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Abstract 

A toxicovenomic analysis of the venom of the forest cobra, N. melanoleuca, 

was performed, revealing the presence of a total of 52 proteins by proteomics 

analysis. The most abundant proteins belong to the three-finger toxins (3FTx) (57.1 

w%), which includes post-synaptically acting D-neurotoxins. Phospholipases A2 

(PLA2) were the second most abundant group of proteins (12.9 w%), followed by 

metalloproteinases (SVMPs) (9.7 w%), cysteine-rich secretory proteins (CRISPs) (7.6 

w%), and Kunitz-type serine proteinase inhibitors (3.8 w%). A number of additional 

protein families comprised each less than 3 w% of venom proteins. A toxicity 

screening of the fractions, using the mouse lethality test, identified toxicity in RP-

HPLC peaks 3, 4, 5 and 8, all of them containing D-neurotoxins of the 3FTx family, 

whereas the rest of the fractions did not show toxicity at a dose of 0.53 mg/kg. Three 

polyspecific antivenoms manufactured in South Africa and India were tested for their 

immunoreactivity against crude venom and fractions of N. melanoleuca. Overall, 

antivenoms immunorecognized all fractions in the venom, the South African 

antivenom showing a higher titer against the neurotoxin-containing fractions. This 

toxicovenomic study identified the 3FTx group of D-neurotoxins in the venom of N. 

melanoleuca as the relevant targets to be neutralized. 

 

(200 words) 
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Biological significance 

A toxicovenomic analysis of the venom of the forest cobra, also known as black 

cobra, Naja melanoleuca, was performed. Envenomings by this elapid species are 

characterized by a progressive descending paralysis which starts with palpebral ptosis 

and, in severe cases, ends up with respiratory arrest and death. A total of 52 different 

proteins were identified in this venom. The most abundant protein family was the 

three-finger toxin (3FTx) family, which comprises almost 57.1 w% of the venom, 

followed by phospholipases A2 (PLA2) (12.9 w%). In addition, several other protein 

families were identified in a much lower percentage in the venom. A toxicity 

screening of the fractions, using the mouse lethality assay, identified four peaks as 

those having toxicity higher than that of the crude venom. These fractions 

predominantly contain D-neurotoxins of the 3FTx family. This toxicovenomic 

characterization agrees with the clinical and experimental manifestations of 

envenomings by this species, in which a strong neurotoxic effect predominates. 

Therefore, our findings suggest that immunotherapy against envenomings by N. 

melanoleuca should be directed towards the neutralization of 3FTxs; this has 

implications for the improvement of current antivenoms and for the development of 

novel antivenoms based on biotechnological approaches.  A screening of the 

immunoreactivity of three antivenoms being distributed in sub-Saharan Africa 

revealed that they immunoreact with the fractions containing D-neurotoxins, although 

with different antibody titers. 
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1. Introduction 

The forest cobra, also known as the black cobra (Naja melanoleuca), is a 

highly venomous member of the elapid snake family, reaching up to 3.1 meters in 

length, and being able to deliver venom yields above 1 gram per milking [1]. N. 

melanoleuca is the largest of the African cobra species and it is known to inhabit 

moist river areas, primary and secondary forests, and suburban habitats in Western, 

Central, and Southern Africa [2–4]. Its coloration may vary between three different 

color morphs, and it is active during the day, where it feeds on mammals, frogs, and 

fish [2,3]. From the clinical standpoint, envenomings by N. melanoleuca have been 

classified within the syndromic category 3, characterized by progressive paralysis 

(neurotoxicity) [5]. Patients develop a descending progressive paralysis which starts 

with ptosis, external ophtalmoplegia and weakness of muscles innervated by the 

cranial nerves, with patients having difficulties in swallowing and speaking. 

Eventually the respiratory muscles become paralyzed, and death ensues unless 

mechanical ventilation is provided [5].  

