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Abstract This note reconsiders the morphological close-

open and open-close filters for topology optimization intro-

duced in an earlier paper (Sigmund, 2007). Close-open and

open-close filters are defined as the sequential application of

four dilation or erosion filters. In the original paper, these

filters were proposed in order to provide length scale control

in both the solid and the void phase. However, it was con-

cluded that the filters were not useful in practice due to the

computational cost of the sensitivity analysis. In this note,

it is shown that the computational cost is much lower if the

sensitivity analysis for each erosion or dilation step is per-

formed sequentially. Unfortunately, it is also found that the

close-open and open-close filters do not have the expected

effect in terms of length scale control: each close or open

operation ruins the effect of the preceding filters, resulting

in a design with a minimum length scale in either the solid

phase or the void phase, but not both.

Keywords Topology optimization · Morphological filters ·

Length scale control · Sensitivity analysis

1 Introduction

In density based topology optimization (Bendsøe, 1989;

Zhou and Rozvany, 1991), filters are commonly used in order

to avoid checkerboard patterns (Díaz and Sigmund, 1995)

and to ensure mesh independency (Jog and Haber, 1996).
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Many filters are based on an averaging operation where the

density of each element is replaced with the weighted av-

erage of the densities of the elements in its neighborhood

(Bruns and Tortorelli, 2001; Bourdin, 2001).1 The averaging

operation effectively removes small-scale features, but it also

leads to gray transition zones between the solid (unit density,

or black) and void (zero density, or white) phases. In order to

remove these transition zones and to obtain crisp black-and-

white designs, the averaging operation is often followed by

a Heaviside projection, which is an element-wise operation

that maps intermediate densities to solid or void (Guest et al,

2004; Xu et al, 2010). In order to ensure that the optimiza-

tion problem remains differentiable, a smoothed version of

the Heaviside function is used for the projection. A projec-

tion threshold is defined to differentiate between solid and

void: element densities smaller than the threshold value are

projected to zero; element densities larger than the thresh-

old value are projected to one. If the projection threshold

itself is equal to zero, the resulting design has a minimum

length scale in the solid phase. If the projection threshold

is equal to one, the resulting design has a minimum length

scale in the void phase. For intermediate values, neither in

the solid phase nor in the void phase a minimum length scale

is obtained.

As an alternative to Heaviside projection filters, Sigmund

(2007) introduced density filters based on morphological op-

erators used in image processing (Pratt, 1991; Bovik, 2009).

The two basic operators are the dilation filter and the ero-

sion filter. The former replaces the density of each element

with the maximum density that occurs in its neighborhood,

leading to a dilation of the solid phase; the latter uses the

1 In earlier publications, sensitivity filtering is performed instead of

density filtering, which means that the averaging operation is applied

to the sensitivities of the objective function and the constraints before

they are passed to the optimizer to perform a design update (Sigmund,

1994, 1997; Sigmund and Petersson, 1998).
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minimum density, leading to an erosion of the solid phase.

The dilation and erosion filter are often combined to form

the close filter (dilation followed by erosion) and the open

filter (erosion followed by dilation). The close filter removes

all small features (and thus ensures a minimum length scale)

in the void phase; the open filter does the same in the solid

phase. In the 2007 paper, the close-open filter (opening fol-

lowed by closing) and the open-close filter (closing followed

by opening) were proposed in order to ensure a minimum

length scale in both the solid and the void phase. However,

it was concluded that these filters were not usable due to the

immense computational cost of the sensitivity analysis. As

a consequence, their performance in terms of length scale

control could not be investigated in detail.

Later on, Sigmund (2009) introduced a robust formula-

tion where the worst case of a dilated, an intermediate, and

an eroded design is considered in the optimization. While

this approach has originally been proposed in order to en-

sure robustness with respect to manufacturing errors, it also

performs very well as a method to control the length scale

in both the solid and the void phases (Wang et al, 2011).

Very recently, Zhou et al. (2015) developed a similar method

for length scale control by taking only the performance of

the intermediate design into account in the optimization and

by imposing additional constraints in order to ensure that

the dilated, intermediate, and eroded design share the same

topology. This approach leads to better performing (but less

robust) designs than the original formulation.

