Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

graphicとalgorithmに関するruedapのブックマーク (2)

  • いろいろな曲線

    グラフ描画についての指針 グラフを調べる場合、次のことを念頭において計算を進めればよい。 (1) 曲線の存在範囲(Existence)や座標軸に対する対称性(Symmetry) (2) 座標軸との交点(Intersection)や曲線上の特殊な点の座標(Special point) (3) 関数の増減と極値(One) (4) 関数の凹凸と変曲点(Two) (5) 漸近線(Straight line) 私の高校時代、上記手順を覚えるために頭文字をつなぎ合わせて、 SESIOTS(セシオッツ) などという語呂合わせを考案したものだ。 例 曲線 Y2=X2(1-X2) のグラフを描いてみよう。 式の特徴から、曲線は、X軸に関して対称、Y軸に関して対称、原点に関して対称である ので、計算する範囲を、X≧0、Y≧0 としてよい。さらに、Y2≧0 であるので、 0≦X≦1 としてよい。このとき、与えら

  • Anti-Grain Geometry - Interpolation with Bezier Curves

    Interpolation with Bezier Curves A very simple method of smoothing polygons Initially, there was a question in comp.graphic.algorithms how to interpolate a polygon with a curve in such a way that the resulting curve would be smooth and hit all its vertices. Gernot Hoffmann suggested to use a well-known B-Spline interpolation. Here is his original article. B-Spline works good and it behaves like an

    ruedap
    ruedap 2009/03/05
    ActionScript上で線のスムージング保管をやるアルゴリズム
  • 1