Currently, six antivenoms are claimed to be effective against envenomings 

from N. melanoleuca [6]. Due to the severity of envenomings, N. melanoleuca is 

classified by the WHO as a category 1 snake of highest medical importance 

(http://apps.who.int/bloodproducts/snakeantivenoms/database/). Therefore, it is of 

high relevance to obtain a deep understanding of the composition of N. melanoleuca 

venom. To this date, no quantitative venom proteome has been reported for N. 

melanoleuca, however, several biochemical studies have reported that the venom 

contains long and short neurotoxins [7,8], cytotoxins [9–11], phospholipases A2 

[12,13], and 'weak' toxins [9,14].  
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In order to develop safe and effective antivenoms that can protect against 

envenoming from N. melanoleuca, it is not only important to know the venom 

composition. It is also essential to understand which toxins are the medically most 

relevant to target. For this purpose, the combination of venomics and the Toxicity 

Score [15] may be employed to unveil which toxins are the main culprits responsible 

for the clinical manifestations of N. melanoleuca envenomings. Being able to identify 

these key toxins may not only help guide traditional antivenom development, but may 

also aid rational antitoxin discovery approaches based on biotechnology [16]. 

 Here, we report the first toxicovenomics study of the venom of N. 

melanoleuca, providing a quantitative estimation of its proteome alongside an 

assessment of the medical importance of the individual venom fractions and an 

evaluation of the immunorecognition pattern of three antivenoms in use in sub-

Saharan Africa. 

 

2. Materials and Methods 

2.1 Snake venom 

 Venom of N. melanoleuca was obtained from Latoxan SAS, Valence, France, 

from a pool of 7 specimens collected in Uganda. Venoms from N. nigricollis and N. 

mossambica used for comparison in in vitro enzymatic assays were also obtained 

from Latoxan from pools of several specimens collected in Tanzania. Venom from 

Bothrops asper was obtained as a pool from several specimens from Costa Rica kept 

at Instituto Clodomiro Picado, Universidad de Costa Rica, Costa Rica. 

 

2.2 Venom separation by reverse-phase HPLC and SDS-PAGE  

Following the ‘snake venomics’ analytical strategy, crude venom was 
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fractionated involving a combination of RP-HPLC and SDS-PAGE separation [17]. 

Two mg of venom was dissolved in 200 μL of water containing 0.1% trifluoroacetic 

acid (TFA; solution A) and separated by RP-HPLC (Agilent 1200) on a C18 column 

(250 x 4.6 mm, 5 μm particle; Supelco). Elution was carried out at 1 mL/min by 

applying a gradient towards solution B (acetonitrile, containing 0.1% TFA): 0% B for 

5 min, 0–15% B over 10 min, 15–45% B over 60 min, 45–70% B over 10 min, and 

70% B over 9 min, as previously described [18]. Fractions were collected manually, 

dried in a vacuum centrifuge, redissolved in water, reduced with 5% E-

mercaptoethanol at 100°C for 5 min, and further separated by SDS-PAGE in 15% 

gels. Colloidal Coomassie blue G-250 was used for proteins staining, and a 

ChemiDoc® recorder and ImageLab® software (Bio-Rad) were used to acquire gel 

images. 

 

2.3 Protein identification by tandem mass spectrometry of tryptic peptides 

From the polyacrylamide gels protein bands were excised and subjected to 

reduction (10 mM dithiothreitol), alkylation (50 mM iodoacetamide), and overnight 

in-gel digestion with sequencing grade trypsin (Sigma), in 50 mM ammonium 

bicarbonate at 37 °C. Tryptic peptides were extracted with 50% acetonitrile 

containing 1% TFA, and analyzed by MALDI-TOF-TOF on an AB4800-Plus 

Proteomics Analyzer (Applied Biosystems). Digested and extracted peptides were 

mixed with an equal volume of saturated α-cyano-hydroxycinnamic acid (in 50% 

acetonitrile, 0.1% TFA), and spotted (1 μL) onto an Opti-TOF 384-well plate, dried, 

and analyzed in positive reflector mode. TOF spectra were acquired using 500 shots 

at a laser intensity of 3000. TOF/TOF fragmentation spectra were acquired using 500 

shots at a laser intensity of 3900 for the automatically selected ten most intense 
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precursor ions. CalMix® standards (ABSciex) spotted onto the same plate were used 

for external calibration in each run. Resulting spectra were searched against the 

UniProt/SwissProt database for Serpentes (20150217) using ProteinPilot® v.4 and the 

Paragon® algorithm (ABSciex) at ≥ 95% confidence, or, in few cases, manually 

interpreted, and the deduced sequences searched using BLAST 

(http://blast.ncbi.nlm.nih.gov) for assignment of protein family by similarity. 

