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ABSTRACT. This article gives a review of techniques applied to make sea state estimation on the basis of meas-

ured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which

exploits a linear assumption between waves and the associated motions. In the frequency domain, this assump-

tion yields the mathematical relation between the measured motion spectra and the directional wave spectrum.

The analogy between a buoy and a ship is clear, and the author has worked on this wave buoy analogy for about

fifteen years. In the article, available techniques for shipboard sea state estimation are addressed, but with a fo-

cus on only the wave buoy analogy. Most of the existing work is based on methods established in the frequency

domain but, to counteract disadvantages of the frequency-domain procedures, newer studies are working also on

procedures formulated directly in the time domain. Sample results from several studies are included, and the

main findings from these are mentioned.

Key words: Sea state estimation; Wave buoy analogy; Vessel responses; Frequency domain; Time domain.7

1. INTRODUCTION8

In today’s maritime world, the operation of ships requires careful monitoring of the related costs while, at9

the same time, ensuring a high level of safety. Shipboard decision support systems may enable a ship’s crew10

to reduce costs and minimise risks while sailing, so that the performance is optimised. A ship’s performance11

with respect to safety and fuel efficiency is in general negatively influenced by the encountered waves.12

Consequently, it is of particular importance to estimate the surrounding sea state, and any shipboard decision13

support system needs to have information about the encountered waves as input for the system to be the most14

accurate and reliable.15
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ACCOUNT OF TECHNIQUES AVAILABLE FOR SHIPBOARD SSE 2

Trustful means for sea state estimation include floating wave buoys, which are primary tools used to collect16

statistical ocean wave data. However, wave buoys are not practical for a sailing ship requiring (precise) sea17

state information in real-time and at its actual geographical position. On the other hand, the analogy between18

a ship and a floating buoy naturally suggests to using the ship itself as a kind of wave buoy. Thus, a number19

of research studies have explored this ’wave buoy analogy’ in the past, and the author of the present paper20

has worked extensively on the topic for about the last fifteen years.21

This paper presents a concise account of techniques for shipboard sea state estimation using measured vessel22

responses, resembling the concept of a traditional wave buoy. Moreover, newly developed ideas for ship-23

board sea state estimation are introduced. The account, or review, is not necessarily complete, as it primarily24

reflects the author’s personal experience and background; obtained alone and together with national as well25

as international colleagues. However, it is believed that the author has come across most of the work carried26

out within the particular field, so other fundamental studies, not related to the present author, will also be27

cited; without the ambition to list every single reference from the literature.28

Although other means for shipboard sea state estimation exist, based on, e.g., the use of X-band navigational29

radars or over-the-bow looking devices, those means will not be mentioned herein and, hence, shipboard30

sea state estimation refers in the following to only the wave buoy analogy, where sea state estimation is31

conducted on the basis of measured vessel responses. Onwards, sea state estimation will at most places be32

shortened by SSE.33

1.1. Past Work and Literature. Until the 1970’ies, little work on shipboard SSE had been done, but early34

researches (e.g. Lindemann and Nordenstrøm, 1975; Lindemann et al., 1977; Robinson, 1990; Debord and35

Hennessy, 1990; Francescutto, 1993) on in-service monitoring systems combined with decision support36

tools emphasised the need for estimates of the on-site sea state; at the actual position of the advancing37

vessel. Some of the initial studies on shipboard SSE (Takekuma and Takahashi, 1973; Pinkster, 1978) did38

not consider ships with forward speed, and although attempts were made to introduce forward speed in39

shipboard SSE, notably by Japanese studies (Isobe et al., 1984; Kobune and Hashimoto, 1986; Hirayama,40

1987; Iseki et al., 1992; Saito et al., 2000; Maeda et al., 2001), the first study to strictly consider the Doppler41

shift, implying a 1-to-3 relationship between encounter frequency and wave frequency for certain conditions42

in following sea, was made by Iseki and Ohtsu (2000). Since then several studies with good results have43

been published for ships with forward speed (Iseki and Terada, 2002; Iseki, 2004; Nielsen, 2006; Nielsen44

and Stredulinksy, 2012; Nielsen and Iseki, 2012; Nielsen et al., 2013; Montazeri et al., 2016a; Montazeri,45

2016); all considering full-scale data of different vessels. A number of studies have also been made in46

relation to station keeping and dynamic positioning, where shipboard SSE has been made with success for47
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ships without forward speed (Waals et al., 2002; Tannuri et al., 2003; Pascoal et al., 2007; Simos et al., 2007;48

Sparano et al., 2008; Pascoal and Soares, 2009).49

1.2. Content and Composition of Paper. Different mathematical models exist for the wave buoy analogy,50

and the main principles will be outlined in Section 2. It is shown that shipboard SSE can be carried out either51

in the frequency domain or in the time domain, and, based on the setting, Sections 3 and 4 provide summaries52

of the fundamental assumptions and the different mathematical models which are applied depending on the53

particular domain, being it time or frequency. Sample results taken from several of the author’s previous54

application studies, relating to both frequency and time domain calculations, are included in Section 5.55

Finally, concluding remarks are given in Section 6.56

2. WAVE BUOY ANALOGY57

Most of today’s marine vessels are instrumented with sensors to record, e.g., global motion components such58

as heave, pitch, and vertical acceleration at specific position(s) relative to the centre of gravity. In this sense,59

vessels resemble classical wave buoys; although the latter typically have much simpler geometrical forms60

compared to the hull of a ship. Anyhow, the response recordings from marine vessels can be processed61

to facilitate estimation of the on-site sea state, making the analogy to floating wave buoys by relating the62

measurements and the sea state through a mathematical model, see Figure 1.63

Measurements
(vessel responses)

Model
(wave buoy analogy)

Sea state
(wave spectrum)

FIGURE 1. Combination of wave-induced response measurements and a mathematical

model can be used to deduce information about the on-site sea state. (Nielsen et al., 2016)

2.1. Main Assumption. In mild and moderate wave climate, the wave-induced six degrees-of-freedom64

motion of a ship and associated structural loads are often assumed to be linear with the incident waves,65
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meaning that the amplitudes of those responses are proportional to the wave amplitudes in regular waves.66

Consequently, the responses can be quantified in irregular waves by adding together results from regular67

waves with different amplitudes, wavelengths and propagation directions.68

The linear assumption between waves and associated responses facilitates the use of transfer functions, or69

response amplitude operators (RAOs), that express how waves are transferred into responses. State-of-the-70

art techniques for calculation of RAOs include 3-dimensional panel codes considering potential wave theory;71

sometimes supplemented with CFD based on the full set of Navier-Stoke’s equations and/or considering72

other nonlinear effects. Nonetheless, strip theory calculations are still widely used, due to their adequate73

degree of approximation, and often they provide good results.74

In theory, RAOs are not necessarily accurate in severe waves, where a nonlinear relationship between waves75

and responses would/could occur. In practice, however, many studies have shown that even in severer wave76

conditions, RAOs can be still used to calculate responses of ships.77

2.2. Frequency and Time Domain Approaches. The majority of previous work on the wave buoy analogy78

(e.g. Hua and Palmquist, 1994; Iseki and Ohtsu, 2000; Tannuri et al., 2003; Nielsen, 2006, 2008b; Pascoal79

et al., 2007; Montazeri et al., 2016a) is based on a solution formulated entirely in the frequency domain.80

This is illustrated in Figure 2, where a response spectrum is combined with RAOs, using spectral analysis,81

so that an estimate of the sea state is given in terms of a wave (energy) spectrum. Studies have shown that, in82

practice, wave estimation is improved by (optimally) selecting a set of three simultaneous vessel responses83

(Nielsen, 2006).

