-- 追記-- > termの説明で「今のリーダーが何代目のリーダーかを表す」と書かれていますが、あるterm内でリーダーが1人も選出されないことがあるので、termで何代目のリーダーかは表せなくないですか? https://x.com/11Takanori/status/1801212885…
拙著『達人に学ぶ SQL徹底指南書』の中で、EXISTS述語の使い方を解説している章があるのだが、そこでEXISTS述語だけが唯一SQLの中で二階の述語である、ということを説明している。これはEXISTS述語だけが行の集合を引数にとる述語だからである。それは分かるのだが、なぜ述語論理を考えた人(具体的にはゴットロープ・フレーゲ。タイトル画像のおじさんである)はこんな着想を得たのか、そこが分かりにくいという質問をしばしば受けることがある。確かに、数ある述語の中でなぜ「存在する」だけが二階の述語であるのか、というは直観的にすこし分かりにくい。なぜフレーゲはこんなことを考えたのだろう? この点について、述語論理の創始者でもあるフレーゲの議論を参照しながらかみ砕いて見ていきたいと思う。かなり理論的かつ哲学的な話になるので、興味ない方は読み飛ばしてもらってかまわない。とくにSQLの理解に支障のある話
世界最速レベルの性能を持つリレーショナルデータベース管理システム「劔(Tsurugi)」を開発― 処理性能456万TPSと応答遅延219ナノ秒を実現 ― 日本電気(株)と(株)ノーチラス・テクノロジーズはNEDOの「高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発」(以下、委託事業)において、世界最速レベルの性能を持つリレーショナルデータベース管理システム「劔(Tsurugi)」(以下、劔)を開発しました。 劔は、次世代のデータベースに用いられるハードウエア環境(メニーコア・大容量メモリーなど)に適合したシステムであり、ハードウエアの性能が向上するほどシステムの性能も高まる特性を有しています。32以上のコア数を有するハードウエアにおいては、世界最速レベルの処理性能456万TPSと219ナノ秒の応答遅延を実現しました。 劔の導入によって、複雑なバッチ処理とオンライン
MongoDB、暗号化したままのデータベースを検索「Queryable Encryption」発表。データ格納時、メモリ上、データ転送、ログ、バックアップのすべてが暗号化データのまま MongoDBは、6月7日から9日にかけて米ニューヨークで開催されたイベント「MongoDB World 2022」で、データを暗号化したまま検索できるMongoDBの新機能「Queryable Encryption」を発表しました。 現代の主要なデータベースであれば、データベース内にデータを暗号化して格納する機能を備えていますが、データ格納時に暗号化して格納し(Encryption at Rest)、検索時にはメモリ上でデータを復号して操作する実装が一般的です。 今回のMongoDBが実装を発表したQueryable Encryptionは、データ格納時に暗号化するだけでなく、復号することなく暗号化したまま
「基本から学ぶテーブル設計 超入門!」 https://modeling-how-to-learn.connpass.com/event/242944/ の発表資料。 - 2つの設計スタイルの違いを理解する - 何を記録するか(資源・活動・当事者・規程) - どう記録するか(テーブルの役割…
NoSQLデータモデリング技法.markdown #NoSQLデータモデリング技法 原文:NoSQL Data Modeling Techniques « Highly Scalable Blog I translated this article for study. contact matope[dot]ono[gmail] if any problem. NoSQLデータベースはスケーラビリティ、パフォーマンス、一貫性といった様々な非機能要件から比較される。NoSQLのこの側面は実践と理論の両面からよく研究されている。ある種の非機能特性はNoSQLを利用する主な動機であり、NoSQLシステムによく適用されるCAP定理がそうであるように分散システムの基本的原則だからだ。一方で、NoSQLデータモデリングはあまり研究されておらず、リレーショナルデータベースに見られるようなシステマティック
株式会社ラクーンホールディングスのエンジニア/デザイナーから技術情報をはじめ、世の中のためになることや社内のことなどを発信してます。 bashパフォーマンスMySQLInnoDBDB設計インデックス こんにちは、羽山です。 今回は MySQL のプライマリキーに UUID を採用する場合に起きるパフォーマンスの問題を仕組みから解説します。 MySQL(InnoDB) & UUID のパフォーマンスについては各所でさんざん議論・検証されていますが、論理的に解説した記事が少なかったり一部には誤解を招くようなものもあるため、しっかりと理由から理解するための情報として役立つことができればと思っています。 UUID と比較される古き良き昇順/降順のプライマリキーはというと、 MySQL の InnoDB において良いパフォーマンスを出すために縁の下の力持ちのような働きをしてくれているケースが実は少な