 

2.4 Relative protein abundance estimations 

 The relative abundance of the venom proteins was estimated using the 

ChemStation® software (Agilent) to integrate the areas of their chromatographic 

peaks at a wavelength of 215 nm, roughly corresponding to peptide bond abundance 

[17]. When HPLC peaks contained several electrophoretic bands, ImageLab® (Bio-

Rad) was used to assign their percentage distributions by densitometry. Finally, for 

electrophoretic bands containing more than one protein according to MALDI-TOF-

TOF analysis, their percentage distributions were estimated based on the 

corresponding intensities of the intact protein ions, as observed in the nESI-MS 

analysis. For this, a 10 PL sample of the HPLC fraction was loaded into a metal-

coated capillary (Proxeon) and directly infused into a nano-spray source of a QTrap 

3200 mass spectrometer (Applied Biosystems) operated at 1300 V in enhanced multi-

charge mode. Deconvolution of spectra was performed with the aid of the Bayesian 

protein reconstruction tool of Analyst v.1.5. Intensities lower than 5% (relative to the 

major protein ions in these mixtures) were considered as traces. Protein abundances 

were calculated on the basis of protein content percentage (w%).  

 

2.5 In vitro enzymatic activities 
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2.5.1. Phospholipase A2 activity 

PLA2 activity was assayed using the monodisperse synthetic chromogenic 

substrate 4-nitro-3-octanoyloxybenzoic acid (NOBA) [19]. 25 μL of solution, 

containing various amounts of venom, were mixed with 200 μL of 10 mM Tris, 10 

mM CaCl2, 0.1 M NaCl, pH 8.0, and 25 μL of NOBA to achieve a substrate 

concentration of 0.32 mM. Plates were incubated at 37 °C for 60 min, and 

absorbances were recorded at 405 nm (Multiskan FC, Thermo Scientific). For 

comparative purposes, the activities of the venoms of N. mossambica, N. nigricollis, 

and the viperid snake Bothrops asper were also assessed. 

 

2.5.2 Proteinase activity 

 Proteinase activity was assayed by adding 20 µg of venom to 100 μL of 

azocasein (10 mg/mL in 50 mM Tris–HCl, 0.15 M NaCl, 5 mM CaCl2 buffer, pH 

8.0), and the mixture was incubated for 90 min at 37 °C. The reaction was terminated 

by addition of 200 μL of 5% trichloroacetic acid. After centrifugation (5 min, 6,000 × 

g), 150 μL of supernatants were mixed with 100 μL of 0.5 M NaOH, and absorbances 

were recorded at 450 nm (Multiskan FC, Thermo Scientific). The absorbance of 

azocasein incubated with distilled water alone was used as a blank, being subtracted 

from all readings [20]. For comparative purposes, the activities of the venoms of N. 

mossambica, N. nigricollis, and Bothrops asper were also assessed. 

 

2.6 Toxicological profiling 

2.6.1 Animals  

 In vivo assays were performed in CD-1 mice of both sexes, provided by 

Instituto Clodomiro Picado, following protocols approved by the Institutional 
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Committee for the Use and Care of Animals (CICUA), University of Costa Rica. 

Mice were provided food and water ad libitum. 

 

2.6.2 Toxicity of crude venom and isolated venom fractions 

 The acute toxicity of venom fractions was initially screened by intravenous 

(i.v.) injection of 10 μg of toxin per mouse (0.53 mg/kg) for all fractions devoid of 

snake venom metalloproteinases (SVMPs) in groups of three mice (18–20 g body 

weight). Fractions that were not lethal at this level were not further investigated, 

whereas precise LD50s were determined in groups of four mice for fractions which did 

kill mice at this dose, and for the whole venom. Toxicity Scores were calculated 

according to Laustsen et al. [15], on the basis of the abundance (w%) of each fraction. 

Additionally, a Molecular Toxicity Score was introduced, which was calculated using 

the molecular abundance (mol%) of each fraction based on the molecular mass of 

identified toxins. Various amounts of venom or venom fractions were dissolved in 

phosphate-buffered saline (PBS; 0.12 M NaCl, 0.04 M sodium phosphate buffer, pH 

7.2) and injected in the caudal vein, in a volume of 100 µL. Deaths occurring within 

24 h were recorded, and LD50s were calculated by probits [21], using the BioStat® 

software (AnalySoft). 