Frequency

Response spectrum

+ RAOs

Frequency

Wave spectrum

FIGURE 2. Main principle of the wave buoy analogy when it is formulated in the fre-

quency domain. (Nielsen et al., 2016)

84

Instead of a solution formulated in the frequency domain, derived by use of spectral analysis and with pos-85

sible disadvantages, it has been suggested by Nielsen et al. (2015, 2016) to make the fitting of the measured86

response and the corresponding theoretically calculated one directly in the time domain (Fig. 3). In this87
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sense, the approach is similar to a previous work by Pascoal and Soares (2009) that also formulate the gov-88

erning equation directly in the time domain. However, the latter method (Pascoal and Soares, 2009), based89

on Kalman filtering, relies completely on availability of accurate RAOs, which is the main difference to the90

former works (Nielsen et al., 2015, 2016) as will be outlined in Section 4.

Time

Response

+ RAOs

Time

Wave elevation

FIGURE 3. Conceptually, the wave buoy analogy can be formulated directly in the time

domain to give the actual wave elevation at the site of the vessel. (Nielsen et al., 2016)

91

In the next two sections, 3 and 4, the fundamentals of the techniques used for, respectively, frequency domain92

and time domain shipboard SSE are briefly described. As such, the sections can be read separately and93

have to some extent been formulated as stand-alone sections, which means that repetitions of fundamental94

assumptions and background occur.95

3. FREQUENCY DOMAIN APPROACHES FOR SSE96

Shipboard SSE is often considered in the frequency domain. Strictly speaking, the linear assumption about97

waves and associated responses needs, in this case, to be supplemented with additional assumptions: Firstly,98

the ocean waves and associated responses represent ergodic random processes (e.g. Ochi, 1990), so that99

stationarity, in a stochastic sense, applies within a certain period of response records at each estimation100

sequence. Secondly, the speed and the course of the ship (relative to waves) are constant in that period. Thus,101

response measurements from the particular period can be processed by spectral analysis using standard Fast102

Fourier Transformation (FFT) or multivariate autoregressive procedures (Nielsen, 2005, 2006), where the103

latter may sometimes be chosen because of the ability to automatically select the appropriate amount of104

smoothing; based on an order selection criterion. Traditionally, the mathematical model of shipboard SSE105

has then been formulated in terms of a comparison between the measured and the theoretically calculated106

spectral energy distribution of the considered responses.107
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3.1. Comparison of Spectral Energy Distribution. A set of ship responses is considered, and the complex-108

valued transfer functions, Hi(ωe, χ) and Hj(ωe, χ) for the i-th and j-th responses, yield the theoretical rela-109

tionship between the i-th and the j-th components of the response spectra Sij (ωe) and the directional wave110

spectrum E(ωe, χ) through the following integral equation111

Sij (ωe) =

ˆ π

−π
Hi (ωe, χ)Hj (ωe, χ)E (ωe, χ) dχ (1)

where ωe and χ are the encounter wave frequency and the relative wave heading, respectively, and the bar112

denotes the complex conjugate. The theoretical relationship expressed by Eq. (1) can be directly compared to113

a set of corresponding measured response spectra. Thus, the comparison constitutes the governing equation114

of the estimation problem that can be solved mathematically as a minimisation. It is vital to note that the115

wave spectrum is advantageously estimated in the wave frequency (ω) domain. This means that the speed-116

of-advance - the so-called triple-valued function - problem in following sea needs to be considered. This117

problem, governed by the Doppler Shift, has been properly incorporated by Iseki and Ohtsu (2000), and in118

doing so, the mathematical relation between encountered (wave) frequency and true frequency is secured;119

ωe = ω − ω2A , A =
U

g
cosχ (2)

where U is the forward speed of the ship, and g is the acceleration of gravity. The triple-valued function120

problem exists when ωe < 1
4A since, in this case, three wave frequencies correspond to one (positive)121

encounter frequency.122

It should be understood that the left-hand side of Eq. (1) is estimated by measured data while the right-hand123

side is obtained through theoretical calculations. Consequently, a minimisation problem can be formulated124

and, casting the expressions into matrix notation, the objective is to minimise125

χ2(x) ≡ ‖Af (x)− b‖2 (3)

where ‖·‖ represents the L2 norm. In the equation, the vector function f (x) expresses the wave spectrum126

E (ω, χ) and the vector b contains the elements of the measured response spectra Sij(ωe), while the coef-127

ficient matrix A basically has its elements derived from the complex-valued transfer functions. Details are128

given by Nielsen (2006).129

The minimisation problem given by Eq. (3) can be handled by different approaches. Two approaches that130

have received particular interest are formed by Bayesian modelling and parametric modelling. Bayesian131

modelling relies on finding the spectral components of a (discrete) frequency-directional wave spectrum,132

whereas parametric modelling assumes the directional wave spectrum to be formed by a set of parameterised133

wave spectra, e.g., JONSWAP using directional spreading parameters. Reports about the two procedures134
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have been given in many studies (Iseki and Ohtsu, 2000; Iseki and Terada, 2002; Nielsen, 2006, 2008b;135

Pascoal and Soares, 2008; Tannuri et al., 2003; Pascoal et al., 2007; Simos et al., 2007), considering both136

simulated data and full-scale measurements with and without forward speed; and comparisons between the137

two modelling procedures have also been made. However, as pointed out by Nielsen and Stredulinksy138

(2012) and Nielsen et al. (2013), the two approaches should not been seen as competitors but rather as139

complementary, since each procedure has its own advantages and disadvantages.140

3.2. Energy Equivalence: Comparison of Spectral Moments. In a recent PhD study, Montazeri (2016)141

suggests to formulate the governing equation from an energy conservation point-of-view, since the integrated142

variant of Eq. (1) is considered. Thus, the mathematical model is based on an equivalence of the spectral143

moments calculated by integrating the two sides of Eq. (1) with respect to frequency. Again, a set of144

responses is considered simultaneously using cross-coupling terms so that the governing equations read145

ˆ ωe,h

ωe,l

Sij (ωe) dωe =

ˆ ωh

ωl

ˆ π

−π
Hi (ω, χ)Hj (ω, χ)E (ω, χ) dχdω (4)

where indices l and h correspond to lower and higher frequency limits, respectively. The actual values146

of these limits are determined through a partitioning technique (Montazeri, 2016) introduced to separately147

estimate wind sea and swell components of the wave system, see Figure 4. The details of this technique are148

given by Montazeri et al. (2016a) and Montazeri (2016), but it is noteworthy that the ocean wave system149

is expressed through the sum of two parameterised wave spectra; one for swell and one for wind sea, and150

each taking the form Swave(ω) of a general unidirectional spectrum for developing seas (Boukhanovsky and151

Soares, 2009):152

Swave(ω) = αg2ω−r exp(−βω−n)γexp
[−( ω

ωp
−1)2

2σ2

]
(5)

where the fitting parameters are [α, β, γ, σ, ωp, r, n]. A directional spectrum is obtained as153

E(ω, θ) = Swave(ω)D(θ|ω) (6)

with D(...) being a spreading function for wave direction θ; satisfying the normality condition154

´ π
−πD(θ|ω)dθ = 1. In its physical understanding, the equal sign in Eq. (4) should be read like ”nearly155

equal to”, so that the values of the fitting parameters, including the spreading function, are optimised by156

minimising the difference between the left- and right-hand sides of Eq. (4), with the wave spectrum E(ω, χ)157

specified by Eq. (6)∗; leaving all details to Montazeri et al. (2016a) and Montazeri (2016).158

For the set of governing equations (Eq. 4) it is important to note that the right-hand side is explicitly written159

with account to the true (wave) frequency; and not the encounter frequency as is the case of the left-hand side160

∗Wave direction θ will be directly related to relative wave heading χ taking ship course into account.
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FIGURE 4. Spectral partitioning of wave spectrum into swell and wind sea components.

