料開講 総務省は2021年1月12日開講した「誰でも使える統計オープンデータ」に先駆け、「社会人のためのデータサイエンス入門」を特別開講している。登録料および受講料は無料。 本講座では入門編として、統計学の基礎やデータの見方・データの取得方法などを学べる。統
※最新版(2021年バージョン)がこちらにありますので合わせてご覧ください! 毎年恒例, Python本と学び方の総まとめです!*1 プログラミング, エンジニアリングに機械学習と今年(2019年)もPythonにとって賑やかな一年となりました. 今年もたくさん出てきたPythonの書籍や事例などを元に, 初心者向けの書籍・学び方 仕事にする方(中級者)へのオススメ書籍 プロを目指す・もうプロな人でキャリアチェンジを考えている方へのオススメ を余す所無くご紹介します. 来年(2020年)に向けての準備の参考になれば幸いです. ※ちなみに過去に2019, 2018, 2017と3回ほどやってます*2. このエントリーの著者&免責事項 Shinichi Nakagawa(@shinyorke) 株式会社JX通信社 シニア・エンジニア, 主にデータ基盤・分析を担当. Python歴はおおよそ9年
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く