この記事はMERPAY TECH OPENNESS MONTHの15日目の記事です。 こんにちは。メルペイのPayment PlatformチームでPaymentServiceの開発を担当するエンジニアの @foghost です。 メルペイではマイクロサービスのアーキテクチャで決済システムを開発しています。その中でPaymentServiceは決済トランザクション管理の基盤サービスとして、下位層のサービス(外部サービスも含め)が提供する各種決済手段を利用して、上位層のサービス(メルカリ、NFC,コード払いなど)に必要な決済フローを共通APIとして提供しています。PaymentServiceが提供する決済処理に複数のサービスを跨いでお金の動きを正確に管理する必要があるので、作り始めた頃から決済トランザクション管理を最も重要な課題として、サービスを跨いでもデータの整合性が取れる仕組みを作ってき
TL;DR; Amazon AuroraはIn-Memory DBでもなくDisk-Oriented DBでもなく、In-KVS DBとでも呼ぶべき新地平に立っている。 その斬新さたるやマスターのメインメモリはキャッシュでありながらWrite-BackでもなくWrite-Throughでもないという驚天動地。 ついでに従来のチェックポイント処理も不要になったのでスループットも向上した。 詳細が気になる人はこの記事をチェキ! Amazon Aurora Amazon AuroraはAWSの中で利用可能なマネージド(=運用をAWSが面倒見てくれる)なデータベースサービス。 ユーザーからはただのMySQL、もしくはPostgreSQLとして扱う事ができるのでそれらに依存する既存のアプリケーション資産をそのまま利用する事ができて、落ちたら再起動したりセキュリティパッチをダウンタイムなしで(!?)適
言い訳から始めます。この記事を(途中まででも)読んだ人は、次のように言いたくなるでしょう。 『理論から学ぶデータベース実践入門』は良い本なのか悪い本なのか、いったいどっちなんだよ?! この本は間違いや説明不足があり、誤読されやすい表現も多く、その点では残念な本です。しかし、面白いアイディア、するどい観察も含まれていて、行間を補い深読みすれば、多くの示唆を得られる本でもあります。 よって、「良い/悪い」の二択では答えられません。良い点と悪い点の両方を、できるだけ客観的に記述するしかないのです。それをした結果、長い記事となりました。 内容: ことの発端: zhanponさんの批判 奥野本擁護と奥野本批判 僕の擁護・批判の方針 zhanponさんの指摘の再検討 1. 論理的な矛盾とデータの不整合を混同している 2. 命題論理の限界についての説明がおかしい 3. 古典論理の定義を間違えている 4.
2. 2Copyright©2017 NTT corp. All Rights Reserved. 諸説あるが、ここでの定義は「部分的な故障を許容するシステム」の事 複数台のコンピュータを接続して信頼性を高めたり データが途中で化けても再送したり訂正したり 一部のコンピュータが突然故障しても引き継いだり 故障を設計の一部に組み込む事が必須となる 分散システムとは 3. 3Copyright©2017 NTT corp. All Rights Reserved. • 世はまさに分散システム戦国時代 • Hadoopを皮切りに次々出てくる巨大分散OSS • シリコンバレーでも分散ミドルウェアベンチャーが多数出現 • 高信頼なシステムを作ろうと思った場合には複数台のマシンによる高可用構成 が前提になる • Google、Facebook、Amazon等はもちろん • 金融、流通などのエンタープラ
(注:2017/10/16、いただいたフィードバックを元に翻訳を修正いたしました。) (注:2017/10/11、いただいたフィードバックを元に翻訳を修正いたしました。) データベースのドキュメントで分離レベルを目にして、軽く不安を感じつつ、あまり考えないようにしたことはないでしょうか。トランザクションの日常の使用例できちんと分離について言及しているものはほとんどありません。多くはデータベースの初期設定の分離レベルを利用しており、後は運頼みです。しかし、本来、理解しておくべき基本的なトピックであり、いくらか時間を投入してこのガイドの内容を学習すれば、もっと快適に作業できるようになるでしょう。 私はこの記事の情報を学術論文、PostgreSQLドキュメンテーションから集めました。分離レベルの 何たる かだけでなく、適用の正確さを保持しつつ最大速度で使うにはいつ使うべきか、という疑問に答えるべ