(Montazeri, 2016)

that represents the measurements. This particular formulation, with no need to transform between the two161

frequency domains for the theoretical calculation (i.e., the right-hand side), is possible since the energy must162

be the same in the two domains. Consequently, the exclusive consideration of equations based on energy163

conservation has the (positive) effect that the 1-to-3 relationship between encounter and wave frequency in164

following sea has not to be considered.165

Compared to the other frequency-domain principle, outlined in subsection 3.1, the ambition with the ’energy-166

equivalence principle’, as stated by the authors (Montazeri, Nielsen and Jensen, 2016), is partly to make a167

practical robust procedure and partly to increase the computational efficiency of the wave buoy analogy;168

obviously, not compromising the ability to provide accurate sea state estimates.169

3.3. Disadvantages of Frequency Domain Approaches. The outcome of the wave buoy analogy, when170

formulated in the frequency domain, consists of the on-site wave system’s complete energy distribution,171

with frequency and directional information, and thus the approach is applicable to general decision support172

systems for safe and efficient marine operations. As reported in the literature, reasonable estimates of the173

wave spectrum can be expected (Nielsen, 2006, 2008b; Nielsen and Stredulinksy, 2012; Nielsen et al., 2013;174

Montazeri et al., 2016a), but the accuracy of the estimated sea state depends inherently on reliable trans-175

fer functions. Furthermore, the accuracy is highly dependent on the required spectral (response) analysis;176

hence, stationarity, or not, of the measurements may potentially influence the outcome (Møgster, 2015; Iseki177

and Nielsen, 2015). In principle, stationary operational conditions are necessary because a minimum time178

window, in the order 10-15 minutes, is needed to perform the spectral analysis. The reason is that if condi-179

tions are not stationary during the considered period, either because of a changing sea state or, more likely,180

as a result of speed and/or heading changes of the vessel, the sea state estimates are likely to be unreliable.181

Moreover, the need for a certain minimum time period has another consequence, as it implies that estimates,182
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strictly speaking, are not real-time but will be backdated; which in turn may negatively influence response183

predictions made ahead of measurements, as discussed by Nielsen and Iseki (2015).184

Altogether, these disadvantages of the frequency domain approaches have initiated studies where the solu-185

tion, i.e. sea state estimate, is sought for directly in the time domain; to better accommodate partly non-186

stationary conditions. Moreover, work exists, in the time domain, to estimate the peak period of the sea187

state, with no other input than the response signal itself (Belleter et al., 2015; Brodtkorb et al., 2015). In188

the following, one of the time domain approaches looks at coupling this entirely ”signal-based” estimation189

concept with the use of RAOs in a stepwise procedure to partly mitigate the fact that RAOs are always190

imperfect to some degree.191

4. TIME DOMAIN APPROACHES FOR SSE192

The central point of the procedures is a formulation of the estimation problem directly in the time domain,193

where focus is on real-time sea state updates obtained from continuous response measurements, with no194

need to consider a past measurement period.195

Until now, only few works consider approaches for shipboard SSE directly in the time domain and, so196

far, the procedures, like those formulated in the frequency domain, rely on availability of accurate RAOs.197

Indeed, this is so for an elaborate procedure, building on a framework established by Kalman filtering, which198

will be addressed subsequently. However, as will be noted further below, it is possible to make a stepwise199

estimation procedure which couples an entirely signal-based procedure, estimating the peak wave period,200

with a model-based procedure, estimating wave height and phase. Herein, the signal-based step has no201

need for RAOs, whereas the model-based step makes use of RAOs. In the following, the two conceptually202

different approaches, based on, respectively, Kalman filtering and the stepwise procedure, will be concisely203

accounted for.204

4.1. Wave Estimation Based on Kalman Filtering. An interesting study has been presented by Pascoal205

and Soares (2009) that propose a (high-speed) estimation algorithm established in a framework governed206

by Kalman filtering. Herein, the waves in-phase and quadrature components are introduced as the state207

variables, which means that (intrinsic) information about the actual wave elevation process is included in the208

solution. The mathematical details of the procedure are given by Pascoal and Soares (2009), so the following209

contains just a brief summary of the approach.†210

†The present author has started recently to also work on this concept.
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The in-phase and quadrature components of a regular wave from (discrete) direction θn, at discrete time211

k, constitute a set of state variables Xk = [x1, x2]Tn . Relying on the electric filter analogy (St.Denis and212

Pierson, 1953), an irregular wave would be the sum of a (large) number of regular waves, implying that213

the associated sea state can be given in terms of an equivalent number of sets of state variables. In normal214

conditions, a sea state will be just very slowly varying and the hypothesis is that the state (in a Kalman-215

context) at a next discrete time is as the present, except possibly for some variation due to the state noise ξk.216

Thus, the state equation reads217

Xk+1 = Xk + ξk (7)

The state equation is supplemented with a measurement equation and, as the wave estimation is based on218

sensor recordings r of m available wave-induced responses, this equation is given by219

rmk = CmkXk + ψmk (8)

where Cmk is the measurement matrix transferring the states into a response (output) that is to be compared220

with a corresponding one available from measurement, while ψmk is the measurement noise because of221

a sensor’s limited capability. The equation is basically the equivalent of Eq. (1), but formulated in the222

time domain, and Eq. (8) represents, analogously, a linear relationship between a single harmonic wave223

component and an associated response component. As a consequence, the measurement matrix Cmk can224

therefore be composed by the available (complex-valued) transfer functions H . The specific composition225

of the matrix is realised by expressing the measurement equation in its physical understanding, writing226

the irregular response r as the sum of nf harmonic components, each represented in a total of nθ wave227

directions:228

r = Re

 nf∑
j=1

nθ∑
i=1

Hji ×
(
X2j−1,i +

√
−1X2j,i

)
×
(
cos(ωjt) +

√
−1 sin(ωjt)

) (9)

From the equivalence between Eq. (8) and Eq. (9) it can be seen how the elements of the measurement229

matrix should be assigned. Part of the matrix is shown below for the j-th frequency, i-th direction, m-th230

response and k-th time instant, respectively231

Cjimk =
[
Re[Hjim] cos(ωjk∆t)− Im[Hjim] sin(ωjk∆t)...