While the problem of length scale control seems to be

solved, we still believe it is worthwhile to reconsider the

close-open and open-close filters, as they seem to provide a

length scale control method that is easy to understand and

that involves less parameters than the method proposed by

Zhou et al. (2015). Moreover, we found that the sensitiv-

ity analysis for these filters can be performed much more

efficiently than initially assumed, in a very straightforward

manner, without the use of sophisticated techniques such as

the method recently proposed by Wadbro and Hägg (2015).

This note is organized as follows. In section 2, the imple-

mentation of close-open and open-close filters and the (ef-

ficient) evaluation of the sensitivities are addressed. Section

3 discusses the application of the filters for the optimization

of a compliant force inverter. Section 4 focuses more in de-

tail on the sequential use of open and close filters with the

intention of generating designs with a minimum length scale

in both the solid and the void phase.

2 Implementation

This section focuses on the implementation of morphological

filters for topology optimization and the calculation of the

corresponding sensitivities. First, the dilation and erosion

filters are addressed. Next, these filters are combined in order

to form the close-open and open-close filters.

2.1 Dilation filter

In its discrete form, the dilation filter corresponds to a max

operator: it replaces the density of each element with the

maximum density occurring in its neighborhood. The dis-

crete form does not allow for the use of a gradient based

optimization scheme; it is therefore replaced with a similar

continuous form by means of the Kreisselmeier-Steinhauser

formulation (1983). The filtered density ρ̃e of element e is

thus obtained in terms of the unfiltered densities ρ j as:

ρ̃e = log *
,

∑

j we j eβρ j

∑

j we j

+
-

/

β (1)

where the kernel we j determines the shape of the so-called

structuring element of the filter;we j equals one if the element

j is in the neighborhoodof element e and zero otherwise. The

parameter β controls the smoothness of the Kreisselmeier-

Steinhauser formulation; for β approaching zero, the filter

corresponds to an averaging operation, for β approaching

infinity, it corresponds to the max operator.

In a gradient based optimization framework, we need an

expression for the sensitivity
∂ f

∂ρk
of a (constraint or objec-

tive) function f (ρ̃) with respect to the unfiltered density ρk
of each element k, as these unfiltered densities serve as de-

sign variables in the optimization problem. This sensitivity

is obtained as follows:

∂ f
∂ ρk

=

∑

e

∂ f
∂ ρ̃e

∂ ρ̃e

∂ ρk
(2)

where the derivative
∂ρ̃e

∂ρk
is given by:

∂ ρ̃e

∂ ρk
=

wek eβρk

∑

j we j eβρ j
(3)

The expressions on the right hand side of equations (1)

and (3) both consist of a linear averaging operation preceded

and succeeded a non-linear element-wise operation. The av-

eraging operation represents the highest computational cost,

but it can be efficiently implemented as a convolution (An-

dreassen et al, 2011) or by means of a specialized technique

where averages over overlapping parts of different neighbor-

hoods are computed only once (Wadbro and Hägg, 2015). If

the filter kernel we j would correspond to the Green’s func-

tion of a PDE (which is not the case, as the kernel con-

sidered here has a compact basis), the operation could also

be efficiently performed by means of a PDE based filtering

technique (Lazarov and Sigmund, 2011).
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2.2 Erosion filter

The erosion filter corresponds to the min operator, which

is again replaced with a similar continuous form by means

of the Kreisselmeier-Steinhauser formulation. The resulting

densities are denoted as ρ̄e ; they are obtained as:

ρ̄e = 1 − log *
,

∑

j we j eβ(1−ρ j )

∑

j we j

+
-

/

β (4)

The sensitivity
∂ f

∂ρk
of a function f (ρ̄) with respect to

the k-th design variable ρk is given by:

∂ f
∂ ρk

=

∑

e

∂ f
∂ ρ̄e

∂ ρ̄e

∂ ρk
(5)

where the derivative
∂ρ̄e

∂ρk
is obtained as:

∂ ρ̄e

∂ ρk
=

wek eβ(1−ρk )

∑

j we j eβ(1−ρ j )
(6)

The implementation strategy proposed for the dilation

filter is also applicable to the erosion filter.

