Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

Pythonとmathに関するgigi-netのブックマーク (6)

  • pythonの機械学習ライブラリscikit-learnの紹介 - 唯物是真 @Scaled_Wurm

    scikit-learn(sklearn)の日語の入門記事があんまりないなーと思って書きました。 どちらかっていうとよく使う機能の紹介的な感じです。 英語が読める方は公式のチュートリアルがおすすめです。 scikit-learnとは? scikit-learnはオープンソースの機械学習ライブラリで、分類や回帰、クラスタリングなどの機能が実装されています。 また様々な評価尺度やクロスバリデーション、パラメータのグリッドサーチなどの痒いところに手が届く機能もあります。 インストール scikit-learnの他にもnumpyとかscipyとかが必要です。 Windows 64 bit版の人は以下のURLに色々なインストーラーがおいてあるのでおすすめ Python Extension Packages for Windows - Christoph Gohlke その他の人は以下のURLを見て

    pythonの機械学習ライブラリscikit-learnの紹介 - 唯物是真 @Scaled_Wurm
  • ランダムだと!?!?(ガタッ - 西尾泰和のはてなダイアリー

    確かに、このテンプレには僕も飽きている: onk:「リンゴが10個あります。ランダムに3人で取り分けなさい」ってどうコードに落とすと綺麗かな。。 yoshiori: @onk ランダムだと!?!? onk: @yoshiori 擬似ランダムでいいです yoshiori: @onk ふう、焦らせやがって……(俺の中でここまでテンプレ) yoshiori: もう、「ランダム」という言葉に反応してしまうのはネタでも良くない気がしてきた そこで新しいマサカリを考えてみた。「お前はなにを等確率にしたいんだ!?!?」 2個のりんごをAさんとBさんの2人に配ることを考えてみよう。全部で4通りの配り方がある。(A, A), (A, B), (B, A), (B, B)の4つだ。 この4通りを等確率にしたいのならば、それぞれのりんごについて1/2の確率でAとBに振り分ければ良い。ちなみにPythonのran

    ランダムだと!?!?(ガタッ - 西尾泰和のはてなダイアリー
  • Pythonで線形計画法を解いてみる

    線形計画法(Linear Programming; LP or linear optimization)は,目的関数も制約関数も線形であるときの最適化問題を解く手法です.SciPy + GLPK + CVXOPT + OpenOpt + FuncDesignerで実装されているのを使ってみました.説明はWikipediaから抜粋. 線形計画法は以下のようにある制約関数のもとである目的関数を最大化あるいは最小化するもの. maximize or minimize (目的関数) subject to (制約関数) xは変数,A,b,cは係数.制約関数の形が凸多面体であるので目的関数は最適化可能. たとえば ある農夫がL [km^2]の広さの農地を持っているとき小麦と大麦を育てて売上を最大化させたい.農夫は肥料をF [kg]と農薬をP [kg]だけ持っている.小麦を育てるためには肥料F1 [kg

  • Python初心者がnumpyとmatplotlibを使ってガウシアンフィッティングをしてみる - Life, don’t talk to me about life.

    仕事で使うデータではガウシアンフィッティングなんかをする機会が多いので、試しにpythonで書いてみました。 手順は、 みたいな理想曲線に適当にノイズをランダムに加えて、フィットするべきデータ点を作る 生成したデータ点をフィットする 結果を、理想的な曲線、生成されたデータ、フィットされた結果の曲線、という感じでプロットする フィットされた結果のパラメータの値と、その誤差を標準出力に書き出す っていう感じです。 では、早速ですが、コードを適当に載せてみたいと思います。もっと良い方法がある、おかしい、とかあったら教えてもらえるとありがたいです。自分の場合は、main.pyとかいうファイルに書いてますが、まあこれは何でもいいと思いますね。 #!/usr/bin/env python import math, numpy, scipy.optimize import matplotlib.pypl

    Python初心者がnumpyとmatplotlibを使ってガウシアンフィッティングをしてみる - Life, don’t talk to me about life.
  • Matplotlib: Python plotting — Matplotlib 2.0.0 documentation

    Matplotlib is a python library for making publication quality plots using a syntax familiar to MATLAB users. Matplotlib uses numpy for numerics. Output formats include PDF, Postscript, SVG, and PNG, as well as screen display. As of matplotlib version 1.5, we are no longer making file releases available on SourceForge. Please visit http://matplotlib.org/users/installing.html for help obtaining matp

  • 第6回 Numpyの導入 | gihyo.jp

    今回は第3回の冒頭で紹介した、Numpyの導入方法と簡単な使い方について説明します。次回で様々な分布を扱うためにNumpyの準備をしておきましょう。 Numpyの導入 Numpyはオープンソースの拡張モジュールで行列や多次元配列と、それらを操作するための数学関数ライブラリを提供しています。Numpyの内部はC言語で実装されているため、普通にPythonで実装した時と比較するとはるかに高速に実行することが可能です。 ここではインストールの仕方とNumpyの簡単な実行例を確認しておきましょう。 インストール WindowsMacOSXのPCにNumpyをインストールする場合は、NumpyのサイトのDownloadのページの上の方にあるNumPyのProjectからインストール先のマシンのOSに対応したファイルをダウンロードして実行してください。 しかし、MacOSXにデフォルトでバインドされ

    第6回 Numpyの導入 | gihyo.jp
  • 1