−Im[Hjim] cos(ωjk∆t)− Re[Hjim] sin(ωjk∆t)
]T

(10)

where ∆t denotes used sampling time. The full matrix at any point in time tk = k∆t is built by concatenat-232

ing the submatrices Cjim, leaving k as the only free index (Pascoal and Soares, 2009).233

The application of the Kalman filter (e.g. Brown and Hwang, 1992) involves the standard prediction and234

update cycles, and Pascoal and Soares (2009) carefully address many important aspects to consider when235
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implementing the solution scheme in practice; including points about stabilisation of solution, conditioning236

of matrices, tuning of filter gain, etc.237

It is important to mention that Pascoal and Soares (2009) consider station-kept ships, without forward speed,238

implying that the frequency ω in Eq. (9) is the (true) wave frequency. Thus, it is trivial to transform the wave239

spectrum, S(ωe), estimated in encounter domain to S(ω) in the true domain. Although the extension to240

including forward speed is elementary, the practical incorporation is by no means straight-forward because of241

the Doppler shift (Eq. 2), leading to a 1-to-3 relationship between encounter and true frequency in following242

waves when ωe < 1
4A , cf. Eq. (2). The basic problem is identical to what is handled by the approach(es)243

formulated in the frequency domain (Section 3). However, it is not possible to use the same type of solution-244

scheme because of the different domains (frequency vs. time). In a new study by Pascoal et al. (2016), the245

effect of forward speed is reportedly included, but the article does not draft an actual implementation of it.246

On the other hand, one possible method to deal with the Doppler shift for ships having forward speed is247

suggested in a recent MSc study by Ding (2016), supervised by the present author. This MSc study shows248

how forward speed can be successfully included, so that the transformation of the wave spectrum from249

encounter to true domain is secured, but the implementation is restricted to long-crested waves. Hence, the250

extension to real ocean waves, i.e. full-scale experimental data, remains. The ’transformation problem’ (for251

long-crested waves) is summarised in the following.252

In case of nonzero forward speed, and for all waves approaching forward of ’beam sea’, the transformation253

of the wave spectrum, S(ωe), in the encounter domain to S(ω) in the true (frequency) domain is trivial,254

as Eq. (2) yields a 1-to-1 relationship. For waves approaching behind of ’beam sea’ and ωe < 1
4A , the255

transformation is non-trivial, since Eq. (2) yields a 1-to-3 relationship; in case of a 1-to-1 relationship256

the transformation is straight-forward and identical to the former situation. If the 1-to-3 relationship oc-257

curs, the (suggested) solution is derived by considering the illustration shown in Figure 5. The estimated258

spectral ordinate Ŝ(ωe) = Ae1 in encounter-frequency domain is considered. Accordingly, the particular259

ordinate needs to be transferred into three ordinates in the (true) wave-frequency domain; Ŝ(ω1) = Aω1,260

Ŝ(ω2) = Aω2, and Ŝ(ω3) = Aω3, where (only) the frequencies {ω1, ω2, ω3} are known, whereas the values261

{Aω1, Aω2, Aω3} are unknown. However, for any parameterised spectrum, S∗(ω|Hs, Tz, ...), known fre-262

quencies imply known spectral values, if the standard wave parameters (Hs, Tz , ...) are also known. Thus,263

ratios between the spectral ordinates of the parameterised spectrum in the true domain and in the encounter264

domain, respectively, can be formed at the three known frequencies:265

S∗(ω1)

S∗
e (ωe)

,
S∗(ω2)

S∗
e (ωe)

,
S∗(ω3)

S∗
e (ωe)

(11)
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Ae1 = Aω1 + Aω3 + Aω4

Ae Aω

Ae1 = S(ωe1)Δωe1 = Aω1 + Aω3 + Aω4

= S(ωω1)Δωω1 + S(ωω3)Δωω3 + S(ωω4)Δωω4

Aω1 Aω2 Aω3

FIGURE 5. Transformation of wave spectrum. (Lewandowski, 2004)

taking note that S∗
e (ωe) = S∗(ω1) + S∗(ω2) + S∗(ω3), cf. Figure 5. It may now be stated, or assumed, that266

the relative distribution of energy in the parameterised spectrum S∗(ω) reflects the distribution of the estim-267

ated ”true” spectrum Ŝ(ω). Hence, ratios similar to Eq. (11) can be formed from the estimated spectrum,268

and, relying on the stated assumption, the following expressions are derived:269

Ŝ(ω1)

Ŝ(ωe)

.
=

S∗(ω1)

S∗(ω1) + S∗(ω2) + S∗(ω3)
(12)

Ŝ(ω2)

Ŝ(ωe)

.
=

S∗(ω2)

S∗(ω1) + S∗(ω2) + S∗(ω3)
(13)

Ŝ(ω3)

Ŝ(ωe)

.
=

S∗(ω3)

S∗(ω1) + S∗(ω2) + S∗(ω3)
(14)

where the symbol ” .=” expresses that the ratios are assumed to be identical; not necessarily with a match270

between the pairs of numerators and the pairs of denominators, respectively, on the left- and right-hand271

sides. In Eqs. (12)-(14), the estimated encounter wave spectral ordinate Ŝ(ωe) is formed by the complex272

wave amplitude, which is the output of the Kalman filtering approach. Thus, the estimated wave spectral273

ordinates Ŝ(ωi) at the three given wave frequencies ωi, i = 1, 2, 3 can be calculated.274

4.2. Wave Estimation Based on a Stepwise Procedure. New conceptual ideas for time-domain-based275

shipboard SSE were addressed recently (Bjerregård, 2014; Nielsen et al., 2015), and one particular method276

has been further studied by Nielsen et al. (2016). Stepwise, the method provides, first, the (characteristic)277

wave period obtained solely from a measured response signal. In the second step, the method combines the278
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use of measurements and corresponding RAOs to estimate wave amplitude and phase (of a regular wave279

train). The partial independency of RAOs is representing a great advantage, as using them in real-world280

applications always is associated with uncertainty due to incomplete knowledge about the input conditions,281

i.e. speed, wave heading, draft, etc.; not to mention (in)accuracies in the calculation of the RAOs themselves.282

Marine craftζ(t) Frequency estimator

NLLS

RAO−1(ω̂) {ζ̂a, ε̂a}

ρ(t)

ω̂

ρ̂a

FIGURE 6. Estimation of wave elevation using nonlinear least squares fitting (NLLS) to-

gether with a ’frequency estimator’. (Nielsen et al., 2016)

The details of the stepwise procedure are left to Nielsen et al. (2016), but the principle of the procedure283

is summarised by the block diagram in Fig. 6. The ”input” to the marine craft is a wave elevation signal284

ζ(t) and the ”output”, ρ(t), is a corresponding motion response. From the motion response, the method285

provides, in the first step, the characteristic frequency ω̂ of the wave signal, and subsequently, in the second286

step, wave amplitude ζ̂a and phase ε̂a are estimated, using a fitted value of the response amplitude ρ̂a and287

the inverse, RAO−1
ρ (ω̂), of the corresponding transfer function. The ’Frequency estimator’ is based on288

techniques developed within control theory (Aranovskiy et al., 2007; Belleter et al., 2015), whereas the289

estimated response amplitude ρ̂a is found from a recursive nonlinear least squares (NLLS) optimisation290

(Nielsen et al., 2016). The estimation process is made on short sequences of data (5-7 wave periods), but291

a new estimation is made on shorter intervals, so that the analysis is a based on a ”moving window” of292

data recordings, enabling real-time updates/estimates of the wave elevation. However, it is important to293

emphasise that the procedure is still far from mature to be applicable in sea state estimation from full-scale294

measurements data of ships, since the method, so far, is limited to handle only the estimation of regular wave295

trains based on corresponding response measurements from a ship without forward speed.296

