言語処理100本ノックは,実践的な課題に取り組みながら,プログラミング,データ分析,研究のスキルを楽しく習得することを目指した問題集です 実用的でワクワクするような題材を厳選しました 言語処理に加えて,統計や機械学習などの周辺分野にも親しめます 研究やデータ分析の進め方,作法,スキルを修得できます 問題を解くのに必要なデータ・コーパスを配布しています 言語はPythonを想定していますが,他の言語にも対応しています
先日Deep Learningでラブライブ!キャラを識別するという記事が話題になっていました。この記事で紹介されている SIG2D 2014を知り合いから貸してもらったので参考にしながら、ご注文は機械学習ですか?のDeep Learning版を作ってみました。 Caffeなど必要なソフトのインストール Ubuntu 14.04の場合は過去記事を参照してください。これ以外にもpython-opencvなどを使いますが、依存関係の全ては把握できていないのでエラーが出たら適宜インストールしてください。 データの準備 Deep Learningでは大量の学習データが必要になると言われているので、まずは大量のデータを用意します。参考記事では6000枚のラブライブ画像を使ったということなので対抗して12000枚以上のごちうさ画像を用意したいと思います。それだけのデータを手動で分類するとそれだけで時間が
2. 目次 • Deep Learning とは" – 機械学習について" – 従来の NN とのちがい" – Deep Learning のブレイクスルー" • dA (Denoising Autoencoders) をうごかす" – 数理モデルの解説" – Python で実装する前準備" – コードレビュー" – 実行結果" • RBM (Restricted Boltzmann Machines) をうごかす" – 数理モデルの解説" – 実行結果" • まとめ 4. Deep Learning とは • 入力信号からより抽象的な概念を学ぶ・特徴を抽出する 機械学習の手法の集合です " “ニューラルネットとどう違うの?”! • ニューラルネットを多層にしたんです " “従来のニューラルネットワークと何が違うの?”! • ひとつひとつのレイヤー間でパラ
ここ 1ヶ月にわたって 聖書 DeepLearning 0.1 Documentation を読み進め、ようやく 制約付きボルツマンマシン の手前まできた。 制約付きボルツマンマシン (RBM) の解説 には RBM = マルコフ確率場 ( Markov Random Field / MRF ) の一種だよっ、と しれっと書いてあるのだが マルコフ確率場とはいったい何なのかは説明がない。マルコフ確率場 <マルコフ・ランダム・フィールド> は用語もカッコイイし結構おもしろいので、 Python でサンプルを書いてみる。 補足 Python では PyStruct というパッケージがマルコフ確率場 / 条件付き確率場 ( Conditional Random Field ) を実装しているため、実用したい方はこちらを。このパッケージ、ノーマークだったがよさげだなあ。 マルコフ確率場とは グラフ
はじめに 本エントリではバンディットアルゴリズムの各手法について,実際のユースケースを想定したシミュレーションを行うことで,それぞれの手法の特徴を把握すること目的とします. バンディットアルゴリズムについて日本語でよく参照されているのは以下のQiitaの投稿でしょうか. http://qiita.com/yuku_t/items/6844aac6008911401b19 また以下の資料では各手法の詳細や特徴,簡単なシミュレーションも紹介されています. http://www.slideshare.net/greenmidori83/ss-28443892 上記の資料の手法の紹介はとてもわかりやすいので本エントリでは手法の紹介は特にしません. 想定するユースケース あなたは今1万回表示されてクリック率が1.2%出ている広告を1クリック60円で運用しています. もっとクリックされる広告を見つける
「機械学習」というワードになんとなく惹かれつつも、具体的にやりたいことがあるわけでもないので、手を動かすことなくただひたすら「いつかやる」ために解説記事やチュートリアル記事を集める日々を過ごしていたのですが、このままじゃイカン!と Machine Learning Advent Calendar 2014 - Qiita に参加登録してみました。 が、やはり何もしないまま当日を迎えてしまったので、お茶濁しではありますが、せめて「機械学習ってどんな手法やライブラリがあって、どんな応用先があるのか?」というあたりをざっくり把握して最初に何をやるのか方向付けをするためにも、たまりにたまった機械学習系の記事をいったん整理してみようと思います。 機械学習の概要 特定のライブラリや手法の話ではなく、機械学習全般に関する解説。 機械学習チュートリアル@Jubatus Casual Talks 機械学習チ
こんにちは、シバタアキラです。この度PyDataの本家であるアメリカのコミュニティーで半年に一度開催されているPyDataカンファレンスに出席するため、NYCに行って来ました。11/22-11/23の二日間の日程で行われ、延べ250人ほどが参加したイベントです。その時の模様は、先日のPyData Tokyo第二回ミートアップでもご説明させていただき、また後日記事化されると思いますので、そちらをぜひご覧いただければと思います。 今回はそのPyData NYCカンファレンスで私が発表してきたミニプロジェクトについてお話します。最近各所で話題に上がるディープラーニングですが、これを使った応用を「カメリオ」のサービス向上のために使えないか、というのがそもそものプロジェクトの着想でした。今回PyData Tokyoオーガナイザーとして、またディープラーニングで色々と面白い実験をしている田中さん(@a
そろそろちゃんと機械学習を勉強しようと思い、ついでに Python をやり始めています そういえば、大学生のときに Python を勉強しようと思って本を買ったことがあったんですが、当時はあんまりやる気もなくちょっとしか手をつけていませんでした あの時ちゃんと勉強しとけばよかったなぁとか思ったり・・・ とりあえず、手持ちの Mac 上に数値計算や機械学習を実行できる環境を構築したのでその際の手順をまとめました ※以下の環境で動作することを確認しています OS X Mavericks (10.9) OS X Yosemite (10.10) この記事では 1. 概要 2. Python とライブラリのインストール 3. PyDev のインストールとセットアップ 4. Hello Python !!! 5. まとめ について説明します 1. 概要 今回は Python を使って数値計算、機械学
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを
