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Abstract 

Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to 

analytes of interest.  One of the most interesting areas where MIPs have shown the biggest 

potential is food analysis. MIPs have found use as sorbents in sample preparation attributed 

to the high selectivity and high loading capacity.  MIPs have been intensively employed in 

classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have 

been combined with magnetic bead extraction, which greatly simplifies sample handling 

procedures. Studies have consistently shown that MIPs can effectively minimise complex 

food matrix effects, and improve recoveries and detection limits. In addition to sample 

preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the 

inherent molecular recognition abilities and the high stability in harsh chemical and physical 

conditions. MIPs have been utilized as receptors in biosensing platforms such as 

electrochemical, optical and mass biosensors to detect various analytes in food.  In this 

review, we will discuss the current state-of-the-art of MIP synthesis and applications in the 

context of food analysis. We will highlight the imprinting methods which are applicable for 

imprinting food templates, summarize the recent progress in using MIPs for preparing and 
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analysing food samples, and discuss the current limitations in the commercialisation of MIPs 

technology. Finally, future perspectives will be given.         
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1. Introduction 

Foodborne poisoning and food intoxications have become major public concerns worldwide 

(Caballero et al., 2003).  The residues of pesticides, veterinary and human drugs, microbial 

toxins, preservatives, as well as contaminants from food processing can cause apparent toxic 

effects and allergic reactions. Even at ultra-trace level, the contaminants can lead to 

cutaneous, respiratory, gastrointestinal or systemic response that may result in fatal 

anaphylactic shock.  With the numerous reports on product recalls, food scares, and 

deliberate adulteration of food, stringent legislation has been continuously introduced, and 

testing of these contaminants is routinely performed.  

 

In response to the demand for rapid, accurate and cost effective analytical methods to 

guarantee food safety, molecularly imprinted polymers (MIPs) as attractive materials have 

received immense attention. They can be tailor-made to bind template molecules with high 

selectivity (Chen et al., 2016). MIPs are synthesized by copolymerization of functional 

monomers and cross-linkers in the presence of template molecules. After removal of the 

template molecules, recognition cavities that are complementary in shape, size, and spatial 

arrangement to the template molecules are formed in the highly cross-linked polymer matrix.  

 

Attributed to their unique features, MIPs have greatly advanced the field of food analysis 

(Song et al., 2014). MIP technology has been extensively applied in the area of sample 

preparation. Due to the complex food matrices effects and the trace presence of targeted 

analytes, the performance of the analytical instruments is highly dependent on the sample 

preparation. However, this is often a neglected area in assay development. As such, there is a 

need for researchers to develop good sample preparation techniques to compliment analysis 

of food samples. MIPs have found use as sorbents in sample preparation (Turiel and Martin-



4 
 

Esteban, 2010). Compared to conventional sorbents such as C18 silica gel, MIPs offer 

apparent advantages including higher loading capacities, higher efficiency for the retention of 

analytes and the improved selectivity during the retention process. Studies have consistently 

shown that the use of MIPs for food sample preparation could lead to improved recoveries 

and detection limits.  Thus far, in majority of the examples, MIPs were employed in classical 

sample preparation techniques such as solid-phase extraction (SPE) and solid-phase 

microextraction (SPME) (Zhang et al., 2013). Recently, the use of MIPs in combination with 

magnetic bead extraction has significantly simplified sample handling and pre-treatment 

procedures, and opens up the opportunities to integrate sample preparation with emerging 

analytical devices such as biosensing/microfluidic platforms (Chen and Li, 2012).  

Besides sample preparation, MIPs have also displayed great potential in area of biosensors 

(Uzun and Turner, 2016). Biosensors allow the miniaturization of instrumentation while 

demonstrating sensitivity and selectivity comparable to traditional analytical techniques 

