サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは本日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。
特異値分解の図示。2次元の実ベクトル空間上のせん断写像 による単位円の変形。M は V* による等長変換(この図では回転)、Σ による伸縮(この図では単位円が楕円に変形されていて、その長径と短径が特異値に相当する)、U による等長変換(この図では回転)の合成に分解される。 特異値分解(とくいちぶんかい、英: singular value decomposition; SVD)とは線形代数学における複素数あるいは実数を成分とする行列に対する行列分解の一手法であり、Autonneによって導入された[1][2][3]。悪条件方程式の数値解法で重宝するほか、信号処理や統計学の分野で用いられる[2]。特異値分解は、行列に対するスペクトル定理の一般化とも考えられ、正方行列に限らず任意の形の行列を分解できる[2][3]。 M を階数 r の m 行 n 列の行列とする。ただし、行列の要素は体 K の元で
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く