さらに詳細な利用方法が知りたい方は、Yahoo!デベロッパーズネットワークのマニュアルを参照してください。 ベイジアンフィルタの実装 ここから本格的にベイジアンフィルタの実装に入っていきます。 その前に、まずは先程のリスト1のコードを利用して入力された文章をわかち書きし、単語の集合を返す関数を作成しnaivebayes.pyとして保存しましょう。こちらも先程のmorphological.pyと同様にutf-8で保存してください。 リスト2 文章の分割をする関数(naivebayes.py) # -*- coding: utf-8 -*- import math import sys #yahoo!形態素解析 import morphological def getwords(doc): words = [s.lower() for s in morphological.split(doc)
ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 猫検出 では画像内の猫の顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いて猫の品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内の猫カフェ等で出会える猫に限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日本が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内猫画像は2400枚、クラス数は12で1クラスにつき200枚あります。今
pylearn2はこのスライドで紹介されていたライブラリ。↓ Linuxでのインストール手順はQiitaのこの記事が詳しい。↓ http://qiita.com/mizuki0420@github/items/3f9c97b32e8d6e37abad けど、オイラはWindowsでやってやるんだ。 インストールは結構めんどくさくて、ソースコードはGitから落とし、setup.pyはbuild, installではなくdevelopオプションを使う。 Windows環境でのインストールには、他の依存ライブラリとしてnumpy, scipy, setuptools, matplotlib, dateutil, pyparsing, sixが必要。 ここの記事が詳しかった。↓ http://mikemoke.hatenablog.com/entry/2014/03/02/210439 この記事だ
機械学習界隈の情報収集方法 http://d.hatena.ne.jp/kisa12012/20131215/1387082769 いきなりですが上記の記事に機械学習に関する有力な情報源がまとまっています。まずはここを参考にするのが良いかと思います。ただ情報が多すぎですので、筆者は Wikicfp と arXiv.org あたりの論文、それにはてなブックマークをチェックしています。 また論文については機械学習の論文を探すにも良い情報がまとまっています。こちらも参考になります。 機械学習は日進月歩の世界ですので、最新の査読済み論文を追って概略だけでも理解する能力を身に付けると良いかと思います。 書籍としては次の 2 冊が聖書とも言える必読書で、本気で機械学習をやりたければ必ず参考になるかと思います。 パターン認識と機械学習 (上・下) http://www.amazon.co.jp/dp/4
自然言語処理を学ぶ推薦書籍を紹介します。2021年03月現在、自然言語処理を勉強したい理工系の学生・エンジニアの人は、以下の本を推薦します。 (概要)自然言語処理(放送大学出版) (理論)言語処理のための機械学習入門+深層学習による自然言語処理 (実装)Python 機械学習プログラミング 第3版 自然言語処理を勉強したい、非理工系・非エンジニアの人には、以下の本を推薦します。 (数式なし)自然言語処理の基本と技術 (数式あり)自然言語処理(放送大学出版) オライリーから出ている「入門 自然言語処理」は特殊な本(詳しい人がこれを使ってレクチャーしてくれるならともかく、独習に向いていない)で、Python 2 で書かれているだけでなく、すでに動かなくなったコードも多々あり、2019年時点では読まない方がいい本です。(それでもどうしても、意地でも読みたい人は、本家にある Python 3 対応
8. 対象とする「数式」 • 行列やその要素の掛け算が出てくる数式 – 機械学習などの手法には、行列を使って表さ れているものが多い – 強力な線形代数ライブラリをうまく使えば楽 に実装できる • 数式の例はC.M.ビショップ「パターン認 識と機械学習」(以降 PRML)から採用 – ただし機械学習の知識は一切要求しない 9. 方針 • 「楽に」「確実に」実装しよう – 間違いにくく、可読性が高い – 最速は必ずしも目指していない • 動くものを確かに作れるようになってから • Python/numpy と R での実装例を紹介 – 基本的な行列計算しか使わないので、その他 の環境(Eigen など)にも参考になる(はず)
scikit-learn(sklearn)の日本語の入門記事があんまりないなーと思って書きました。 どちらかっていうとよく使う機能の紹介的な感じです。 英語が読める方は公式のチュートリアルがおすすめです。 scikit-learnとは? scikit-learnはオープンソースの機械学習ライブラリで、分類や回帰、クラスタリングなどの機能が実装されています。 また様々な評価尺度やクロスバリデーション、パラメータのグリッドサーチなどの痒いところに手が届く機能もあります。 インストール scikit-learnの他にもnumpyとかscipyとかが必要です。 Windows 64 bit版の人は以下のURLに色々なインストーラーがおいてあるのでおすすめ Python Extension Packages for Windows - Christoph Gohlke その他の人は以下のURLを見て
2. 解析動機 2013年5月18日Tokyo WebMining #26 2 最後の春だし画像処理の勉強でもしとくか 後輩からAV女優の類似画像検索の話を聞く (ぱろすけ 2012) DMMにはアフィリエイトあったよな これでウェブサービス作れば儲かるかも 決して下半身からの要望で解析したのではありません http://blog.parosky.net/archives/1506 3. 計算環境 2013年5月18日Tokyo WebMining #26 3 使用言語:Python 2.7 (少しだけR) 使用モジュール:Numpy, Scipy, OpenCV 科学技術計算用のライブラリ MATLABにできることは大体できる numpy.ndarray 型付き多次元配列 numpy.linalg 線形代数計算 scipy.cluster 今回はこれのk-means法を使用
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く