Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

wikipediaとmathに関するkana321のブックマーク (4)

  • レーベンシュタイン距離 - Wikipedia

    レーベンシュタイン距離(レーベンシュタインきょり、英: Levenshtein distance)は、二つの文字列がどの程度異なっているかを示す距離の一種である。編集距離(へんしゅうきょり、英: edit distance)とも呼ばれる。具体的には、1文字の挿入・削除・置換によって、一方の文字列をもう一方の文字列に変形するのに必要な手順の最小回数として定義される[1]。名称は、1965年にこれを考案したロシアの学者ウラジーミル・レーベンシュタイン (露: Влади́мир Левенште́йн) にちなむ。 レーベンシュタイン距離は、同じ文字数の単語に対する置換編集に使われているハミング距離の一般化であると見なすことが可能である。レーベンシュタイン距離の更なる一般化として、例えば一回の操作で二文字を変換する等の方法が考えられる。 実際的な距離の求め方を例示すれば、「kitten」を「s

  • 違法素数 - Wikipedia

    違法素数(いほうそすう/英: illegal prime)とは、素数のうち、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種である。 2001年、違法素数の1つが発見された。この数はある規則に従って変換すると、DVDのデジタル著作権管理を回避するコンピュータプログラムとして実行可能であり、そのプログラムはアメリカ合衆国のデジタルミレニアム著作権法で違法とされている[1]。 DVDのコピーガードを破るコンピュータプログラムDeCSSのソースコード 1999年、ヨン・レック・ヨハンセンはDVDのコピーガード (Content Scramble System; CSS)を破るコンピュータプログラム「DeCSS」を発表した。ところが2001年5月30日、アメリカ合衆国の裁判所は、このプログラムの使用を違法としただけではなく、ソースコードの公表も違法であると判断した[2

  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • 黄金比 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2013年3月) 黄金比(おうごんひ、英: golden ratio)とは、次の値で表される比のことである: 黄金長方形(縦横の長さの比が黄金比( 1: 1.618…)である長方形)から最大正方形を切り落とすと、元の長方形と相似になる。赤線は黄金螺旋、緑線は正方形内の四分円を接続したものである。黄色は重なっている部分を表す。 以下で述べるような数理的な性質は、有理数にならないこの値のみが持つ性質であり、有理近似等には基的には意味が無い。「デザインを美しくする」などといった巷間よく見られる説については#用途を参照。小数に展開すると 1 : 1.6180339887... あるいは 0.6180339887... : 1 といった値となる。 黄金比は貴金属比の

    黄金比 - Wikipedia
  • 1