You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
その他のサンプル: Wikipedia:良質な記事, Wikipedia:長いページ 紹介 「テキストゆれないくん」は文章に含まれる表記揺れを検出するツールです。「コンピュータ」と「コンピューター」、あるいは「全て」と「すべて」といった同じ単語の別表記が使われていないかどうかをチェックできます。 「テキストゆれないくん」は元々このサイト (https://inzkyk.xyz/) の文章校正用に開発されました。機能が成熟してきたので UI を付けて公開します。 このページから手動で使う限り、「テキストゆれないくん」は商用/非商用を問わず自由に使って構いません。「テキストゆれないくん」は無保証で提供されます。 特徴 ウェブブラウザから使える このページをウェブブラウザで開いているなら、「テキストゆれないくん」は既に動いています。このページの最初にあるのは「テキストゆれないくん」を使うための完
「+Plus」プランではPDFファイルの校正が可能になります。エンタープライズプラン、プレミアムプランをご利用中・トライアル中のお客さまは無料でお試しいただけます。 詳しくはこちら プレミアム+Plus エンタープライズ+Plus
ライブラリのアプリ化 現代のニュースをくずし字で読んでみませんか?内容がわかるテキストをくずし字で読んでみると、くずし字に対する印象が変わるかもしれません。 edomi ニュース その他の事例については、活用事例を参照してください。 構成 古活字とくずし字 そあん(soan)で用いる「古活字」とは、今から400年ほど前に使われた印刷技術に由来する言葉です。一方「くずし字」とは、くずして書かれた文字を指す言葉です。くずし字は、印刷では古活字版だけでなく整版印刷にも使われましたし、写本などの手書きの文字(草書体)も、その多くはくずし字です。一方、古活字の中には、文字を崩していないものもあります。このように、古活字は印刷技術を指す言葉、くずし字は文字の形を指す言葉、という違いがあります。 そあん(soan)は、テキストをくずし字画像に変換する方法として、古活字画像を組み合わせる方法を用いるサービ
Jagger - C++ implementation of Pattern-based Japanese Morphological Analyzer About Jagger is a fast, accurate, and space-efficient morphological analyzer [1] inspired by the dictionary-based longest matching for tokenization and the precomputation of machine-learning classifiers. Jagger applies patterns, which are extracted from morphological dictionaries and training data, to input from the begin
ynaga@iis.u-tokyo.ac.jp 1/2 1/20 1,000,000 / C++ 1000 http://www.tkl.iis.u-tokyo.ac.jp/∼ynaga/jagger 1 Twitter Zoom, Slack [1] GPU [2, 3] [4, 5] ( ) () (MeCab, Vaporetto) MeCab 15 Vaporetto 10 (M2 MacBook Air 1,000,000 /) 2 [6] ( ) [7, 8] [9, 10] [11] ― 351 ― 言語処理学会 第29回年次大会 発表論文集 (2023年3月) This work is licensed by the author(s) under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Algor
まとめ Pythonから巨大なテキストファイルを並列に読み込み・処理・書き込みする方法を紹介 読み込み: テキストファイルをバイト列として見て、プロセスごとにファイルの読み込み区間を割り振る 処理: multiprocessingを用いた並列処理 書き込み: プロセスごとにtmpファイルへ並列に書き込み & catによる結合 はじめに 日本語形態素解析器であるMeCabを用いると、日本語のテキストに対する解析や処理が簡単に実行できます。 特に最近は、BERTをはじめとする深層学習モデルへの入力のための前処理として、MeCabなどを用いて文を単語単位に分割する「分かち書き」を行う機会が多くなっています。 MeCabはコマンドラインから実行することもできますし、Pythonなどからプログラム的に呼び出すことも可能です。 特にコマンドラインから実行する場合は、インストールさえ終わっていれば以下の
ShodoのAI校正APIを一般公開しました ShodoのAI校正APIを一般公開しました! Shodoにユーザーアカウントがあれば、誰でも校正APIをご利用いただけます。 こんな文章のタイポや変換ミスをチェックしてくれます: 手元で書いたドキュメント Markdownで書いている技術書 エディターで書いた記事 ShodoのCLIコマンドもオープンソースで公開されています: $ pip3 install shodo $ shodo login $ shodo lint README.md Linting... 3:11 もしかしてAI 飛行機の欠便があり、運行(→ 運航)状況が変わった。 バ 6:5 もしかしてAI ません。 これが私で(→ の)自己紹介です。 こ 8:11 「ご」や「して」を付けると日本語として正しくなります こんにちは。なんでも相談(→ 相談して)ください。 こちらを.
こんにちは。LegalForce Researchで研究員をしている神田 (@kampersanda) です。 LegalForce Researchでは、MeCab互換の形態素解析器Vibrato(ヴィブラ〰ト)を開発しています。プログラミング言語Rustで実装しており、高速に動作することが主な利点です。Vibratoはオープンソースソフトウェアとして以下のレポジトリで公開しています。 github.com 本記事では、Vibratoの技術仕様を解説します。以下のような方を読者として想定します。 自然言語処理の要素技術に興味のある方 データ構造・アルゴリズムに興味のある方 Rustでの自然言語処理に興味がある方 Vibratoについて 最小コスト法による形態素解析 単語ラティスの構築 最小コスト経路の計算 高速化の取り組み 辞書引きのキャッシュ効率化 実装での注意点 連接コスト参照のキャ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く