5. APPLICATION STUDIES297

The previous sections have summarised different approaches for shipboard SSE, using the vessel itself as298

a wave buoy. In the past, the author has made numerous studies, alone and with colleagues, applying the299

aforementioned approaches both on simulated response data and on full-scale recordings for estimating the300
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on-site sea state. However, the present section has not the aim to widely discuss or show the outcome of301

the studies and analyses; neither by words nor graphically. Instead, the purpose of this section is to point302

out some main findings from the mentioned studies dealing both with the frequency and the time domain303

approaches.304

5.1. Frequency Domain SSE. Two main concepts for sea state estimation in the frequency domain were305

outlined in Section 3; (a) one based on a direct comparison of measured and theoretically calculated response306

spectra, and (b) another based on energy equivalence focusing on spectral moments. In case of the former307

concept (a), the sea state estimate is obtained by solving for each spectral ordinate of the wave spectrum;308

either by Bayesian modelling, strictly minimising a discrete version of Eq. (1), or by parametric modelling,309

optimising a set of sea state parameters of a given parameterised wave spectrum. In the concept based on310

energy equivalence (b), the sea state estimate is obtained by optimising also for a set of wave parameters,311

but considering the integrated variant of Eq. (1).312

5.1.1. Direct Comparison of Spectral Energy Distribution. As outlined in Subsection 3.1, Bayesian or para-313

metric modelling is applied to produce an estimate of the on-site sea state from comparison between spectra314

of corresponding responses. In either case, the final outcome is a frequency-directional wave spectrum as315

illustrated in Figure 7.
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Fig. 7: The legend is identical in all plots. NB. the Radac 
system cannot not estimate wave heading. 

 

Main findings and comments: 

 All the four estimating means show the same 
trend: The sea state increases during the first 
half of the day and reaches a relatively severe 
condition from around noon. Some variations 
are seen in the values of Hs with results of the 
wave buoy analogy being a lower bound (6-10 
m) whereas Radac results are an upper bound 
(10-13 m). Note the difference in scale on the 
y-axis compared to the plots for the other dates. 

 Considering the zero-upcrossing period, the 
WaMos estimates yield an upper bound where-
as the Radac estimates yield a lower bound; an 
observation almost applicable to the whole day. 
The same observation cannot be made with re-
spect to the peak period, where the Radac sys-
tem finds the highest values consistently. 

 Reasonable agreement is seen for the relative 
mean wave heading (with a few exceptions) 
considering estimates by the parametric ap-
proach and by WaMos. However, results of the 
Bayesian method are in most cases deviating 
significantly. 

Wave Spectra by the Wave Buoy Analogy 

The wave buoy analogy provides the complete (fre-
quency-directional) distribution of energy as its solu-
tion. In addition to the integrated sea state parameters, 
examples of wave spectra can therefore be studied. 
Below, a few results are shown for both the Bayesian 
approach and the parametric approach. It is noteworthy 
that, in the individual case, the wave spectrum is, as 
mentioned previously, based on one 20-minutes period 
of time series data considering set(s) of responses. 

Figure 8 shows an example of the wave spectrum ob-
tained on 12th August at 17:30. In the specific 1-D plot, 
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spectrum with slightly less energy than the Bayesian 
method. Despite a small difference between the energy 
in the spectra it is interesting to note how close the two 
spectra are shape-wise; keeping in mind that the Bayesi-
an method solves for the individual spectral components 
in the complete directional wave spectrum. In the lower 
plots of Figure 8, the directional wave spectrum is seen 
as polar diagrams mapped as contour plots. In the plots, 
the absolute vessel heading is 0 degrees and, thus, the 
plots are used to infer that the relative mean wave head-
ing is about -110 deg. Obviously(!), both observations – 
less energy in the parametric spectrum and that of the 
relative mean wave heading – can be seen from the 
upper and lower plots, respectively, in Figure 3. 
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FIGURE 7. Typical wave spectrum obtained by wave buoy analogy; integrated frequency

spectrum (top) and directional spectrum (bottom). Nielsen et al. (2013)
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It is the author’s experience that the two techniques - Bayesian and parametric modelling - generally produce317

results with little deviation; in particular when integrated sea state parameters (significant wave height,318

peak period, mean wave direction, etc.) are considered. This has been confirmed in an extensive study by319

Nielsen et al. (2013), where more than 100 hours of response data from an in-service large container ship320

(L = 349.0 m, B = 42.8 m, T = 14.5 m) were analysed. Specifically, it was shown that daily statistics321

of integrated wave parameters agree well between the two sets of results. It is noteworthy that sea state322

estimates by other means, in this case wave radar data and hindcast studies, respectively, produced similar323

results. Figure 7 shows sample plots of the estimated wave spectrum corresponding to one particular instant324

in time (17:30 UTC, 12. Aug. 2011) based on 15 minutes of past measurements data; the results of Bayesian325

(Hs = 2.2 m) and parametric (Hs = 2.0 m) modelling are included. The whole data set, that is, all estimations326

are summarised in Figure 8, where the correlation between results of Bayesian and Parametric modelling,327

including wave radar data, is shown. Results are given for the significant wave height, the zero up-crossing328

period and the relative wave heading (180 deg. is head sea, positive values indicate waves from starboard329

side).330
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FIGURE 8. Correlations between estimates of integrated wave parameters as obtained by

different shipboard techniques, including parametric (PAR) and Bayesian (Bay) model-

ling, respectively, and wave radar (Wamos).

In another comprehensive study by Nielsen and Stredulinksy (2012), focus was made on parametric mod-331

elling alone. In this study, sea trials motion data from a small research vessel (L = 71.5 m, B = 12.8 m,332

T = 4.8 m) together with data from traditional wave buoys were analysed, and the purpose was to examine333

the sensitivity of sea state estimates by using sets of different vessel responses as input for the wave buoy334

analogy. The trials were carried out in the sea off Nova Scotia, Canada, with the detailed paths shown in335

Figure 9. Sample results are seen in Figure 10, where estimates by the wave buoy analogy (parametric336

modelling) are compared with measurements by a TriaxysTM buoy. The plots are produced for one spe-337

cific set of responses {roll angle, pitch angle, lateral acceleration} relative to the ship’s COG, and it can be338

seen, that in these cases, the agreement is good; even for the multi-modal case shown at the right-hand side.339
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FIGURE 9. Voyage map, including detailed paths of individual trials.(Stredulinsky, 2010)

However, as pointed out in several publications (Tannuri et al., 2003; Pascoal et al., 2007; Simos et al., 2007;
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Fig. 9. Integrated frequency wave spectra for runs 2.1–2.6 (left) and 7.1–7.6 (right), respectively, showing the  distribution of wave energy with wave frequency.
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Fig. 9. Integrated frequency wave spectra for runs 2.1–2.6 (left) and 7.1–7.6 (right), respectively, showing the  distribution of wave energy with wave frequency.