(Otles and Yalcin, 2012). This is highly desirable in food monitoring as there is a demand for 

analytical methods which can be carried out at the point-of-need or anywhere else in the food 

processing chain. Biosensors rely on bio-receptors to recognize targeted analytes. Antibodies 

and enzymes have commonly been used as the receptors for biosensor platforms but they are 

inherently unstable due to the biological origins, which significantly limits the uptake of 

biosensors in the food sector.  Recently, MIPs have been employed as biomimetic receptors 

in biosensing platforms. These MIPs provide a number of advantages over their biological 

counterparts, including high robustness and stability under a wide range of conditions, easy 

design of recognition sites for analytes that lack suitable bio-recognition elements, and low 

production cost. The advances in polymerization techniques have made it possible to directly 

fabricate MIPs on transducer surfaces, and the development of MIPs with multifunctional 

composites has enabled new mechanisms of signal transduction.  Numerous MIP-based 
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biosensors, such as electrochemical, quartz crystal microbalance (QCM), surface plasmon 

resonance (SPR), and optical biosensors, have been developed for diverse food relevant 

analytes ranging from small molecules to big proteins (Irshad et al., 2013).  

Although the MIP technology is very promising for use in food analysis, the commercial 

success is still very limited.  So far, there are only few commercial examples of MIPs as 

sorbents for sample preparation, and no MIP-based biosensors have yet been seen on the 

market. The commercialization of MIPs has been hampered by several challenges such as 

incomplete template removal, inadequate selectivity, as well as difficulties in producing MIPs 

on a large scale. To further prompt applications of MIPs in the food sector, efficient means of 

preparing MIPs should be developed in order to generate MIPs with significantly improved 

properties. 

In this review, we mainly summarize the recent progress in regards to the development of 

MIPs in the area of food analysis over the last 5 years. Firstly, the current imprinting methods 

which are applicable to food templates will be reviewed.  We will then compare and contrast 

the two main applications of MIPs in food analysis, namely, as sorbents in sample 

preparation and as receptors in biosensors. The limitations in the commercialisation of MIPs 

technology will also be discussed.  Finally, perspectives on the future research directions will 

be provided. 

2. Molecular Imprinting Methods  

2.1 Synthesis of MIPs 

MIPs can be synthesized using a number of different techniques. The main type of imprinting 

is non-covalent imprinting which relies on forming interactions between the functional 

monomer and templates in a pre-polymerization mixture (Figure 1).  Strategies for non-
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covalent imprinting include bulk polymerization, precipitation polymerisation, mini emulsion 

polymerization, solid-phase imprinting, and core-shell imprinting (Song et al., 2014).   

Selection of imprinting method will depend on the size and form of the desired MIP (i.e., thin 

films, nanoparticles etc.), the type of template and application of the MIP to be used.  For 

example, in food sample preparation, MIPs are often synthesized using the bulk 

polymerization method before they are grafted onto a solid phase support; whereas in MIP-

based biosensors, thin films are most commonly grafted onto the sensor surface.  For both 

applications, MIPs with high surface area and a large number of binding sites are desirable 

while non-specific binding should be kept to a minimum.  

Bulk polymerization is one of the simplest imprinting methods, and involves the formation of 

large size MIP monoliths which can then be ground down into smaller irregular shaped 

microsphere particles.  Due to the simplicity of the procedures, bulk polymerization is the 

most commonly used method in the development of MIP sorbents for sample extraction. 

However, the method can lead to high batch–to-batch variation and formation of particles 

with no binding sites (Chen et al., 2011; Ma et al., 2013).  In addition, the technique requires 

a large amount of template, suffers from template leakage and is difficult to process.   

More recently, the focus has been on the development of  MIP nanoparticles (nano-MIPs) for 

both food sample preparation and biosensors due to the higher surface area-to-volume ratio 

and well-defined sizes (Wackerlig and Lieberzeit, 2015). Polymer chemists have used 

precipitation polymerization as a convenient method for imprinting of nanoparticles. It allows 

nanoparticles to be formed in reasonable yields, purity and with good control over particle 

sizes (Ye et al., 1999). The technique relies on mixing the template with a diluted solution of 

monomers and cross-linker, resulting in a high dilution factor.  Upon formation, the MIP 

slowly precipitates out of the solution.  Precipitation polymerization has allowed for 



7 
 

imprinting of biomolecules  such as proteins in the presence of a small amount of surfactant, 

but the technique is limited to high abundance templates (Hoshino et al., 2008).   