 

2.7 Antivenoms 

 Polyspecific antivenoms from the following manufacturers were employed: (a) 

SAIMR (South African Institute for Medical Research) Polyvalent Snake Antivenom 

from South African Vaccine Producers (Pty) Ltd (batch number BC02645, expiry 

date 07/2016); (b) Snake Venom Antivenom (Central Africa) from VINS Bioproducts 
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Ltd (batch 12AS13002, expiry date 04/2017); (c) Snake Venom Antivenom (African) 

from VINS Bioproducts Ltd (batch 13022, expiry date 01/2018). 

 

2.8 Immunoreactivity of antivenoms against crude venom and venom fractions by 

ELISA 

 Wells in MaxiSorp™ plates (NUNC, Roskilde, Denmark) were coated with 1 

μg of each HPLC venom fraction, or crude venom, dissolved in 100 μL PBS 

overnight. Next day, the wells were washed three times with PBS and blocked by 

adding 100 μL PBS containing 2% (w:v) bovine serum albumin (BSA, Sigma), and 

incubated at room temperature for 1 h. Then, plates were washed five times with PBS. 

A dilution of each antivenom in PBS + 2% BSA was prepared, and 100 μL of these 

solutions were added to each well in triplicates and incubated for 2 h. Plates were then 

washed five times with PBS. Subsequently, 100 µL of a 1:2000 dilution of conjugated 

antibody (Sigma A6063, rabbit anti-horse IgG (whole molecule)-alkaline phosphatase 

in PBS + 1% BSA) was then added to each well. Following 2 h of incubation, the 

wells were washed five times with FALC buffer (0.05 M Tris, 0.15 M NaCl, 20 PM 

ZnCl2, 1 mM MgCl2, pH 7.4). Color development was achieved by addition of 100 

µL p-nitrophenyl phosphate (1 mg/mL in 9.7% v/v diethanolamine buffer, pH 9.8) 

and absorbances at 405 nm were recorded (Multiskan FC, Thermo Scientific). 

 

3.0 Results and Discussion 

3.1 Venomics 

A bottom-up venomic characterization of N. melanoleuca venom was performed. 

Using RP-HPLC, the venom was resolved into 33 fractions, where the first, second 

and sixth fractions eluting from the column did not contain proteins as found in SDS-
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PAGE. Further resolving by SDS-PAGE of the 30 remaining fractions yielded 63 

bands (Figure 2), of which the protein identities for 62 bands were positively 

identified upon in-gel digestion and MALDI-TOF-TOF analysis. Within these bands a 

total of 52 different proteins were identified. As described previously [22,23], some 

fractions contained toxins in both monomer and dimer form, as exemplified by 

fraction number 10 (see Figure 2). To uncover the overall protein composition of N. 

melanoleuca venom, the identified proteins were assigned to families and expressed 

as percentages of total protein content (see Figure 3 and Table 1). The most abundant 

proteins were found to belong to the three-finger toxin (3FTx) family (57.1 w%), 

followed by proteins from the phospholipase A2 (PLA2) family (12.9 w%) (Figure 3). 

3FTxs in elapid venoms share a common structural scaffold consisting of 60-80 

amino acids, with three E-stranded loops extending from a small, globular, 

hydrophobic core [24–26]. Despite this highly conserved structure, 3FTxs display a 

wide range of activities [27], although the main 3FTxs identified in the venom of N. 

melanoleuca are type I and II D-neurotoxins and cytotoxins (see Table 1). Both type I 

and II D-neurotoxins target the nicotinic acetylcholine receptor at the end-plate of 

muscle fibers, causing flaccid paralysis in victims and prey, potentially culminating in 

respiratory failure and death [28–30]. The cytotoxins identified in this study derive 

from the type IA cytotoxin sub-subfamily. Cobra cytotoxins are amphiphilic toxins 

known for inducing cellular damage through disruption of the cell membrane, which 

may lead to tissue necrosis [31,32]. However, experimental and clinical envenomings 

by N. melanoleuca are not characterized by tissue necrosis possibly due to the 

relatively low content of cytotoxins as compared to the predominant D-neurotoxins.  