2.3 Close-open and open-close filters

The erosion and dilation filters may be applied sequentially

in order to form close, open, close-open, and open-close

filters. The close filter is defined as a dilation followed by an

erosion, the open filter as an erosion followed by a dilation,

the close-open filter as opening followed by closing, and the

open-close filter as closing followed by opening.2

As an example, the open-close filter is discussed. The

physical densities obtained with the open-close filter are de-

noted by
˜̄̄
ρ̃e . They are computed in four steps:

ρ̃e = log *
,

∑

j we j eβρ j

∑

j we j

+
-

/

β (7)

¯̃ρe = 1 − log *
,

∑

j we j eβ(1−ρ̃ j )

∑

j we j

+
-

/

β (8)

¯̃̄ρe = 1 − log *
,

∑

j we j eβ(1− ¯̃ρ j )

∑

j we j

+
-

/

β (9)

˜̄̄
ρ̃e = log

*.
,

∑

j we j eβ
¯̃̄ρ j

∑

j we j

+/
-

/

β (10)

2 The definitions of the close-open and open-close filters might seem

counterintuitive, but these definitions are used in the literature on image

processing (Bovik, 2009). In the original paper (Sigmund, 2007), the

definitions of the close-open and open-close filters are swapped in the

text, but the results are denoted correctly.

The sensitivity
∂ f

∂ρk
of a function f ( ˜̄̄

ρ̃) with respect to

the k-th design variable ρk is obtained by applying the chain

rule four times:

∂ f

∂ ¯̃̄ρk
=

∑

e

∂ f

∂
˜̄̄
ρ̃e

∂
˜̄̄
ρ̃e

∂ ¯̃̄ρk
(11)

∂ f

∂ ¯̃ρk
=

∑

e

∂ f

∂ ¯̃̄ρe

∂ ¯̃̄ρe

∂ ¯̃ρk
(12)

∂ f
∂ ρ̃k

=

∑

e

∂ f

∂ ¯̃ρe

∂ ¯̃ρe

∂ ρ̃k
(13)

∂ f
∂ ρk

=

∑

e

∂ f
∂ ρ̃e

∂ ρ̃e

∂ ρk
(14)

or:

∂ f
∂ ρk

=

∑

e

∑

p

∑

q

∑

r

∂ f

∂
˜̄̄
ρ̃r

∂
˜̄̄
ρ̃r

∂ ¯̃̄ρq

∂ ¯̃̄ρq

∂ ¯̃ρp

∂ ¯̃ρp

∂ ρ̃e

∂ ρ̃e

∂ ρk
(15)

In the original paper (Sigmund, 2007), the evaluation of

equation (15) is considered to be computationally extremely

expensive due to the nested nature of the summation oper-

ators. However, the high computational cost is only due to

the fact that the partial derivatives
∂

˜̄̄
ρ̃r

∂ ¯̃̄ρq

∂ ¯̃̄ρq

∂ ¯̃ρp
,
∂ ¯̃ρp

∂ρ̃e
, and

∂ρ̃e

∂ρk

and their products are recomputed in every summation step.

It is much more efficient to compute the sensitivities
∂ f

∂ρk
in

four steps, corresponding to equations (11-14), so avoiding

to perform the same computations over and over again. The

number of summation operations then reduces from ns4 as

reported in the original paper to 4ns, where n is the number

of finite elements in the design domain and s is the size of

the structuring element (in terms of finite elements) used for

the filtering operation.

While the formulation considered in this note is based on

morphological operators, it is also possible to define close-

open and open-close filters based on sequential Heaviside

projections. In that case, the same strategy can be followed

to perform the sensitivity analysis in an efficient way.