Emulsion polymerization has proven to be a versatile method for preparing MIPs. The 

technique involves emulsifying the cross-linkers, template and functional monomers in an 

aqueous phase (Vaihinger et al., 2002).  Stabilizers are then added to the disperse phase, 

which helps to prevent diffusion across the continuous phase and result in small, stabilised, 

homogeneous sized emulsion droplets.  The method allows for high yields of monodispersed 

nanoparticles, whereas the surfactant residues can interfere with the recognition of the analyte 

upon rebinding, leading to low binding capacity. 

Solid-phase based polymerization is an effective strategy for imprinting small molecules, 

endotoxins and even whole viruses. In this method, the template is attached to a solid support, 

usually in the form of glass beads or silica gel (>1 µm diameter), and mixed with the 

monomers, cross-linker and initiator before polymerizing using chemical or photo initiation 

(Abdin et al., 2015; Altintas et al., 2015a, 2015b).   The technique offers some significant 

advantages over other methods for producing nano-MIPs (Canfarotta et al., 2016).  These 

include the facile removal of the template which facilitates the recycling of the template for 

subsequent reactions. Moreover, the resultant nano-MIPs are monoclonal in nature meaning 

that only 1 or 2 recognition sites are formed per nanoparticle.  The method can also be used 

as an affinity column which facilitates the separation of high affinity MIPs from the low 

affinity and non-imprinted by-products.  In addition, a wide range of linker chemistries can 

be used to attach the template to the support.  For instance, MIPs for trypsin were synthesized 

by attaching the protein via affinity capture with its inhibitor, glass bead templated p-

aminobenzamidine (Ambrosini et al., 2013).  This resulted in nano-MIPs, which were more 

uniform in terms of the orientation and size of the binding cavity.  In a more recent paper, the 

same group demonstrated the use of a metal-chelates to bind His-tag containing proteins to 
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glass beads (Xu et al., 2015).  Solid-Phase imprinting does suffer from some disadvantages.  

There are only a limited number of solid supports available with the technique being 

demonstrated on glass beads and silica gels.  This is partly due to the large amount of beads 

required (>30 g).  Moreover, in the solid-phase approach, low affinity MIPs are removed 

while high affinity MIPs are retained, which often results in a much lower yield.   

Surface imprinting can be considered as a form of solid-phase imprinting which involves the 

formation of a layer of MIP round a solid medium such as nanoparticle or glass slide.  There 

has been intense research activity focusing on core-shell imprinting, since it allows for better 

control of both the size and distribution of the MIP and the functionality of the nanoparticle.  

The large surface area of the nanoparticles allows for fast MIP binding kinetics and increases 

the access of the analyte to the MIP. In addition, the aggregation of nanoparticles can be 

minimised through the addition of a shell layer or other surface modification (Gawande et al., 

2015). Moreover, the core of the imprinted nanoparticle can consist of any number of 

precursor nanoparticles such as iron oxide (magnetite), silicon oxide, quantum dots or 

polymers themselves, which could impose additional functions to MIP nanoparticles.  

The first core-shell imprinting method was reported by Pérez-Moral et al., where a MIP was 

imprinted onto a polymer based core through surface initiated living radical polymerization 

(Pérez-Moral and Mayes, 2007).  Recently researchers used the grafting approach to produce 

magnetic core-shell MIP nanoparticles.  Magnetic nanoparticles were synthesized using co-

precipitation of iron chloride which resulted in magnetic core nanoparticles. This was 

followed by the formation of a SiO2 shell layer via silanization using tetra ethyl orthosilicate 

(TEOS).  The MIP layer was then grafted onto the core-shell to bind biotin (Uzuriaga-

Sanchez et al., 2016). There has been an increasing interest in using molecularly imprinted 

magnetic core-shell nanoparticles for effective sample extraction due to the facile removal of 

these nanoparticles from food matrices.  Quantum dots have also been commonly used as the 
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core for molecular imprinting which effectively turns them into fluorescence-based sensors 