The second-most abundant toxin family found in the venom of N. melanoleuca 

is the phospholipase A2 (PLA2) family (12.9 w%), which is generally found in 
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abundance in both viperids and elapids and, in the case of elapids, has evolved from 

pancreatic PLA2 digestive enzymes [33]. The catalytic function of PLA2s is to cleave 

phospholipids at the sn-2 position in the glycerol backbone. In snake venoms, 

however, PLA2s not only play a role in the digestion of prey, but also exhibit a variety 

of toxicological effects [34]. As in other elapid venoms, the PLA2s found in N. 

melanoleuca belong to the Group I, catalytically-active D49 enzymes [33]. In 

agreement, N. melanoleuca venom showed PLA2 activity, similar to the venom of N. 

nigricollis but lower than that of venoms of N. mossambica and Bothrops asper 

(Figure 4A). Despite the presence of 9.7% SVMPs in the venom proteome, very low 

proteinase activity was observed on azocasein (Figure 4B). It is likely that the SVMPs 

of N. melanoleuca have restricted substrate specificity as observed in other elapid 

species [22,23] 

Other protein families found in lower proportions in the venom of N. 

melanoleuca include cysteine-rich secretory proteins (CRISP; 7.6 w%), Kunitz-type 

serine proteinase inhibitors (BPTI/Kunitz; 3.8 w%), flavin monoamine oxidases 

(FMO; 2.5 w%), and traces of nerve growth factors (NGF < 0.4 w%), ohanin/vespryn 

family (OHA; < 0.5 w%), DNA/RNA endonucleases (DRE < 0.3 w%), 

endonuclease/phosphodiesterase (PDE; 1.1 w%), glutathione peroxidase family (GPF; 

0.9 w%), type-B carboxylesterase/lipase family (CELF; 1.1 w%), and selectins 

(SUSHI; < 0.3 w%). 

 

3.2. Toxicity of venom fractions 

Toxicity testing was carried out for all venom fractions devoid of SVMPs, since the 

solvents used for RP-HPLC denature these proteinases (Table 2). First, the LD50 of 

crude venom was determined to be 0.66 mg/kg (95% confidence interval 0.49-0.92 
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mg/kg). This value was higher than previously determined LD50s (i.v. 0.289 mg/kg), 

reported on http://snakedatabase.org/pages/LD50.php. It is likely that this can be 

explained by geographical variation in venom toxicity which is known to occur in 

species having a wide distribution [35]. A cut-off value of 10 µg per mouse (0.53 

mg/kg) was chosen for toxicity screening of the venom fractions. From Table 2 it was 

evident that the majority of fractions inducing lethality within 24 h were those 

containing type I and II α-neurotoxins. LD50s were determined for fractions that 

showed lethality at 0.53 mg/kg, more specifically fractions 3, 4, 5, and 8, as depicted 

in Table 2. These LD50s were lower than the overall LD50 of the crude venom 

suggesting that the toxins present in these fractions are of high medical relevance. 

According to their Toxicity Scores, the most potent fraction was fraction 8 (TS = 88, 

Molecular TS = 115.5), containing a homolog of Long neurotoxin OH-55 

Ophiophagus hannah (Q53B58), Long neurotoxin 2 Naja melanoleuca (P01338), and 

Weak toxin S4C11 Naja melanoleuca (P01400). Previous studies have found Weak 

toxin S4C11 Naja melanoleuca (P01400) to have an LD50 of 20 mg/kg [9], strongly 

suggesting that the long neurotoxins are the cause of the high toxicity of this fraction. 

From the MALDI-TOF-TOF analysis fractions 3, 4, and 5 were found to contain 

similar D-neurotoxins, with all three fractions having LD50s in the same range. Due to 

differences in abundances, Toxicity Scores for these fractions differed (TS = 59.2, 

4.6, and 10.0, Molecular TS = 78.8, 15.0, and 6.9, respectively). Nevertheless, the 

similarity in both the sequences obtained (Table 1) and the LD50s (Table 2) suggest 

that the toxins present in these fractions are likely to be similar isoforms. No other 

toxins were found to show lethality at the pre-determined cut-off value. Mice injected 

with fractions 3, 4, 5, and 8 showed evident manifestations of respiratory paralysis, 

indicating that the cause of death was neurotoxin-induced respiratory arrest. 
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 The toxicity analysis of fractions strongly suggests that other venom 

components, such as PLA2s, do not play a central role in the overall toxicity. Despite 

the fact that neurotoxic PLA2s occur in many elapid snake venoms [36], and although 

neurotoxic PLA2s have been described in some Naja sp venoms [37], in general the 

neurotoxicity of cobra venoms is based on the action of post-synaptically acting 

3FTxs. Likewise, other minor components present in N. melanoleuca venom do not 

seem to exert lethal effects either, as judged by our toxicity screening. 

