[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
10月24日に、Change to Hopeというイベントがあって、スティーブン・ピンカーが来日して基調講演をする……予定だったのがコロナで来れずオンラインになってしまったんだが、ぼくがその司会役、というか質問係をおおせつかったのでした。 www.change-to-hope.com で、これは新著『人はどこまで合理的か』をベースに最近のネタを散りばめる講演で、ぼくも付け焼き刃でざっと読んでみました。基本は、人はいろいろ数学パズルみたいなものにごまかされて合理性を発揮しにくくなる部分があるのだ、という話や経済学的な合理性の話などで、あとは合理性がいかにしてこれまでの人類の発展を率いてきたか、これからも理性をちゃんと使ってがんばらないといけないよ、というもの。一般向けの講義をまとめたものだそうで、人によっては知ってる話ばかりでつまらないかもしれない。まったく知らなかった目新しい話はない。類書
対数のlogを勉強するときにまず最初に習得するのは常用対数です。 【LOG・LOG10関数】Excelで10の累乗と常用対数が使えたら数値の桁数が計算できます 常用対数を習得したら次に習得するのが2の累乗と2を底とする対数です。学生の時に、2,4,8,16,32・・・と2の累乗を覚えた人もいるのではないでしょうか? 大人であれば、2を10回かけたら1024(=約1000)になることを知っておいても損はないでしょう。携帯電話の「ギガ」はもともと2を30回かけると約10億=1ギガの情報量になるところからきています。2の累乗と2を底とする対数を理解することは情報処理を理解する第一歩と言っても過言ではありません。 そこで、今回は、Excelで2の累乗と2を底とする対数を求める方法とその応用について解説します(2進数については深入りしません)。 目次 1.まずはExcelで2の累乗の性質を考えてみよ
こんにちは、ドイツのモナでございます〜 いろんなサイエンスにおいてグラフ理論がとても重要な用具となっていますが、グラフ理論ってそもそも何なのかご存知ない方も少なくもないですね。 ということで、今日は簡単にグラフ理論の基本や用語など紹介したいと思います!なお、入門のため誰にでも分かるように数学的な定義は避けるようにします。 また、グラフ理論の応用は別の話ですので今回は応用の話しません〜 なぜグラフが面白いのか 具体的な応用の話はしませんが、たくさんの分野においてグラフ理論が重要となっています。 ネットワーク(例:トポロジー、ルーティングアルゴリズム) AI(例:ニューラルネットワーク) コンピューターサイエンス(例:ファイルシステム) 社会科学(例:ソーシャルネットワーク分析) 皆さんの生活の中(例:カーナビの最短ルートの計算) グラフ理論とは? ここで議論するグラフというのは、よく思い浮か
0. はじめに こんにちは、大学 1 年生になったばかりの E869120 です。本記事は、 アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 アルゴリズム・AtCoder のための数学【中編:数学的知識編②】 からの続きです!!! ※前編・中編を読んでいなくても理解できる、独立したトピックになっているので、ご安心ください。 後編から読む方へ 21 世紀も中盤に入り、情報化社会が急激に進行していく中、プログラミング的思考やアルゴリズムの知識、そしてアルゴリズムを用いた問題解決力が日々重要になっています。 しかし、アルゴリズム構築能力・競プロの実力は、単純にプログラミングの知識を学ぶだけでは身につきません。近年、数学的なスキルが重要になりつつあります。実際、私はこれまでの経験で「数学の壁で躓いた競プロ参加者」をたくさん見てきました。そこで本記事では、 AtCoder のコン
数学は「貝の形」「川の流れ」「銀河の渦」など、自然のいたるところに存在します。子どもの頃から数学を愛し、「美はそれ自体が数学的」だと語るニューサウスウェールズ大学数学統計学科の講師トーマス・ブリッツ氏が、日常存在する「数学と美の結びつきが感じられるもの5つ」を挙げています。 The mystique of mathematics: 5 beautiful math phenomena https://phys.org/news/2020-05-mystique-mathematics-beautiful-math-phenomena.html ◆1:シンメトリー(対称) ブリッツ氏は2018年に講演で、「美しいと感じること」のような感情を数学で説明できると語りました。近年の研究から、私たちの脳は「対称的なものを見る」「全体を整理する」「パズルを解く」といった「パターン」を見つけると報酬を得
