重み(英語版)の集合 w1, w2, …, wn が伴ったデータ集合 x1, x2, …, xn について、重み付き調和平均 (weighted harmonic mean) を考えることができ、次で定義される: 重み付き調和平均で重みがすべて 1 の特別な場合が、上で定義した(通常用いられる)調和平均である。重みがすべて等しい任意の集合に対する重み付き調和平均は、調和平均に等しい。 調和平均は一般化平均(英語版)でパラメータを −1 とした特別な場合 (M−1) であり、また3つのピタゴラス平均の一つである。ピタゴラス平均の残る2つは算術平均 (M1) と幾何平均 (M0) である。 調和平均は、典型的には率や比に対する平均を考える場合に適切である。例えば速度の平均を計算することを考えると、乗り物がある距離を時速 60 km で走りそれから同じ距離を時速 40 km で走った場合、全体の