According to their Toxicity Scores, the most therapeutically relevant targets of 

N. melanoleuca to be neutralized with antivenom were found to be homologs of 

Alpha-neurotoxin NTX-1 from N. sputratix (Q9YGJ6), Short neurotoxin 1 from N. 

melanoleuca (P01424), Long neurotoxin 2 from N. melanoleuca (P01388), and Long 

neurotoxin OH-55 O. hannah (Q53B58) which are D-neurotoxins that bind to the 

nicotinic acetylcholine receptor, thereby abrogating neuromuscular transmission. 

 

3.3 Immunoprofiling of antivenoms  

Three polyspecific antivenoms, distributed in sub-Saharan Africa, were tested for 

their ability to recognize N. melanoleuca crude venom and fractions by ELISA. First, 

ELISA titration curves were determined against immobilized crude venom with the 

highest binding found to be VINS African, followed by SAVP, and VINS Central 

Africa, when normalized according to protein concentration (Figure 5). The 

immunization mixture of both VINS African and SAVP contain the venom of N. 

melanoleuca, whereas VINS Central Africa solely consists of venom from three 

species of the Viperidae family and Dendroaspis polylepis. Thus, cross-reactivity 

between similar toxins present in these species and N. melanoleuca is likely to exist. 
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When using solid-phase immunoassays of antivenoms against crude venoms, 

prediction of cross-reactivity may be of limited value as antibodies tend to bind to the 

highly immunogenic venom components, which are not always the most medically 

relevant ones. Therefore, it is important to consider the recognition pattern for 

antivenoms against individual venom components or fractions. To further investigate 

these immunorecognition patterns, all three antivenoms were subjected to yet another 

ELISA assay against the different venom fractions (Figure 6). From these results it 

was observed that the three antivenoms generally have a similar recognition pattern. 

However, the SAVP antivenom does appear to have higher antibody titers than the 

other antivenoms against the medically most relevant fractions containing the α-

neurotoxins (fractions 3, 4, 5, and 8) (see Figure 6). 

 

4.0 Concluding remarks and outlook 

In the present study, the venom of N. melanoleuca was, for the first time, subjected to 

a thorough toxicovenomics analysis. This revealed that the venom was dominated by 

three-finger toxins (57.1 w% of the venom) and phospholipase A2s (12.9 w% of the 

venom), of which particularly the three-finger toxins were determined to be the most 

toxic fractions of the venom evaluated by their Toxicity Score. Additionally, other 

protein families (CRISPs, nerve growth factor, Kunitz-type serine protease inhibitor, 

ohanin/vespryn, SVMPs, DNA/RNA non-specific endonuclease, 

endonuclease/phosphodiesterase, flavin monoamine oxidase, glutathione peroxidase, 

Type-B carboxylesterase/lipase, and selectins) were determined to be present in the 

venom. Immunoprofiling of three antivenoms by ELISA with the different fractions 

of N. melanoleuca venom revealed a similar pattern of immunorecognition, although 

the South African antivenom exhibited slightly higher signals against the 
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toxicologically relevant neurotoxins. Our toxicovenomic observations indicate that an 

effective antivenom against the venom of N. melanoleuca should contain neutralizing 

antibodies against venom components having homology to the D-neurotoxins Alpha-

neurotoxin NTX-1 from N. sputratix (Q9YGJ6), Short neurotoxin 1 from N. 

melanoleuca (P01424), Long neurotoxin 2 from N. melanoleuca (P01388), and Long 

neurotoxin OH-55 O. hannah (Q53B58). Hopefully, these studies may help lay the 

foundation for developing more efficacious antivenoms, based on traditional or novel 

biotechnological approaches. 
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Figure legends 

 

Figure 1: Naja melanoleuca in a raised position displaying its characteristic cobra 

hood. 

