Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

LOUDSに関するsomemoのブックマーク (3)

  • 「木構造と自然数の重複あり集合は等価だよね」というはなし - EchizenBlog-Zwei

    「木構造と自然数の重複あり集合は等価だよね」というはなしをする。簡潔データ構造な人向けに言うとLOUDSの話。 とはいえこの記事は特に簡潔データ構造の知識を要求しない。データ構造とか情報量とかに興味がある人全般を対象としている。 ※簡潔勢にとっては既知な話のはずなのであえて読む必要はないです。 まず結論から述べる。以下のような幅優先で番号を振った木構造を考える。 親 → 子 (1) → (2, 3) (2) → (4) (3) → (5)この木構造は以下の重複あり集合によって表現することができる。 { 2, 4, 5, 5, 5 }これだけ書くとなんのこと?と思われるかもしれない。そこでこれから2つのことを説明する。ひとつは「何故、木構造が自然数の重複あり集合で表現できるか」、もうひとつは「重複あり集合で表現することに何の意味があるか」ということ。 何故、木構造が自然数の重複あり集合で表現

    「木構造と自然数の重複あり集合は等価だよね」というはなし - EchizenBlog-Zwei
  • 完備辞書(簡潔ビットベクトル)の解説 - アスペ日記

    以前、「簡潔データ構造 LOUDS の解説」というシリーズの記事を書いたことがあります。 LOUDS というのは木構造やtrieを簡潔に表すことができるデータ構造なのですが、この中で「簡潔ビットベクトル」というものについてはブラックボックスとして扱っていました。 また、中学生にもわかるウェーブレット行列を書いたときも、その中で出てきた「完備辞書」の実装には触れませんでした。 この「簡潔ビットベクトル」「完備辞書」は、同じものを指しています*1。 今回は、このデータ構造*2について書いてみます。 完備辞書でできること ビット列に対する定数時間の rank と selectです*3。 rank()は、「ビット列の先頭から位置 k までに、1 のビットがいくつあるか」*4。 select()は、「ビット列の先頭から見て、n 個目の 1 のビットの次の位置はどこか」*5。 それぞれ例を挙げます。

    完備辞書(簡潔ビットベクトル)の解説 - アスペ日記
  • 簡潔データ構造 LOUDS の解説(全12回、練習問題付き)

    日本語入力を支える技術」(通称「徳永」)や「高速文字列解析の世界」(通称「岡野原」)で紹介されている LOUDS というデータ構造を、12回に分けて解説しました。 友達に教える時に使ったもので、練習問題付きです。 実際に紙に書いてやってみるとわかりやすいと思います。 詳解 LOUDS (1) LOUDS とは 詳解 LOUDS (2) ビット列を作ってみる 詳解 LOUDS (3) 0番ノード 詳解 LOUDS (4) ビットの意味 詳解 LOUDS (5) 木構造の復元 詳解 LOUDS (6) インデックスでノードを表す 詳解 LOUDS (7) ノード番号からインデックスを得る 詳解 LOUDS (8) インデックスからノード番号を得る 詳解 LOUDS (9) 子ノードから親ノード 詳解 LOUDS (10) 親ノードから子ノード 詳解 LOUDS (11) 木の検索 詳解

    簡潔データ構造 LOUDS の解説(全12回、練習問題付き)
  • 1