(Liu et al., 2012, 2016).  Other types of core nanoparticle used for imprinting include silver 

and gold nanoparticles. Silica based MIPs with a core comprised of silver nanoparticles were 

developed, which took advantage of the unique optical properties known as metal enhanced 

fluorescence exhibited by silver nanoparticles (Aguilar-García et al., 2016).  Gold 

nanoparticles can also act as the core for imprinting MIPs due to their unique UV absorbance 

properties (Yu et al., 2012).  Core-shell imprinted polymers which incorporate multiple 

functional materials have shown potential by combining the unique properties of multiple 

nanoparticle systems.  In 2014, Han et al. developed hybrid Fe3O4 - CdTe quantum dot core-

shell imprinted nanoparticles which could recognise and bind to 4-nonylphenol (Han et al., 

2014).  Hollow shell imprinting, where the core of the particle is removed after imprinting, 

has been of interest to the scientific community.  A recent paper used a one pot sol-gel 

process to synthesise the SiO2 core (C. Li et al., 2015a). After immobilization of the template, 

surface imprinting and addition of a poly(N-isopropylacrylamide)-block-poly(2- 

hydroxyethyl methacrylate) brush, the core was removed through etching with 10 % 

hydrofluoric acid (HF).  Although the development of core-shell imprinting is a promising 

area, there are still improvements to be made such as minimising the degree of nanoparticle 

aggregation, and further enhancements in controlling the size and size distribution of the 

nanoparticles.  

Methods for imprinting thin films have been the focus of a number of groups, and are highly 

desirable in biosensors such as electrochemical sensors where the surfaces can be fabricated 

using methods such as electro-polymerization.  In situ electro-polymerization is a special 

form of surface imprinting onto the electrode (Suryanarayanan et al., 2010). A significant 

advantage of this approach is that the technique allows the thickness of the polymer to be 

precisely controlled by various parameters such as current density and applied voltage, which 
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gives rise to a more uniform coating of the MIP onto the electrode surface (Malitesta et al., 

2012; Pardieu et al., 2009).  Moreover, the area of deposition of the polymer can also be well 

controlled. Non-conducting imprinted polymers can be integrated with an electrochemical 

transducer by in situ electro-polymerization of monomers in the presence of aniline or 

ethylenedioxythiophene. Alternatively, the imprinted polymers can be immobilised on the 

surface of the electrode by either spin coating or electrospraying.  Other forms of imprinted 

polymer such as nanoparticles can be attached via mixing with gels, membranes, carbon 

electrode paste and ink casting (Sharma et al., 2012). 

2.2 Design of MIPs 

The development of MIPs for new templates is often time consuming and requires a trial-and-

error approach. There are several experimental parameters that need to be considered in terms 

of the type and concentration of monomers, cross-linker and template. The temperature at 

which the polymerization is carried out is also an important factor to consider when 

temperature responsive monomers or temperature sensitive templates are used.  Several 

methods for designing MIPs have been reported, including chemometric, molecular 

modelling, combinatorial approaches and experimental methods (Curk et al., 2016).  

Chemometric based design approaches have been demonstrated on a number of different 

templates. It relies on statistical analysis which allows MIPs to be designed based on 

experimental data (Muzyka et al., 2014).  

Recently, molecular modelling has become an increasingly popular method for the rational 

design of MIPs through modelling of critical imprinting parameters (Nicholls et al., 2015). 

For example, a model combining Monte Carlo simulations and analytical calculations was 

proposed as a method for the rational design MIPs (Curk et al., 2015).  Virtual combinatorial 

screening of various monomers towards Benzo[α]pyrene in pre-polymerization mixtures was 
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demonstrated using a semi empirical quantum method.  The  binding energy was computed 

using the Hartree Fock method resulting in the selection of methacrylic acid as the monomer 

and ethylene glycol dimethyacrylate as the cross-linker for imprinting (Khan et al., 2012). 

Hawari et al. used 3D simulation to assess the binding of a series of monomers towards α-

pinene, a volatile compound given off upon ripening of mangos (Hawari et al., 2013).  The 

use of computational chemistry in the design of MIPs has shown promise in terms of 

facilitating the rapid development of MIPs with a reduction of the amount of reagents needed.  

However, the effective modelling of larger macromolecules remains a challenge.  One of the 

few examples of macromolecule MIP modelling was reported in 2011, when researchers used 

molecular docking as a strategy to simulate macromolecule-monomer interactions (Kryscio et 

al., 2011).       