3 Test example

3.1 Problem formulation

This section addresses the optimization of a compliant force

inverter. The design domain and boundary conditions are

shown in figure 1. The objective is to maximize the dis-

placement uout in the output degree-of-freedom for a unit

input force f in. The amount of material is limited to 25 % of

the design domain. The design domain is discretized using

n = 300 × 150 = 45000 square finite elements with unit

dimensions. The Young’s modulus is E0 = 1 for the solid
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L

L/2

L/100

finkin uout kout

Fig. 1 Design domain and boundary conditions for the force inverter.

phase and Emin = 10−9 for the void phase, and Poisson’s ra-

tio is ν = 0.3. The spring stiffnesses of the input and output

springs are kin = 0.4 and kout = 0.0004, respectively.

The modified SIMP interpolation scheme proposed by

Sigmund (2007) with a penalization power p = 3 is used

to relate the Young’s modulus of an element to its physi-

cal density. As in the original paper, the value of p remains

fixed throughout the optimization. The physical densities are

computed using (1) a close-open filter and (2) an open-close

filter. In both cases, a circular structuring element with a

radius R = 6.25 is used. The size of this structuring ele-

ment is s = 121. This means that the number of summa-

tion operations in the sensitivity analysis would be equal to

ns4
= 9.6 × 1012 according to the originally proposed pro-

cedure, while it is equal to 4ns = 21.8× 106 if the procedure

proposed in this note is followed.

A conservative continuation scheme is followed for the

filter’s smoothness parameter β in order to ensure smooth

convergence of the optimization algorithm: in the first it-

eration, a value β = 0.2 is used, and in every subsequent

iteration, the value of β is multiplied with a factor 1.01, until

it becomes larger than 200. This occurs after 696 iterations.

From then on, the value of β is kept constant. Initially, the

entire design domain is assumed to be solid. The optimiza-

tion is performed using the Method of Moving Asymptotes

(MMA) (Svanberg, 1987), and the algorithm is terminated

after 1000 iterations.

3.2 Results

Figure 2 shows the convergencehistory of the objective func-

tion during the optimization of the inverter using a close-

open filter and an open-close filter. It can be observed that

the objective function reaches an almost constant level after

about 100 iterations. At this point, the final design has been

obtained, except that there are still gray transition zones be-

tween the solid and the void phase. These transition zones

start to disappear as soon as the smoothness parameter β be-

comes sufficiently high, resulting in a further increase of the

objective function. Once the value of β is fixed, the objective

function remains almost constant.

In terms of objective value and measure of non-

discreteness (Sigmund, 2007), both the close-open filter

and the open-close filter yield good results: in the case of

the close-open filter, the final value of the objective func-

tion is uout = 8.28, and the measure of non-discreteness is

Mnd = 2.36 %. In the case of the open-close filter, the final

value of the objective function is uout = 8.01, and the mea-

sure of non-discreteness is Mnd = 2.56 %. In both cases, the

material volume constraint is exactly satisfied.

The intention of implementing the close-open and open-

close filters was to obtain a design with a minimum length

scale in both the solid and the void phase; that is, a design that

can be produced both by material deposition and by machin-

ing, using a tool with the shape of the structuring element

adopted in the filtering procedure. In order to assess whether

this goal has been achieved, figure 3 shows the optimized

force inverter using the two types of filters. The shape of the

structuring element is also shown.

The close-open filter leads to a design with a minimum

length scale in the void phase, but not in the solid phase:

very thin connections occur that will mimic the effect of

structural hinges. Conversely, the open-close filter leads to a

design with a minimum length scale in the solid phase, but

not in the void phase: the design consists of several parts,

connected by (unproducible) single-node hinges.

It must be concluded that the close-open and open-close

filters allow for length scale control in either the solid phase

or the void phase, but not both, which may seem counterintu-

itive. In the next section, the filters are studied in more detail

in order to come up with an explanation for this conclusion.

4 Length scale

The test example addressed in the previous section demon-

strates that the use of close-open and open-close filters does

not (always) lead to a design with a minimum length scale in

both the solid and the void phase. The question then arises

whether this is inherent to the close-open and open-close

filters or whether it is due to the fact that we use smooth

versions of these filters (in which case changing the contin-

uation scheme or switching to Heaviside based close-open

and open-close filters could possibly offer a solution). This

section addresses the length scale problem in more detail.