こんな記事が目に入った。 www.itmedia.co.jp 大雑把に完全に間違ったことを言っているわけでもないが、読んでいくといろいろ鼻につくところがあり、どのあたりから間違っているのかと自分に問いただすのは現時点での自分の知識を棚卸しするためにも有用かも知れないと思ったので一言一句漏らさず思うところを書いていこうと思う。 中には枝葉末節な難癖もあるので全部を真に受けない感じで読んで欲しい。 Cloud Spannerの特徴は、これまでリレーショナルデータベースで不可能とされていた「トランザクション処理の大規模分散処理」を実現したところにあります。 単一のトランザクション処理を分散して実行しているかというと、Spannerはトランザクションごとに担当のトランザクションマネージャがそのトランザクション処理全体を取り仕切って行う仕組みになっている。なので「トランザクション処理の大規模分散処理
サーバ監視サービスMackerelにおいて開発中の、高解像度・長期間のサーバメトリック収集を実現するための新しい時系列データベースDiamondを紹介します。具体的には、Amazon ElastiCache、Amazon DynamoDB、Amazon S3を組み合わせ、Amazon Kinesis StreamsとAWS Lambdaによりコンポーネント間を接続した、階層構造のデータストアアーキテクチャの設計と実装を解説します。 2018/06/05 追記: この記事の内容をWSA研#2でより一般的なアーキテクチャレベルでの貢献として書き直しました。 サーバレス時代におけるヘテロジニアス時系列データベースアーキテクチャ - ゆううきブログ はじめに 先日開催されたAWS Summit Tokyo 2017にて、「時系列データベースという概念をクラウドの技で再構築する」というタイトルで登壇
2013年の初頭に、デイヴィッド・スピヴァックの関手データモデル(functorial data model)について紹介しました。 デイヴィッド・スピヴァックはデータベース界の革命児か -- 関手的データモデル 衝撃的なデータベース理論・関手的データモデル 入門 あれから3年3ヶ月が経過して、今、関手データモデルや圏論データベース(categorical database)の状況はどうなっているでしょうか。 一言でいえば、 派手に喧伝はされてないが、着実に発展している となるでしょう。その進展の様子を次の3つの側面から概観してみます。 ビジネス ソフトウェア 理論 内容: ビジネス: Categorical Informatics, Inc ソフトウェア: FQL IDE 理論: 等式論理と代数データベース ※ リンクと注釈がたくさんあるのは、この記事が、この話題に関する説明付きブックマ
「ウェブリブログ」は 2023年1月31日 をもちましてサービス提供を終了いたしました。 2004年3月のサービス開始より19年近くもの間、沢山の皆さまにご愛用いただきましたことを心よりお礼申し上げます。今後とも、BIGLOBEをご愛顧賜りますよう、よろしくお願い申し上げます。 ※引っ越し先ブログへのリダイレクトサービスは2024年1月31日で終了いたしました。 BIGLOBEのサービス一覧
From Fluentd Meetupに行ってきました これを読んだ時、BigQueryの検索スピードについてちょっと補足したくなった。確かにFluentd Meetupのデモでは9億件を7秒程度で検索していたが、BigQueryの真の実力はこれより1〜2ケタ上だからだ。ちょっと手元で少し大きめのテーブルで試してみたら、120億行の正規表現マッチ付き集計が5秒で完了した。論より証拠で、デモビデオ(1分16秒)を作ってみた: From The Speed of Google BigQuery これは速すぎる。何かのインチキである(最初にデモを見た時そう思った)。正規表現をいろいろ変えてみてもスピードは変わらない。つまり、インデックスを事前構築できないクエリに対してこのスピードなのである。 価格も安い。さすがに120億行のクエリは1回で200円もかかって気軽に実行できなさそうであるが、1.2億
STMはソフトウェアトランザクショナルメモリの略です。 ↓とりあえずwikipedia http://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%95%E3%83%88%E3%82%A6%E3%82%A7%E3%82%A2%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B6%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%83%A1%E3%83%A2%E3%83%AA 日本でSTMの話題を検索すると「楽観的ロックでしょ?」といった発言を見かける事が多く、確かに実用的な手法の多くはロックベースだったりしていますが、正直なところロックベースな手法のSTMはデータベースでのトランザクションと似ているフシがあったりしてデータベースに詳しい人からするとそれほど驚くような手法ではない事が多いのです。その
QConTokyo ( http://www.qcontokyo.com/KotaUENISHI_2015.html ) の発表スライド
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く