FIGURE 10. Estimated wave spectra (WBA) and ’measured’ spectra (Triaxys). (Nielsen

and Stredulinksy, 2012)

340

Sparano et al., 2008), and thoroughly analysed by Nielsen and Stredulinksy (2012), the selection of different341

combinations of motion components may significantly influence the sea state estimates from the wave buoy342

analogy. It is therefore of a particular concern to make sure that the most sensible set of motions/responses343

always is (automatically) selected. On the other hand, it is by no means straight-forward how to develop344

such a selection process, automatically and in real-time providing the best combination of responses; and345

work in this area is still ongoing with auspicious results in a newly publication by Montazeri et al. (2016b)346

that introduce an approach based on local sensitivity analysis.347

In terms of accuracy and general results in previous studies, it is difficult for the author to favour the one348

modelling procedure to the other, and the computational efficiency of the methods is also comparable. Typ-349

ically, an estimate is provided in about 5 minutes on a standard PC (Intel(R) Core(TM) i7-4600U @ 2.10350

GHz). In practice, this means that ”real-time” updates of sea states are possible, as a sea state, for most351
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purposes, is taken to be stationary for periods of approximately 20 minutes; only accounting for the sea state352

itself and not any change in vessel speed and/or heading which would lead to nonstationary responses.353

The most notable difference between the two procedures is probably the ability of the Bayesian method354

to (better) estimate wave spectra which do not follow ”standard parametric shapes”, since each spectral355

component of the wave spectrum is solved for (i.e. estimated) individually. On the other hand, for most356

practical cases, a summation of parameterised wave spectra like, for instance, JONSWAP can be fitted to357

represent most ocean wave spectra, like it was seen in Figure 10 for the multi-modal case on the right-hand358

side.359

5.1.2. Energy Equivalence: Comparison of Spectral Moments. In the recently developed method, based on360

energy equivalence, the ambition by the authors (Montazeri et al., 2016a) was partly to make a practical361

robust procedure and partly to increase the computational efficiency of the wave buoy analogy; without362

affecting the ability to provide accurate sea state estimates. This ambition is strived for by optimising the363

wave parameters of a parameterised spectrum, containing a swell system and a wind sea system, using a364

partitioning technique to estimate separately the individual systems. Clearly, due to its recent development,365

the method needs to be further tested but, based on preliminary analyses of simulated data, promising results366

have been obtained. The performance of the method has been examined thoroughly by Montazeri et al.367

(2016a), testing the method’s capability to estimate both unimodal and bimodal wave spectra, generated by368

pure wind sea and, respectively, mixed sea (wind + swell) conditions. In the study, simulations of motion369

responses were carried out for a container ship (L = 349.0 m, B = 42.8 m, T = 14.5 m) similar to that370

studied in the previous subsection. Sample results of the study can be seen from Table 1, which presents the371

outcome of four test cases, M to P, all representing a mixed sea condition, with a wind sea and a swell part.372

From the table, the true wave parameters for both parts appear; Hs is significant wave height, Tp is peak373

period of the particular spectrum (wind sea or swell), µ is relative wave heading, smax is maximum spreading374

parameter (Montazeri et al., 2016a). In the analysis, the true parameters have been used to simulate 15375

stochastic wave realisations, including corresponding sets of vessel responses, for each case. Subsequently,376

one set of vessel responses at a time has been used as input for the estimation method, and the outcome is377

a set of corresponding estimated wave parameters. Thus, mean values and associated standard deviations378

were obtained for the 15 realisations of each case (M, N, O, P). It is noteworthy that the sensitivity to the379

used set of transfer functions, i.e. RAOs, was investigated by using RAOs calculated by two different sets of380

software, say, I and II; but except from that the RAOs have been computed for the same responses under the381

exact same input conditions with respect to draft, speed, etc. In the one situation, labelled ’RAO1’, the RAOs382

of software I were used to both simulate the stochastic wave realisations and to subsequently estimate the sea383
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TABLE 1. True and estimated wave parameters obtained in a comprehensive simulation

study focusing on SSE based on energy equivalence. (Montazeri et al., 2016a)

84 N. Montazeri et al. / Applied Ocean Research 54 (2016) 73–86

Table A.3
Parameters of bimodal spectrum (1).

Case Wind sea Swell

Hs(m) Tp(s) �(deg.) smax Hs(m) Tp(s) �(deg.) smax �

I True 3 8 45 10 5 15 −135 25 4
mean (RAO1) 3.1 8.8 66 15 5.2 15 −160 33 1.5
mean (RAO2) 4 8.5 52 15 4.2 15 −101 60 5.8
std (RAO1) 0.7 0.49 10 0 0.6 0.5 12 5.8 0.6
std (RAO2) 0.3 0.55 1.5 5 0.8 0.4 13 20 2

J True 3 8 −90 10 5 15 90 25 4
mean (RAO1) 3.2 8.6 −106 18 4.4 16.6 98 27 4.4
mean (RAO2) 3.6 9.2 −92 20 3.8 15.1 120 47 5.4
std (RAO1) 0.57 0.75 22 2 1.3 1 7.6 14 2.9
std (RAO2) 0.25 1.3 17 0 0.08 0.6 30 20 2.1

K True 3 8 135 10 5 15 45 25 4
mean (RAO1) 2.3 7.3 120 12 5.5 13 49 65 6
mean (RAO2) 3.4 6.7 141 15 5.8 12 3 64 7
std (RAO1) 0.5 0.8 13 0 0.4 0.1 14 20 4
std (RAO2) 0.2 0.2 10 3 0.5 0.1 16 23 2

L True 3 8 90 10 5 15 180 25 4
mean (RAO1) 3.6 9.1 89 15 5.3 16 174 49 4.8
mean (RAO2) 3.3 6.8 100 18 5.8 14 176 59 5
std (RAO1) 0.5 0.1 2 0 0.9 2.7 4 28 2.1
std (RAO2) 1 0.9 2 4 0.8 0.6 11 12 3

Table A.4
Parameters of bimodal spectrum (2).

Case Wind sea Swell

Hs(m) Tp(s) �(deg.) smax Hs(m) Tp(s) �(deg.) smax �

M True 3 8 45 10 2 12 −135 25 4
mean (RAO1) 2.7 8.3 56 19 2 13.9 −140 39 7
mean (RAO2) 4.3 9.7 25 17 1.7 14.2 −155 53 3.4
std (RAO1) 0.5 0.8 18.6 3.5 0.3 1.4 31 13 2
std (RAO2) 0.7 1.4 9 6 0.3 0.3 15 11 2

N True 3 8 −90 10 2 12 90 25 4
mean (RAO1) 2.7 9.5 −102 21 2.6 13 110 38 5.2
mean (RAO2) 3.8 7.7 −85 20 2 12.4 85 33 6
std (RAO1) 0.66 1.28 17 3.8 0.19 1.7 25 22 4.3
std (RAO2) 0.6 1.4 13 0 0.3 1.8 29 20 5

O True 3 8 135 10 2 12 45 25 4
mean (RAO1) 4 8.7 132 15 2.3 11.2 50 30 6.8
mean (RAO2) 3.8 7.3 112 15 3.2 9.4 35 75 4.3
std (RAO1) 0.6 0.9 15 0 0.18 0.95 9.3 7 2.4
std (RAO2) 0.7 0.8 23 5 0.6 0.5 4 2 3

P True 3 8 90 10 2 12 180 25 4
mean (RAO1) 3.8 8.1 96 15 2.2 12.8 132 53 5.6
mean (RAO2) 4.1 8.2 88 19 2.4 12.6 127 45 6
std (RAO1) 0.37 1 34 4 0.3 0.4 6 11 2.1
std (RAO2) 0.8 0.8 42 7 0.3 0.5 5 13 2.8

state. In the other situation, labelled ’RAO2’, RAOs of software I were used for the simulation part, whereas384

