Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

Rに関するtettu0402のブックマーク (5)

  • 初心者でもほぼ無料でR言語を勉強できるコンテンツ10選 - paiza開発日誌

    Photo by Hermann Kaser こんにちは。谷口がお送りします。 ITエンジニアの方の中には「R言語を学習したい」という方も多くいらっしゃるかと思います。 R言語は、データ分析やデータ処理に特化したオープンソースのプログラミング言語です。システムを開発をする他のプログラムミング言語とは位置付けが異なり、統計解析機能が付いていて、解析処理やその結果をグラフィカルに表示することができます。 そのため、多量のデータ解析が求められるソーシャルゲームの解析や、リサーチ、データマイニング、アソシエーション分析が必要な業務の求人が増えています。 また近年データサイエンティストが注目されていることもあり、今後求人が増えることが予想されます。 そこで今回は、プログラミング未経験~初心者の方が、なるべくコストをかけずにR言語に触れられて、学習に役立てられるコンテンツを10件ご紹介していきます。

    初心者でもほぼ無料でR言語を勉強できるコンテンツ10選 - paiza開発日誌
  • とっつきにくいけど実はエクセル以上に賢いヤツ フリー統計解析ソフトウェア「R」を触ってみよう【R入門講座】

    『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day

    とっつきにくいけど実はエクセル以上に賢いヤツ フリー統計解析ソフトウェア「R」を触ってみよう【R入門講座】
    tettu0402
    tettu0402 2014/05/12
    UIがゴミだから全然使えない。
  • 統計解析 & R言語超初心者入門資料まとめ

    興味を持ち続けていた統計解析や、R言語の勉強をはじめました! まだまだ初歩の初歩ですが、この記事がいつか偉大な一歩になれるように頑張っていく所存ですw まずは、R言語や統計解析に関する入門記事や、モチベーションがアップしそうな記事をまとめていきます! (02/23 11:00) 初学者の人にお勧めな資料にフォーカスしてまとめ直し 🍮 [スライド] 統計学入門 統計学の全体像をつかむのに最適なスライドです。初歩…とはちょっと呼べないくらい内容が深いです! 🏈 [スライド] 初めての「R」 統計解析を始めるときにWindowsな方も、Macな方もとっつきやすのが『R』です。このRを完全初心者をターゲットに説明をしていただけている資料です。超わかりやすいです! 🍄 [デスクトップアプリケーション] R用のIDE: RStudioRStudio RStudioはR言語用のIDEです。Wind

    統計解析 & R言語超初心者入門資料まとめ
  • Rで計量時系列分析~CRANパッケージ総ざらい~

    2. 一応、自己紹介を… 尾崎 隆 (Takashi J. OZAKI, Ph.D.)  “J”に深い意味はありません  学者だった頃に同業界にT. Ozakiさんがいたので  と思ってJをつけたら、別業界にT. J. Ozakiさんが… 2013/8/31 2 4. 一応、自己紹介を… こういうキャリアをたどっております  1997~2001年 東京大学工学部計数工学科 (※情報工学系)  2001~2006年 東京大学大学院新領域創成科学研究科 修士&博士課程(脳科学)  2006~2011年 理化学研究所脳科学総合研究センター 研究員(脳科学)  2011~2012年 東京大学教養学部 特任研究員(心理学)  2012年4月 慶應義塾大学医学部 特任助教(産学連携) ※30代のうちにポスドク問題を乗り切ることは 事実上不可能と判断して、キャリアチェンジに 打って出る

    Rで計量時系列分析~CRANパッケージ総ざらい~
  • 単純な集計とデータサイエンスによる分析とで結果が食い違うかもしれない3ケース - 渋谷駅前で働くデータサイエンティストのブログ

    一般に、データ分析の大半はそれほど高度なテクニックの類を必要としないものです。僕も常日頃から口に出して言うことが多いんですが、「統計学だの機械学習だのの出番なんてそもそも少なくて当たり前」。工数もかかるし、できればやらない方が良いです。ぶっちゃけ単純な四則演算で十分なケースの方が多数派でしょう。 なので、普段はDB上でSQL(というかHiveなど)でサクッと四則演算だけで集計処理を済ませてしまって、その結果だけを表示するようにしておいた方が圧倒的に楽で手っ取り早いはず。多くのBIツールもそういう考えのもとで作られていると思います。 ところがどっこい。世の中には、単純な四則演算での集計結果と、データサイエンスを駆使した分析結果とで、い違ってしまうケースが何故かあることが知られています。どちらかと言うとレアケースだとは思いますが、その矛盾をおざなりにするととんでもないことになることも多々あり

    単純な集計とデータサイエンスによる分析とで結果が食い違うかもしれない3ケース - 渋谷駅前で働くデータサイエンティストのブログ
  • 1