累計2500万着電を支える大規模 電話自動応答サービスのアーキテクチャ / Architecture of a Large-Scale Automated Phone Response Service Supporting 25 Million Cumulative Calls
累計2500万着電を支える大規模 電話自動応答サービスのアーキテクチャ / Architecture of a Large-Scale Automated Phone Response Service Supporting 25 Million Cumulative Calls
物理学者の逆襲!?Entropixはわずか3億6000万パラメータで1000億パラメータ級の回答を引き出す!Claude-3でも間違う問題を360Mが正しく解く 物理学者たちがノーベル物理学賞をホップフィールドとヒントンが受賞すると知った時、まあまあ微妙な気持ちになったことは想像に難くない。 我々コンピュータ科学者にとっては、ノーベル賞は全く無縁なものだった。むしろ「ノーベル賞をコンピュータ科学者が取ることは永久にない」と言い訳することさえできた。コンピュータ科学の世界にはチューリング賞という立派な賞があるし、ノーベル賞よりも賞金が高かった京都賞は、アラン・ケイやアイヴァン・サザーランド、ドナルド・クヌースなど、コンピュータ科学者たちが堂々と受賞している。その割には本来マイクロチップの最初の設計者である嶋正利などが京都賞にノミネートされていなかったり、サザーランドの弟子であるアラン・ケイの
初めまして。経営企画本部AI推進室の鏡味、窪田、小林と申します。当社は本年度、AI推進室という新組織を発足させ、主に生成AIについての社内の利用促進、およびユーザーへ生成AIを活用したソリューションの提供を進めるべく、新技術の展開や検証を行っています。 今回は、最近話題となっている、Microsoftが発表したRAG(Retrieval Augmented Generation)技術であるGraphRAG ⧉について、元となる論文やブログ記事、GitHubのコードを元に内部の構造を解析し、さらに現時点でどの程度実用的かを考察していきます。 GraphRAGとは GraphRAGは、ナレッジグラフと生成AIの技術を組み合わせることで、従来のRAGでは対応が難しかった問い合わせに回答できるようになったRAGです。2024年2月にMicrosoftによって発表 ⧉され、その後、2024年7月にリ
みなさん、ローカルLLMで遊んでいますか? 昨年末に、Ollamaが登場してから誰でも簡単にローカルLLMで遊べる時代がやってきました。そこで、僕もローカルLLMでどんなことができるんだろうと思って触りはじめたのですが、ローカルLLMを最大限に活用するためには、まずはどうやったらEmacsからローカルLLMを使えるようになるのかと考えるのはあまりにも自然な流れでした。 この記事では、ローカルLLMに関する基本的な知識から、EmacsからローカルLLMを扱う方法までを解説していきたいと思います。 ローカルLLMの基礎知識 # ローカルLLMとは、LLM(大規模言語モデル)をローカル環境、つまり自分のパソコンで扱えるようにしたモデルです。Facebookが開発しているLlamaが業界のトップランナーで、それをベースにしたモデルを色々な組織(中には個人もいるのかも)が開発しています。 そのLla
最近はAIエンジニアを名乗ってるerukitiです。フロントエンドもバックエンドも、LLMを触るあれこれもやってるので、「AIエンジニア」くらいを名乗るとちょうどよさそうだなと思ってます。いずれLLM自体の開発なんかもやってるかもしれません。 LLMプロダクトを開発していると、構造化データを作りたいのに、Anthropic ClaudeのAPIにはJSONモードが無いことや、なんならJSONモードやfunction callingを使っても、データが正しい形式に従ってることは保証しがたい、みたいな自体に遭遇することがあります。 JSONが出力できたとしても、構造化データをうまく吐き出させるのは難しいものです。文字列を出力させたいけど、複数あるときは、配列なのか、それともカンマ区切りなのか?項目がオプショナルの場合はどうするか?項目が存在しない、空文字や 0 や undefined や nu
