はじめに VAE、変分オートエンコーダのVAEです。機械学習のネットワークの一つです。 これを読まれている方は、VAEについて多少以上は御存じであるという前提でお話します。 VAEとは、端的に言えば特徴を潜在変数を介した表現に起き換える手法です。 潜在変数というのは、正体不明だがその入力を決定づける何らかの変数、といった感じに理解していればOKだと思います。 表に顕在していない、その入力を決定づける何かを、まず0まわりの値を取る自然な乱数的なサムシングとして仮定し、オートエンコーダで絞ったときの最低限の特徴がその0まわりの乱数的なサムシングのみで成り立つように設計するということです。 これ以上の詳しい説明は他に譲ります。参考としてはこちらが有名かと。 Variational Autoencoder徹底解説 VAEがこんなことできるって知ってた? ところでこの画像、何かわかりますか。 実はこ