An unsmoothed version of the close-open as well as the

open-close filter is applied to the black-and-white test pattern

shown in figures 4(1a) and 4(2a). The domain is discretized

using 1000×1000 square elements of unit size, and a circular

structuring element with a radius R = 40 is used for both

filters. The results are shown in figure 4.

Figures 4(1e) and 4(2c) show an outcome of the close

filter. These figures seem to confirm that the close filter elim-
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(a) Close-open filter
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(b) Open-close filter

Fig. 2 Convergence history of the objective function for the inverter test example obtained using (a) the close-open filter and (b) the open-close

filter.

Structuring element

(a) Close-open filter (b) Open-close filter

Fig. 3 Results for the inverter test example obtained using (a) the close-open filter and (b) the open-close filter. For both filters, two images are

shown. The upper image shows the (non-physical) design variable field; the lower image shows the (physical) filtered density field.

inates small holes and thus ensures a minimum length scale

in the void phase (Sigmund, 2007). Likewise, figures 4(1c)

and 4(2e) show an outcome of the open filter; they confirm

that the open filter eliminates small solid features and leads

to a design with a minimum length scale in the solid phase.

However, the effect on the length scale is not preserved by

subsequent filters. Figure 4(1e) clearly demonstrates that the

close filter ruins the effect of the open filter: the length scale

in the solid phase is completely lost. It can therefore be con-

cluded that the use of an open-close filter does not lead to a

design with a minimum length scale in both phases. By in-

verting the input pattern, one can draw the same conclusion

for the close-open filter.

While the example pattern used here might be consid-

ered pathological, it helps explaining the small features that

occur in the force inverter considered in the previous section,

and it demonstrates that the use of a close-open filter or an

open-close filter does not guarantee the existence of a length

scale in both solid and void phases. As this is true for the

unsmoothed version of the filters and for a completely black-

and-white input pattern, it can be concluded that changing

the continuation scheme or switching to Heaviside based

close-open or open-close filters would offer no relief.

5 Conclusion

This note reconsiders the morphological close-open and

open-close filters for topology optimization introduced in

an earlier paper (Sigmund, 2007). The implementation of

the filters (and, especially, the computation of the sensitivi-

ties) is addressed, and the performance of the filters in terms

of length scale control is investigated.

It is shown that the sensitivities of the close-open and

open-close filters can be computed much more efficiently
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ρ ρ̄ ˜̄ρ ˜̄̃
ρ

¯̃̃
ρ̄

(1)

ρ ρ̃ ¯̃ρ ¯̃̄
ρ

˜̄̄
ρ̃

(2)

(a) (b) (c) (d) (e)

Fig. 4 (1) Application of an unsmoothed close-open filter to a test pattern; from left to right: design variables ρ, intermediate variables ρ̄ after first

erosion, intermediate variables ˜̄ρ after first dilation, intermediate variables ˜̄̃
ρ after second dilation, and physical densities

¯̃̃
ρ̄ after second erosion;

and (2) application of an unsmoothed open-close filter to a test pattern; from left to right: design variables ρ, intermediate variables ρ̃ after first

dilation, intermediate variables ¯̃ρ after first erosion, intermediate variables ¯̃̄
ρ after second erosion, and physical densities

˜̄̄
ρ̃ after second dilation.

than initally assumed by evaluating the chain rule in a step-

by-step approach.

Unfortunately, the open-close and close-open filters do

not impose a length scale on both the solid and the void

fraction. Each close or open operation ruins the effect of

the preceding filters. As a consequence, the close-open filter

(where the last step is a close operation) only guarantees a

minimum length scale in the void phase, and the open-close

filter (where the last step is an open operation) only guar-

antees a minimum length scale in the solid phase. If length

scale control in both phases is required, the robust approach

(Wang et al, 2011) and the method recently proposed by

Zhou et al. (2015) have proven to be more effective.
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