 

Figure 2: Separation of N. melanoleuca venom proteins using RP-HPLC (A), 

followed by SDS-PAGE (B). Two mg of venom were fractionated on a C18 column 

and eluted with an acetonitrile gradient (dashed line), followed by further separation 

of protein fractions by SDS-PAGE under reducing conditions. Molecular weight 

markers (M) are indicated in kDa. Coomassie-stained bands were excised, in-gel 

digested with trypsin, and subjected to MALDI-TOF/TOF analysis for assignment to 

protein families, as shown in Table 1.   

 

Figure 3: Composition of the N. melanoleuca venom proteome according to protein 

families, expressed as percentages of total protein content based on w%.  3FTx: three-

finger toxins; PLA2: phospholipase A2s; CRISP: cysteine-rich secretory proteins; 

NGF: Nerve growth factors; KUN: Kunitz-type serine protease inhibitors; OHA: 

Ohanins/vespryns; MP: Snake venom metalloproteinases; DRE: DNA/RNA non-

specific endonucelases;  PDE: Endonucleases/Phosphodiesterases; FMO: Flavin 

monoamine oxidases; GPF: glutathione peroxidases; CELF:  Type-B 

carboxylesterases/lipases; SUSHI: Selectins; UNK: Unknown.  

 

Figure 4: (A) Comparison of the phospholipase A2 activity of 20 µg of the venoms of 

N. melanoleuca, N. mossambica, N. nigricollis, and Bothrops asper on 4-nitro-3-

octanoyloxybenzoic acid synthetic substrate. (B) Comparison of the proteolytic 



23 
 

activity of 20 µg of venoms of N. melanoleuca, N. mossambica, N. nigricollis, and 

Bothrops asper on azocasein substrate. Each bar represents mean ± SD of triplicates. 

 

Figure 5: ELISA titrations of antivenoms against immobilized crude venoms of N. 

melanoleuca. SAVP: SAIMR Polyvalent Snake Antivenom from South African 

Vaccine Producers. African: Snake Venom Antiserum (African) from VINS 

Bioproducts Ltd. Central Africa: Snake Venom Antiserum (Central Africa) from 

VINS Bioproducts Ltd. Control: Normal horse serum. Each point represents mean r 

SD of triplicate wells. Antivenom titrations are represented as volumetric dilutions in 

(A), or as protein concentrations in (B). 

 

Figure 6: ELISA-based immunoprofiling of antivenoms against HPLC fractions of N. 

melanoleuca venom. For identification of venom fractions see Table 2. SAVP: 

SAIMR Polyvalent Snake Antivenom from South African Vaccine Producers. 

African: Snake Venom Antiserum (African) from VINS Bioproducts Ltd. Central 

Africa: Snake Venom Antiserum (Central Africa) from VINS Bioproducts Ltd. 

Control: Normal horse serum. Each bar represents mean r SD of triplicate wells.  
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 Table 2: Lethality and Toxicity Score of R

P-H
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 fractions of the venom
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. m
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%
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Protein fam

ily 
LD

50 
(95%

 conf. 
lim

its) 
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eported LD

50  
(m

g/kg) 

Toxicity score 
w

%
 / LD

50 
(kg/m

g) 1 

M
olecular 

Toxicity score 
m

ol%
 / LD

50 
(kg/m

g) 1 

W
hole venom

 
100 

100 
 

0.66 
(0.49-0.92) 

0.289*
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7.7 

10.2 
3FTx 
A

lpha-neurotoxin N
TX

-1 Naja sputatrix; Q
9Y

G
J6 

Short neurotoxin 1 Naja m
elanoleuca; P01424 

0.13  
(0.06-0.34) 
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78.8 
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5 
1.1 

1.6 
3FTx 
A

lpha-neurotoxin N
TX

-1 Naja sputatrix; Q
9Y

G
J6 

Short neurotoxin 1 Naja m
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elanoleuca; P01400 

Long neurotoxin O
H

-55 O
.hannah; Q

53B
58 

Long neurotoxin 2 Naja m
elanoleuca; P01388 

0.15 
(0.06-0.42) 

>20 (P01400) 
[9] 

88 
115.5 

9 
2.0 

2.7 

3FTx 
3FTx-D

en-15 D
enisonia devisi; R4FID

4 
M

uscarinic toxin-like prot.2 N. kaouthia; P82463 
Long neurotoxin O

H
-55 O

.hannah; Q
53B

58 
M

uscarinic toxin-like prot B.m
ulticinctus; Q

9W
727 

>0.53 
 

<3.8 
<5.0 

Table 2
C

lick here to dow
nload Table: Table 2_Lauridsen.doc



2 
 10 

0.9 
1.2 

3FTx 
3FTx-D

en-15 D
enisonia devisi; R4FID

4 
3FTx-Ech-35 Echiopsis curta; R

4G
7H

1 
Long neurotoxin O

H
-55 O

.hannah; Q
53B

58 
B

ucandin Bungarus candidus; P81782 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
1.36 (P01448) 

