Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

Rに関するlarkerのブックマーク (3)

  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • 統計解析ソフト「R」で取り組む回帰分析

    印刷する メールで送る テキスト HTML 電子書籍 PDF ダウンロード テキスト 電子書籍 PDF クリップした記事をMyページから読むことができます 前回、オープンソースの統計解析ソフト「R」の簡単な使い方を説明しました。今回は、実際にRにあるデータセットを使い、回帰分析に取り組み、その結果をどのように使っていくかを説明したいと思います。 回帰分析とは 回帰分析とは、「目的変数」と「説明変数」間の関係を表す式を統計的な手法によって推計する分析のことです。 目的変数とは予測の対象とする「量」のことであり、説明変数は目的変数を説明、つまり物事の原因を表すのに使う変数です。この2つの変数にどんな関係があるのか、例えば天候という変数は、売り上げにどう影響するかを数式で表すために回帰分析を使います。 今回の記事についての回帰分析は特に断りがない場合、すべて線形回帰分析、つまり「直線をモデル」に

    統計解析ソフト「R」で取り組む回帰分析
    larker
    larker 2014/07/15
  • 青木繁信氏:おしゃべりな部屋 (統計学ほか)

    アクセスしていただき,ありがとうございます。 このページへのアクセスは,通算 6356686 回目です。 (1995年8月31日 からカウント開始) フォト蔵ふ つれづれなるままに ときどき一枚 狛犬ギャラリー 道祖神ギャラリー

    青木繁信氏:おしゃべりな部屋 (統計学ほか)
  • 1