最近、ローカルLLMがアツくなっているという話をtwitterでチラホラ見かける。 ローカルLLMって何じゃ?というと、オープンに公開されているモデルのウエイトをDLしてきて手元のPC上で推論させる事である。 オープンなAIモデルとは逆の存在として、モデルがDLできないクローズなAIモデルもある。 OpenAIやAnthropicのような最先端AI企業のクローズなAIモデルに比べて、オープンに公開されているオープンなAIモデルの性能は今でもかなり後れを取っている。 だから去年の間はあくまでAIの本命はChatGPTのようなクローズモデルであって、オープンなAIモデルなんて眼中にありませんみたいな風潮が無くはなかった。だが最近は風向きが少々変わってきている。 GPTのAPI高い問題 & OpenAIがAIベンチャー皆殺しにしてしまう問題 まず「結局GPTのAPIを叩いてサービス運営して成功し
概要ローカル LLM 初めましての方でも動かせるチュートリアル 最近の公開されている大規模言語モデルの性能向上がすごい Ollama を使えば簡単に LLM をローカル環境で動かせる Enchanted や Open WebUI を使えばローカル LLM を ChatGPT を使う感覚で使うことができる quantkit を使えば簡単に LLM を量子化でき、ローカルでも実行可能なサイズに小さくできる 1. はじめに大規模言語モデル(LLM)の数は数年前と比べてたくさん増えました。有名な LLM を使ったチャットサービスとして、OpenAI の ChatGPT や Anthropic の Claude、Google の Gemini などがありますが、これらのサービスの中で利用されている大規模言語モデルは公開されていません。 現状、様々な評価指標により LLM の性能が測定されていますが、
ChatGPTが登場した当初、対話や要約、翻訳、コード生成などの典型的な言語タスクができても、SREやAIOpsの研究開発にはあまり関係ないのではないかと正直思っていた。AIOpsでは典型的にはいわゆるObservabilityデータ(メトリクス、ログ、トレースなど)が入力となるため、自然言語ではなく数値のデータを解析することが求められる。自然言語のタスクを研究対象としていなかったため、AIOpsとChatGPTに強い関係性は見いだせなかった*1。 しかし、自分で大規模言語モデル(Large Language Model: LLM)を日常的に使用したり、表題にあるようにSREのためのLLM(LLM for SRE, LLM4SRE)に関する論文を読むうちに、LLMのテキスト生成器としての性質よりもその優れた推論機械としての性質に注目するようになった。特にSREの障害診断は、人間の専門家が推
こんにちは!株式会社 ABEJA で ABEJA Platform 開発を行っている坂井(GitHub : @Yagami360)です。 LangChain を使用すれば、RAG [Retrieval Augment Generation] を使用した LLM アプリケーションを簡単に作成できるので便利ですよね。 今回 LangChain での RAG を使用して、LLM が学習に使用していない特定ドメインでの用語を応答する Slack ボットをさくっと作ってみたので共有します。 本コード一式は、以下の GitHub レポジトリに保管しています。 github.com 使い方 コード解説 アーキテクチャ RAG の仕組み ヒューマンインザループによる継続的品質改善 まとめ We Are Hiring! 使い方 事前準備として{用語集スプレッドシートの作成・Slack アプリの初期設定・各種
こんにちは、イノベーションセンターの杉本(GitHub:kaisugi)です。普段はノーコードAI開発ツール Node-AI の開発に取り組む傍ら、兼務1で大規模言語モデル(LLM:Large Language Model)について調査を行なっています。特に、日本語を中心に学習された LLM への関心があり、awesome-japanese-llm という日本語 LLM をまとめた Web サイトのメンテナンスにも取り組んでいます。 今回は、LLM に LLM の評価そのものを行わせるという新たなアプローチ(LLM-as-a-judge)についてご紹介します。 ChatGPT の登場以降、国内外で LLM の開発競争が進行しており、モデルの重みが公開されたオープンなモデルも続々と現れています。そのような中で、新しいモデルの構築だけでなく、どのモデルが優れているかを比較検討することが今後ます
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く