RAOs of software II were used in the estimation part. This latter situation resembles a situation close(r)385

to reality, since the ’input conditions’ are never exactly known during full-scale operational service. On386

average, the best estimates are observed for ’RAO1’; both in terms of mean values and standard deviations.387

However, the important point in this context is that reasonable estimates are found even for ’RAO2’; and the388

differences between the results of ’RAO1’ and ’RAO2’ are barely noticeable from Table 1. Altogether, good389

agreement is found between the true and the estimated wave parameters and the study proves both robustness390

and computational efficiency of the proposed method. A number of other interesting findings are reported391

by the original paper (Montazeri et al., 2016a), but no further remarks are given in the present review.392

5.2. Time domain SSE. The number of studies focusing on the time domain procedures, Kalman filtering393

and the stepwise procedure, respectively, are (still) limited compared to the number of frequency-domain394

studies. In the future, this is likely to change and the present subsection briefly summarises some of the395

existing work that further elaborations may rely on.396

5.2.1. Kalman Filtering. In the first study (Pascoal and Soares, 2009), where Kalman filtering was applied,397

the implementation was made for the zero-forward speed case only, and just numerical simulations of motion398

data were studied. Similar to any of the frequency domain procedure, the introduction of advance speed in399
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the Kalman filtering approach is elementary, in theory; however, in practice, the implementation is by no400

means straight-forward. The study by Pascoal et al. (2016) addresses partly the effect of forward speed, but401

only in a ”qualitative manner”, since the work does not describe any details about the actual implementation402

of advance speed. On the other hand, the practical implementation of the advance-speed problem was the403

very topic of a recent MSc thesis by Ding (2016), supervised by the present author. The MSc study shows404

how forward speed can be successfully included, but the implementation is restricted to long-crested waves,405

and, as a consequence, simulation data is studied only for which reason there is still further work to be made.406

One test case from the study is shown in Figure 11, which applies for a container vessel (L = 175.0 m,407

B = 25.4 m, T = 9.5 m) at speed 10 knots in stern quartering waves. The plot shows the statistics, i.e.408

average, of totally fifty estimations with the same true input wave parameters: Hs = 4.0 m, Tz = 10.0 s,409

χ = 045 deg. The individual estimation is based on a set of simulations of two responses, heave and pitch,410

realised from a wave elevation process with the given (true) wave parameters. As can be seen from the plot,411

the agreement between the estimated spectrum and the true spectrum is, on average, good; both in terms of412

the total area under the spectra (= energy of the wave system), measured by the significant wave height, and413

the location of the spectra’ peak, taken as the peak frequency. However, while the estimated peak frequency414

consistently agrees well with the true peak frequency, some variation in the amount of energy is observed;415

seen from the dashed lines representing the lower and upper extremes of the estimated spectra considering all416

fifty outcomes. Evaluated by numbers, the mean significant wave height is Ĥs = 3.7 m with the coefficient417

of variation being 0.17.418
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trum’, while dashed lines represent lowest and highest energy content in estimated spec-

trum, obtained from fifty sets of estimations. (Ding, 2016)
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5.2.2. Stepwise Procedure. The stepwise method is limited to handle only the estimation of regular wave419

trains from corresponding response measurements on a ship without forward speed. However, very prom-420

ising results have been found in simulation studies and from model-scale experiments outlined by Nielsen421

et al. (2015) and Nielsen et al. (2016), respectively. In the former studies, one of the test cases focuses on a422

container ship (L = 349.0 m, B = 42.8 m, T = 14.5 m) being exposed to a regular wave train described423

by a wave frequency ω = 0.6 rad/s and an amplitude ζa. The value of the amplitude is initially 1.0 m but424

increases to ζa = 2.0 m during a short period of time [300;320] s. The simulation of the wave train includes425

measurement noise, taken as Gaussian white noise produced with a 12 dB SNR and, with this ”seaway” as426

input, the heave response is simulated in bow-quartering long-crested waves (relative wave heading equal to427

135 deg). The wave amplitude estimate, from one simulation, is shown in Figure 12a, where the stairs are428

explained because estimation is made on short sequences of data (5-7 wave periods), cf. subsection 4.2. The429

complete reconstruction of the wave elevation process can be seen in Figure 12b. The plots show that the430

wave parameters, including the actual time history, are estimated with good accuracy. The reason to test on431

a case with a somewhat nonphysical sudden change in wave amplitude is merely to evaluate the estimation432

method’s ability to handle nonstationary data; one of the most important capabilities of the method, since433

the method was developed to possess this very property. Indeed, a good result is achieved, and other similar434

test cases, but with an abrupt change in wave frequency instead, show equally good behaviour.435

The stepwise method has also been tested with experimental data (Nielsen et al., 2016), where a 1:30 scale-436

model of a platform supply vessel has been exposed to regular waves in the model-basin at the Marine437

Cybernetics Laboratory (MCLab) at NTNU, Trondheim, cf. Figure 13.438

A number of test cases were considered in the experiments and one is presented in Figures 14 and 15. Spe-439

cifically, this test case involves wave estimation based on measurements of the heave response in beam sea440

condition, see Figure 14, where wave amplitude and period were fixed at {2.0 cm, 1.2 s} and {3.0 cm, 1.7 s},441

denoted by Case D and Case E, respectively. In both situations, the actual wave train has been estimated442

from 200 seconds data recordings and the results are seen in Figure 15, where the individual plot represents443

a zoom of a time window selected arbitrarily from the full estimation sequence lasting 200 seconds in both444

cases. In the plots the true amplitude levels are indicated, and it is seen that the estimated results are good.445

For the two cases, the estimated (mean) wave periods are Test = 1.21 s and Test = 1.71 s, which agree446

nicely with the true periods. In the model-basin, the wave elevation is usually measured by a wave probe447

but, unfortunately, the probe was malfunctioning on the days when the experiments were conducted. Con-448

sequently, no comparisons can be made between the estimated wave elevation and the actual true one. As449

another remark, it should be noted that the ”simulations-only” examples, addressed by Nielsen et al. (2015),450
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FIGURE 12. Sea state estimation based on heave response of a container vessel exposed to

bow-quartering regular waves (U = 0 knots), including measurement noise (12 dB SNR).

FIGURE 13. Experimental facilities at the Marine Cybernetics Laboratory, NTNU.

(Brodtkorb et al., 2015)

were studying also the capability to handle nonstationary conditions, such as sudden changes to the (true)451

wave parameters of the wave train to be estimated. The same kind of experiments cannot not be made in the452

model-testing facility, since it is possible only to change the control mechanism of the wave generator after453

a full stop.454
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As noted from the plots in Figure 8 the agreement between
the two sets of results is reasonable, and both sets, too, agree
fairly well with experimental results derived from the model
tests. In the following examples it the pitch response is used for
wave estimation in the head sea cases (A, B, and C), whereas
heave will be used in the beam sea cases (D and E).

IV. RESULTS AND DISCUSSIONS

A. Response Measurements

The recorded motion responses considered in the test cases,
cf. Table I, can be seen in Figure 9 as the upper and lower plots
for pitch and heave, respectively, with the individual cases
indicated by square boxes. It is noted that the measurements
were made without interruptions during the transition periods
in which the wave parameters were changed. Note also that,
although the lack of zoom leaves few details to be seen, the
motion measurements are clearly not sinusoidal and/or regular
in the strict sense, as the amplitude level can be seen to
fluctuate during all test cases.
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Figure 9: Overview of time history recordings of the response
measurements. Cases A, B, and C appear from the upper
plot which shows the pitch motion, whereas the lower plot
represents the heave motion, i.e. Cases D and E.

