東京大学深層学習(Deep Learning基礎講座2022)https://deeplearning.jp/lectures/dlb2022/ 「深層学習と自然言語処理」の講義資料です。
Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 本書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo
概要 本APIは、入力された記事本文(最大2,000文字まで入力可能=製品版)を機械学習を用いて要約するものです。過去30年分の記事データを、ディープラーニングの機構を用いて学習させています。長文を要約するときにお役立てください。 本APIの機能は、 指定した長さごとに生成型要約 すべての文の長さを揃える すべての文を圧縮する 重要な文を抽出する 重要な文を抽出後圧縮して、指定した長さにする の5つです。より詳細はこちらに解説記事を載せています。 九州電力玄海原発3、4号機(佐賀県玄海町)の運転差し止めを住民らが求めた仮処分申し立ての即時抗告審で、福岡高裁(山之内紀行裁判長)は10日、住民側の抗告を棄却した。主な争点は、耐震設計の基になる基準地震動(想定される最大の揺れ)の合理性、原発周辺の火山の噴火リスク、配管の安全性の3点。 住民側は「基準地震動が過小評価されている」と主張。原子力規制
www.kamishima.net ペドロ・ドミンゴスの『The Master Algorithm』は、ビル・ゲイツが AI 分野の必読書に挙げていたので注目し、ワタシも何度か文章の中で引き合いに出している。 ユートピアのキモさと人工知能がもたらす不気味の谷 - WirelessWire News(ワイヤレスワイヤーニュース) 我々は信頼に足るアルゴリズムを見極められるのか? - WirelessWire News(ワイヤレスワイヤーニュース) そして、邦訳の刊行が期待される洋書を紹介しまくることにする(2017年版)でも取り上げているが、この原著が刊行されたのは2015年である。それから5年以上経ち、もうこれは邦訳の話は流れてしまったかと半ば諦めていたところ、『マスターアルゴリズム 世界を再構築する「究極の機械学習」』の邦題で刊行される。ワオ! マスターアルゴリズム 世界を再構築する「究
Microsoftは、WindowsやMacにダウンロードして無料で使える「Lobe」を公開している。同ツールでは、ネット接続やログインもなしで機械学習トレーニングができて、利用するデータはプライベートに保たれる。 Microsoftは2018年にLobeを買収し、同ツールをブラッシュアップしてきた。今では、誰でも簡単に機械学習モデルがトレーニングできるように…とのコンセプトを体現したものになっている。写真をインポートすれば自動でトレーニングLobeのWebサイトに掲載の紹介動画を観れば、このツールのシンプルな使い勝手が認識できるだろう。ナビゲーターがPCのWebカメラで水を飲む写真を複数通り撮影。同じく水を飲んでいないシーンを撮影すると、トレーニングが自動で行われる。 ラベルを調整して、Webカメラの前で水を飲むと「水を飲む」動作が検出できるように。また、モデルの修正も簡単にできるようだ
Microsoftが「ML.NET 1.5.2」を公開、.NET開発者向け機械学習フレームワーク:ONNXエクスポートなどの機能も強化 Microsoftは、.NET開発者向けのオープンソース機械学習(ML)フレームワークの最新版「ML.NET 1.5.2」を公開した。Model Builderツールで「Azure ML」を使ってオブジェクト検出モデルをトレーニングできるようになった他、ML.NET CLIで画像分類モデルをローカルでトレーニングすることも可能になった。 Microsoftは2020年9月25日(米国時間)、オープンソースの.NET開発者向けクロスプラットフォーム機械学習(ML)フレームワークの最新版「ML.NET 1.5.2」を公開した。 ML.NETでは、.NETエコシステムから離れることなく、MLやデータサイエンスの経験が乏しい開発者でも、.NETアプリケーションにM
A .NET based Open Source Ecosystem for Data Science, Machine Learning and AI SciSharp brings all major ML/AI Frameworks from Python to .NET .NET developers are most productive with the tools they know and love. Our mission is to make sure that they don't have to leave that behind when reaching for opportunities in Data Science Machine Learning and AI. The well established Python based Machine Lear
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く