[11] 
<1.7 

<2.2 

11 
0.6 

0.9 
3FTx 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
1.36 (P01448) 

[11] 
<1.1 

<1.7 

12 
3.8 

6.0 
K

unitz-type SP inhibitor 2 Naja nivea; P00986 
>0.53 

 
<7.2 

<11.4 

13 
4.8 

(1:1 m
ix) 

5.2 
(1:1 m

ix) 

PLA
2  

PLA
2  1 Naja m

elanoleuca; P00599 
PLA

2  D
E-III Naja m

elanoleuca; P00601 
PLA

2  4 Naja sagittifera; Q
6T179 

3FTx 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
1.36 (P01448) 

[11] 
<9.1 

<9.9 

14 
10.8 

(1:3 m
ix) 

8.3 
(1:3 m

ix) 

PLA
2  

PLA
2  D

E-II Naja m
elanoleuca; P00600 

PLA
2  D

E-III Naja m
elanoleuca; P00601 

3FTx 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
1.36 (P01448) 

[11] 
<20.4 

<15.6 

15 
12.7 

(1:1 m
ix) 

14.0 
(1:1 m

ix) 

PLA
2  

PLA
2  D

E-III Naja m
elanoleuca; P00601 

PLA
2  m

uscarinic inhibitor Naja sputatrix; Q
92084 

3FTx 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
1.36 (P01448) 

[11] 
<24.0 

<26.5 

16 
1.7 

(1:3 m
ix) 

2.3 
(1:3 m

ix) 

PLA
2  

PLA
2  D

E-III Naja m
elanoleuca; P00601 

PLA
2  m

uscarinic inhibitor Naja sputatrix; Q
92084 

3FTx 
C

ytotoxin 1 Naja m
elanoleuca; P01448 

>0.53 
 

<3.2 
<4.4 



3 
 17 

3.4 
5.1 

3FTx 
C

ytotoxin hom
olog 2 Naja m

elanoleuca; P01474 
>0.53 

 
<6.4 

<9.6 

18 
4.2 

6.3 
3FTx 
C

ytotoxin hom
olog 2 Naja m

elanoleuca; P01474 
>0.53 

 
<7.9 

<11.8 

19 
0.7 

(1:1 m
ix) 

0.8 
(1:1 m

ix) 

N
G

F 
N

erve grow
th factor Naja naja; P01140 

N
erve grow

th factor Naja naja; P01140 
3FTx 
W

eak toxin C
M

-1c H
.haem

achatus; P25676 

>0.53 
 

54 (P25676) 
[38] 

<1.3 
<1.5 

20 
1.5 

(1:2 m
ix) 

1.9 
(1:2 m

ix) 

O
H

A
 

Thaicobrin Naja kaouthia; P82885 
 3FTx 
W

eak toxin C
M

-1c H
.haem

achatus; P25676 

>0.53 
 

54 (P25676) 
[38] 

<2.8 
<3.6 

21 
4.8 

6.7 
SU

SH
I 

C
' decay-accelerating factor O

.hannah; ETE59511 
C

'-decay-accelerating factor O
.hannah; V

8N
C

63 
W

eak toxin C
M

-2 Naja haje; P01415 

>0.53 
 

<9.1  
<12.7 

22 
0.6 

0.4 
C

TL 
C

TL LP-Pse-6 Pseudonaja m
odesta; R4G

314 
>0.53 

 
<1.1 

<0.7 

 
 

 
 

 
 

 
 

1Toxicity Score is defined as the ratio of protein fraction abundance (%
) in the venom

 to its estim
ated m

edian lethal dose (LD
50 ), w

hereas 
M

olecular Toxicity Score corresponds to the ratio of protein abundance in m
olar term

s  (%
) to LD

50 . In the case of crude venom
, the %

 
abundance w

as 100%
. 

 * : http://snakedatabase.org/pages/LD
50.php#legendA

ndD
efinitions  
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