Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

数学に関するudukishinのブックマーク (3)

  • 数学の勉強のやり方

    はじめにお前は誰やねん解析学を研究している博士課程の2年生。 この記事の目的もし大学1年生の自分に会えたら数学の勉強についてアドバイスしたいことがいくつかあるので、それを簡単にまとめたい。現在進行形で学部生をやっている人の参考になれば嬉しい。ただし、あくまで個人的な考えであり、視点が偏っているので、鵜呑みにはしない方が良い。 最初にやるべきことできる限り早い段階で集合と写像の言葉を覚えよう。微分積分や線形代数より先にこちらをやった方が良い。そもそも集合と写像の言葉は大学数学をやっていくうえで必要不可欠であり、微分積分や線形代数さえこれらの知識がなければ十分には理解できない。それから、定義に従って厳密に議論できるようにならなければ、そもそも大学数学のスタートラインにさえ立てない。集合と写像の勉強はその習得に適していると思う。 ちなみに、僕がこの「スタートライン」に立てたのは学部1年後期だった

    数学の勉強のやり方
  • 基礎線形代数講座

    4. 公開にあたって ●まえがきに代えて 書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振

    基礎線形代数講座
  • 実際のところ“インド式計算法”って便利なんです? 本場インド人が解説したら、爆速過ぎて会場がザワザワした話

    「難しい問題もあっという間に解けるようになる」といわれている、いわゆる“インド式計算法”。日ではあまり使われていませんが、どれほど便利なものなのでしょうか。 今回取り上げるのは、数学イベント「マスパーティ」内で行われた、インド出身のプサパティ シバラムさんによる“インド式計算法”の発表。日の学校で教わるものとは全く違う魔法のような解き方に、客席は何度もざわめいていました。 4:41:40ごろから 発表スライドをまとめて見る 記事は下記イベントでの発表「ウェーダ式数学」の書き起こしとなります イベント:2019年10月19、20日開催「マスパーティ」(Twitter:@mathparty2019) 発表者:プサパティ シバラムさん(Facebook:vedicmathsjapan) タイトルに「数学を学ぶ自然の道」と書いています。人生においても数学においても解決する道はたくさんあると思

    実際のところ“インド式計算法”って便利なんです? 本場インド人が解説したら、爆速過ぎて会場がザワザワした話
  • 1