Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

Rに関するiori_oのブックマーク (7)

  • 遅延価値観数と階層ベイズを用いた男心をくすぐる女の戦略.R

    3. 1. 研究の背景 「いつキスをするのが最も魅力的か?」 今日のキスより3日後!最も魅力的! ― キスの魅力+待つわくわく(savouring)の加算 Anticipation and the Valuation of Delayed Consumption Author(s): George Loewenstein Source: The Economic Journal, Vol. 97, No. 387 (Sep., 1987), pp. 666-684 Published by: Blackwell Publishing for the Royal Economic Society

    遅延価値観数と階層ベイズを用いた男心をくすぐる女の戦略.R
  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • Rでコンジョイント分析

    4. 商品を要素に分解するとは? •格デジカメの構成要素 – レンズ 〔交換式/固定〕 – ミラー 〔一眼レフ/ミラーレス〕 – 体の色 〔黒/黄色〕 – センサーサイズ 〔APS-C/マイクロフォーサーズ〕 – HDR機能 〔有り/無し〕 – 電子水準器 〔有り/無し〕 – 動画撮影 〔有り/無し〕 – WiFi 〔有/無〕 •8属性、各2水準 6. そこで直交計画 • 実験計画法の世界で生まれた 実験の回数を少なくするテク ニック。 – 直交表と呼ばれる「どの属性 でも全ての要素が同じ数だけ 出現する、すべて異なる組み 合わせの表」を使う。 – 直交表は各列間の相関係数が ゼロになる。 – L8直交表なら全組み合わせで 128通りの実験が必要なとこ ろが8通りの実験で済む(交 互作用を考えない場合)。 – それでも実験数が減らせない 場合、直交性を妥協して実験 数を減らす場合もある

    Rでコンジョイント分析
  • R言語で統計解析入門: 目次1 テクニカルデータプレゼンテーション  梶山 喜一郎

    Technical Data presentation in R コピペで学ぶ Rでテクニカルデータプレゼンテーション 1.基礎統計解析編 グラフィックス・リテラシ-教育: 「図学 I ・図形情報 I ・統計学」科目 修了後のコースウェア 福岡大学工学部図学教室   梶山 喜一郎 ・つまみいで,学習しないように願います. ・データの可視化を体系・系統だったスキルにするために順を追って学習する. ・統計ブームに乗っている学習者も先人に感謝の気持ちを.さらに, ・確かなスキルにするために,教科書・解説書を理解し,Rスクリプトで確認. A. はじめに--ここは統計・解析の必要を味わった後で読めばよい まず,統計の手続きを実行する.慣れたら統計的に考えよう. 学校の統計学を復習--買った教科書とノートをまた読むだけ a. 測定と尺度 Measurement and scale b. 記述統計学の

  • RとRubyによるデータ解析入門

    人気の高いオープンソースのツール、RとRubyを使い、生データを処理し、シミュレーションし、仮説を立て、統計的手法を用いて検証する、というデータ解析の基の理解を促します。基が学べるだけでなく、自分のメールボックスや自分の心臓の鼓動など身近な題材を対象としており、データサイエンスの醍醐味を味わうことができる一冊です。日語版ではさまざまな統計分析手法についての入門となる章を追加。こので使っている統計の基礎も学べる構成になっています。プログラマ視点で書かれた書は、ビッグデータを活用するためのスキルを身に付ける必要に迫られた多くの開発者にとっても貴重な情報源となるでしょう。 関連ファイル サンプルコード 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正誤表を作成し、増刷書籍を印刷した月です。お手持ちの書籍では、すで

    RとRubyによるデータ解析入門
  • RでDeep Learningの一種をやってみる - データサイエンティスト上がりのDX参謀・起業家

    このブログのTips052で、RでDeep Learningをやっているのを紹介してもらったので、自分も試してみました。 「Deep Learningすげぇ!!」という話は良く聞くのですが、亜種がいっぱいあるみたいで、まだあまり調査しきれてません。また時間があれば調査してまとめられると良いのですが。 以下、RでDA(Denoising Autoencoders)を実行するプログラムです。 sigmoid <- function(x){ return (1 / (1 + exp(-x))) } dA <- setRefClass( Class="dA", fields=list(input="matrix", n_visible="numeric", n_hidden="numeric", W="matrix", W.prime="matrix", hbias="vector", vbias

    RでDeep Learningの一種をやってみる - データサイエンティスト上がりのDX参謀・起業家
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • 1