少し前に高校数学をやり直したのですが、徐々に勉強スタイルが整ってきたので使って便利だったツールをまとめておこうと思います。 今から勉強はじめようと思ってる方や、もうすでにはじめられてる方の参考になればうれしいです。 GeoGebra Graphing Calculator 数式を入力するとグラフを描いてくれます。 Webブラウザやスマホ・iPadのアプリでも使用でき、ぱっとグラフの形を確認したいときにとっても便利です。 Webブラウザや iPad などでも使用できます。 Wolfram Alpha図を描いてくれるところは GeoGebra に似ていますが、こちらは入力された数式などに対して構造化されたデータを用いて適切な結果を返してくれる検索エンジンのようです。 いろんなWebページをインデックスして検索結果を返す Google などとはまた違っておもしろいですね。 GeoGebra は非
割当問題とは? 割当問題という問題をご存知でしょうか? $n$ 人に $n$ 個の仕事を割り当てるとき、最も効率の良い割り当て方は何かを考える問題を「割当問題」といいます。 行列で考えるとわかりやすいです。下記の行列の行が人、列が仕事を表し、各成分は各人がそれぞれの仕事を終えるのにかかるコストととらえます。 各仕事に人は1人しか割り当てることができない状態で、全ての仕事に人を割り当てるとき、一番低コストな組み合わせを考えます。 このような問題を考える上で有名なアルゴリズムに「ハンガリアン法」(ハンガリー法)というものがあります。 step1 各行の各要素からその行の最小値を引き、その後さらに各列の各要素からその列の最小値を引く。 step2 $0$ を各行各列から1つずつ選ぶことができるかどうか判定する。もし選ぶことができれば、その $0$ の座標の組みが割当案となる。選ぶことができなれけ
皆さんは、微分積分というものを覚えておいででしょうか。 記憶力のある人なら「xを微分せよ」「定積分を求めよ」みたいな問題文やグラフの傾きを求めたことなどを覚えているかもしれません。しかし、それ以上に「何の役に立つのかさっぱり分からなかった」という記憶がある人の方が多いかもしれません。 そこで今回は「こんな風に役立つんだぜ」という文章問題を考えてみました。微分積分はいらない子じゃないんやで。 ライター:キグロ 5分間で数学を語るイベント「日曜数学会」や数学好きが集まる部室みたいなもの「数学デー」の主催者。数学の記事を書いたり、カクヨムで小説を書いたりしている。 問題 タカシ君はこたつでぬくぬくするのが大好き。好き過ぎて「温まりきっていないこたつ」には我慢なりません。「冬の朝、電源を入れてからしばらく待ったつもりだったけど、こたつに入ってみたらまだ寒かった」という悲劇はもう勘弁。そんな目にあう
はじめに 少し前(2019年4月頃)に、「AI人材」という言葉がニュースを賑わせていました。「現在流行っているディープラーニングその他を使いこなせる人材」くらいの意味だと思いますが、こういうバズワードの例の漏れず、人によって意味が異なるようです。併せて「AI人材のために線形代数の教育をどうするか」ということも話題になっています。 線形代数という学問は、本来は極めて広く、かつ強力な分野ですが、とりあえずは「行列とベクトルの性質を調べる学問」と思っておけば良いです。理工系の大学生は、まず基礎解析とともに線形代数を学ぶと思います。そして、何に使うのかわからないまま「固有値」や「行列式」などの概念が出てきて、例えば試験で3行3列の行列の固有値、固有ベクトルを求め、4行4列の行列の行列式を求めたりしてイヤになって、そのまま身につかずに卒業してしまい、後で必要になって後悔する人が出てきたりします(例え
Q.なぜ分散は、単純な差(偏差の絶対値)ではなく、差の2乗を計算するのか? A.分散を最も小さくする点が平均値だから。(単純な差を最も小さくする点は中央値となる。) “分散”というキーワードは統計学の基礎中の基礎であり、どんな教科書にも“平均”の次くらいに載っていることがらです。 しかしながら、いきなり登場する“分散”の意味が分からず、統計学の入り口で挫折する人は少なくありません。 偏差の2乗の平均、つまり、各値と平均との差の2乗の平均を分散といい、 分散の平方根の正の方を標準偏差という。 統計で、ちらばりを表すものとして、標準偏差や分散が多く用いられる。 -- 高校の教科書(啓林館)より. 教科書にはこのように書かれているのですが、これで分かった気になるでしょうか。 ・なぜ、差の2乗を計算するのか? ・差そのものであってはいけないのか? ・なぜ、分散と標準偏差の2種類があるのか? 最後の