B. Wave estimation

The underlying wave trains of the single cases have been
estimated based on 200 seconds long time history measure-
ments of the pitch and heave responses and the results are
seen in Figure 10. The individual plots represent a zoom on
an arbitrary time window selected within the full duration,
200 sec., of the considered case. It is noteworthy that in any
case the response measurement has been averaged to zero-
mean. Usually, the wave elevation is measured in the model-
basin by a wave probe but, unfortunately, the probe was
malfunction on the days when the experiments were taking
place. Consequently, no comparisons can be made between
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Figure 10: Estimations of wave elevations in Cases A (upper
plot) to E (lower plot). Note the difference in scales on the
y-axis.

the estimated wave elevation and the actual, true one in the
model-basin.

The outcome of the estimations, except that of Case A,
looks reasonable as judged by visual inspections of the plots
in Figure 10. In order to study the quality of the estimations
in more detail, statistics have been produced from the set of
batches comprising the single cases (A to E), and the results

Table II: Statistics of estimated wave parameters derived from
the batches of data comprising the single cases.

Amplitude [cm] Period [s]
Case Mean Std Mean Std
A 1.36 (1.5) 1.04 1.03 (0.9) 0.05
B 2.11 (2.0) 0.03 1.21 (1.2) 0.01
C 2.78 (3.0) ∼ 0 1.52 (1.5) 0.01
D 1.99 (2.0) 0.02 1.21 (1.2) 0.01
E 2.90 (3.0) 0.01 1.71 (1.7) 0.01

FIGURE 14. Samples of time history recordings of the response measurements. Cases

D and E represents the heave motion. In the post-analysis, the measurements have been

averaged to zero-mean. (Nielsen et al., 2016)

As noted from the plots in Figure 8 the agreement between
the two sets of results is reasonable, and both sets, too, agree
fairly well with experimental results derived from the model
tests. In the following examples it the pitch response is used for
wave estimation in the head sea cases (A, B, and C), whereas
heave will be used in the beam sea cases (D and E).
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indicated by square boxes. It is noted that the measurements
were made without interruptions during the transition periods
in which the wave parameters were changed. Note also that,
although the lack of zoom leaves few details to be seen, the
motion measurements are clearly not sinusoidal and/or regular
in the strict sense, as the amplitude level can be seen to
fluctuate during all test cases.
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ments of the pitch and heave responses and the results are
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the estimated wave elevation and the actual, true one in the
model-basin.

The outcome of the estimations, except that of Case A,
looks reasonable as judged by visual inspections of the plots
in Figure 10. In order to study the quality of the estimations
in more detail, statistics have been produced from the set of
batches comprising the single cases (A to E), and the results

Table II: Statistics of estimated wave parameters derived from
the batches of data comprising the single cases.

Amplitude [cm] Period [s]
Case Mean Std Mean Std
A 1.36 (1.5) 1.04 1.03 (0.9) 0.05
B 2.11 (2.0) 0.03 1.21 (1.2) 0.01
C 2.78 (3.0) ∼ 0 1.52 (1.5) 0.01
D 1.99 (2.0) 0.02 1.21 (1.2) 0.01
E 2.90 (3.0) 0.01 1.71 (1.7) 0.01
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FIGURE 15. Estimation of wave elevation history from model-scale experiments. (Nielsen

et al., 2016)

Obviously, the stepwise estimation method must be extended before it has practical relevance as a means for455

shipboard SSE along with the other techniques addressed in the present paper. Two notable points in future456

suggested studies are: (1) The extension to consider regular wave trains composed by two wave components457

could be beneficial, as it would provide knowledge about how to handle estimation of an irregular wave458

train made up by a (very) large number of regular wave components. Specifically, work could address the459

use of several notch or bandpass filters to select individual harmonic components from a wave spectrum,460

and then use a ’regular wave estimator’, like the developed one, for each component. (2) The combina-461

tion/consideration of several responses simultaneously, e.g., {heave; roll; pitch} could (possibly) be used to462

estimate also the relative wave heading.463
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6. CONCLUDING REMARKS464

Procedures for shipboard sea state estimation based on measured vessel responses have been studied and465

developed since the 1970’ies. The concept of the wave buoy analogy is still not widely used in practice,466

but it is the author’s opinion that generally it has matured to a level that would be applicable for shipboard467

decision support systems. The concept offers a reasonable alternative to the other shipboard estimating468

means, i.e. wave radars, but the concept has lower costs and requires no (or very little) calibration compared469

to wave radars. On the other hand, the wave buoy analogy still has weak points which need to be further470

addressed. Notably, the ability to handle nonstationary data, which may compromise accuracy/reliability of471

real-time sea state estimates. Moreover, it would be beneficial to be able to automatically select the best472

combination of available vessel responses; taking into account the effect of different operational conditions.473

In the same context, clearly there is a need to introduce fault detection and fault tolerance since, by nature,474

all sensor signals will be faulty at times. Obviously, and beyond doubt, this point is of importance to not475

only the wave buoy analogy, but to all components of shipboard monitoring and decision support systems. It476

is also important to point out, when using a ship as a wave buoy, the inherent limited capability to estimate477

waves not necessarily felt by the ship, because of the ship’s motion characteristics making it a wave filter.478

This issue is touched in a number of previous work (Nielsen, 2006, 2007; Pascoal and Soares, 2008) and a479

means to mitigate partly the problem is to use a response such as the relative wave height (Nielsen, 2008a);480

based on the instantaneous distance from a fixed point at/on the hull to the sea surface, measured e.g. by481

pressure transducers (below the water line) and/or distance meters mounted on the railing. In the same line,482

it could be interesting to consider sensor fusion, since generally wave radars are considered to yield accurate483

estimates of wave period and direction but not always wave height; leaving out any other pro/cons related to484

the use of wave radars. In case of sensor fusion, the Kalman filter approach offers a good setting (Pascoal485

and Soares, 2009). Finally, efforts should look into associating uncertainty measures on the particular wave486

parameter estimates by the wave buoy analogy.487

The immediate use of sea state estimates onboard a ship is directly coupled to navigational guidance and488

decision support to the ship’s master and crew, where focus is on safety and fuel consumption. In a somewhat489

bigger perspective other uses of shipboard sea state estimations are, for instance, linked to:490

• Ships’ operational profiles in a short-term sense and during their lifetime; where an issue is whether491

a ship meets the wave scenarios as it was designed for, notably with respect to safety and speed.492

• On-shore performance evaluation of a ship and entire fleets; shipping companies should be able to493

make more qualified fuel performance evaluations and comparisons when (reliable) wave data at494

actual position(s) is available.495
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• Added resistance in waves; related to the previous point, it is desirable to have knowledge about and496

to improve models for calculating the added resistance in waves, where experimental data is still497

scarce.498

• Global network of ’wave recorders’; the total number of ships navigating the oceans is very large499

and, if connected in a network, an enormous amount of wave data/statistics becomes available.500

• Investigation of accidents; a sort of ’black box’ could be installed on ships like it is known from the501

aviation industry. Thus, with information about responses as well as wave conditions, weather- and502

wave-induced accidents would be easier to investigate and analyse.503
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