2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそこにして、複素数を眺めてうわ〜きれいだね〜素敵だね〜っていう記事です。 複素平面 任意の複素数は、平面上の一点として表すことができます。 今でこそ「複素数といえば平面」というイメージがあるかもしれませんが、「複素数を平面上の一点として表す」というのは驚くほど画期的なアイデアです。 それまで、複素数は「方程式を解く途中にだけ出てきて、いざ解かれたあかつきには消えてしまう」という「便宜的な数」「虚構の数」と思われていました。 ガウスによって「複素平面」のアイデアが導入されてようやく複素数が図形的な表れを伴った。複素数にはそんな歴史があるようです。 複素数
Final Fantasy Ⅴ(以下、FF5)というゲームをご存知でしょうか? 私が小学生ぐらいの頃に流行したロールプレイングゲームです。当時、私はFFの魅力がわからずプレイしたことすらなかったのですが、大人になってからその面白さに気づき、はまっています。 今回は、FF5にまつわるちょっぴり整数論っぽい問題についてです。 背景 さて、そのFFの5作目のFF5ですが、面白いシステムが導入されました。それが 青魔法 です。青魔法を使う青魔導士は、敵が使ってくる魔法を受けると、「ラーニング」といって、その魔法を習得し、次回以降の戦闘で使用することができるのです。もちろん、敵の扱う魔法すべてをラーニングできるわけではないのですが、バラエティ豊かな魔法を手にいれることができ、青魔法を収集することもゲームの楽しみの一つでした。 参考: FF5 青魔法の効果と習得方法 その中でも、特に面白いなと思ったの
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? [追記]統計検定2級、おかげさまで合格しました。(僕の受験した回は得点率65%で合格できました) この記事の概要(目次) はじめに: 事前の筆者のステータス 勉強方法: どんな勉強をしたか そのメリットとデメリット 思ったこと・分かったこと: 勉強をしてみて思ったこと 勉強してみないとわからなかった もう一度やるとしたらこんな方法でやる: 現状で思う、オススメの進め方 今から勉強する皆さんに向けて事前に知っておいてほしいこと 結果: 試験の結果( 発表されたら追記します(6/18) ) はじめに 目的 自分の中でのスキルを増やすこと Q
数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ🐟 (@motcho_tw) February 7, 2018 たくさんの点を、それぞれの点に書かれた数に応じた速度で回すことにより、大きく灰色で表示された数の素因数を表現しているわけです。楽しいですね。 こんなのもあります。 3Dで図示してみました。 pic.twitter.com/AF2R1QEtqk — 鯵坂もっちょ🐟 (@motcho_tw) April 12, 2017 九九におけるの段の「一の位」は、ぐるぐる回る点によって表現することができます。面白いですね。 変わったものでは、こういうのもあります。 惑星が「惑星」と呼ばれる理由ですhttps:/
「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘み食いするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく
この記事ははてなエンジニア Advent Calendar 2018の18日目の記事です. 昨日はid:WindymeltのSmart::Argsのパーサを書いたでした. 明日の担当はid:hokkai7goです. 他の担当者の記事は割と業務っぽいものが多いですが, 今回は趣味っぽいゆるゆるのネタです. 社内でとある数学パズルを紹介したところAdvent Calendarに書いてくれとリクエストがあったので, 紹介します. 単に問題を紹介するだけでは面白くないので, コードを書いて解答できるようにしてみました. 問題 あなたは100人の囚人の一人です. 全員で以下のようなゲームをして, 見事勝利できれば全員釈放, 負ければ全員死刑となります. ゲーム開始と同時に全員別々の独房に入ります 独房内や通路で他の囚人とやりとりすることはできません ランダムに1人ずつスイッチの部屋に呼ばれます 十分
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く