The use of combinatorial libraries to rapidly screen MIP candidates for high affinity towards 

the template was first developed in 1998 using different triazine herbicides as the templates 

(Toshifumi Takeuchi et al., 1998).   In 2007 Koesdjojo et al. developed a semi-automated 

procedure for the synthesis and screening of MIPs using drug residues as the template 

(Koesdjojo et al., 2007).  Researchers in 2012, combined microfluidic technology with 

combinatorial chemistry to develop MIP microspheres for Chloramphenicol with good 

control over the size of the resultant microspheres (Liu and Lei, 2012).    These procedures 

allowed the researchers to quickly optimise monomer ratios and other critical parameters 

such as the porogen used.  The procedure reduced the consumption of reagents and 

demonstrated the possibility of small scale high throughput polymerization.  However to date 

there has only been a small number of publications on the development of combinatorial 

based approaches for MIP synthesis.   

Experimental method is another approach for rational design of MIPs. Previous reports have 

shown that the design of MIPs for small molecules based on experimental analysis of pre-
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polymerization mixtures using techniques such as nuclear magnetic resonance  (NMR) 

(Salvador et al., 2007). A recent article demonstrated the use of differential scanning 

fluorimetry in the development of MIP-NPs for the milk protein allergen β-lactoglobulin 

(Ashley et al., 2016).  The method relies on the use of a hydrophobic dye and real time PCR 

thermocycler to determine the optimum conditions for imprinting, characterise the formation 

of the MIP-NPs and potentially allow for the binding between the MIP and protein to be 

assessed.          

3. Applications	of	MIPs	in	food	sample	preparation		
 
Sample preparation is one of the major bottlenecks of the analytical process in food analysis 

because of the complex food matrices effects and the low concentration of target analytes. 

Efforts have recently been made towards developing more selective sample extraction 

methods. MIPs have been extensively suggested and used as sorbents for sample preparation. 

The main advantage of MIPs is that they can concentrate the analyte and selectively extract 

the target compound from bulk samples.  They can avoid the problem of non-specific affinity 

associated with conventional sorbents such as C18-bonded silica gel, thereby allowing for 

more sensitive and selective quantification. Moreover, MIPs are also advantageous in terms 

of high sample load capacity, appropriate resistance to high temperature and pressure (high 

stability), desirable physical robustness, inertness to organic solvents as well as acids and 

bases, ease of preparation and low cost (Carro-Diaz and Lorenzo-Ferreira, 2010; He et al., 

2007; Lasáková and Jandera, 2009). MIPs have mainly been employed in classical sample 

preparation methods such as SPE and SPME. More recently, the development of magnetic 

MIP nanoparticles has allowed MIPs to be combined with magnetic bead extraction, which 

greatly simplifies sample handling procedures.  
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3.1 MIP-based SPE  

MIP-based SPE is the most popular method for preparing food samples because it is 

convenient, fast, consume less solvent and enable selective cleanup of the analytes. In a 

typical MIP-SPE, imprinted bulk polymer is packed in a cartridge, column, or extraction well 

plates (for high throughput analysis).  Recently, alternative forms of MIPs such as thin films 

and nanoparticles are also used as sorbents in SPE. 

Two different approaches have been considered for extraction of analytes by MIPs, namely 

“normal phase” mode used for processing food samples dissolved in low polarity solvent and 

“reverse phase” mode for aqueous food samples.  In “normal phase” mode, the adsorption of 

the analytes onto an MIP sorbent is via shape-specific interactions of the analytes with the 

polymer matrix. The analyte is selectively retained on the extraction column while interfering 

molecules can freely pass through the column. Increasing the mobile phase strength will 

result in the elution of the analyte. In contrast, in the “reverse phase” mode, analytes in 

aqueous samples are adsorbed onto the MIP through hydrophobic interactions. Subsequent 

washing with solvent can remove interfering compounds leaving the analyte. The elution of 

the analyte can occur when the column is washed with appropriate solvent. The solvent used 

for washing should be able to minimize non-specific binding while having no disruptive 

effect on the selective interactions between the target molecules in food samples and the MIP 

(Andrade-Eiroa et al., 2015; Anene et al., 2016; Atlabachew et al., 2016). Clean-up using 

washing solvents can be skipped in special cases where the elution step is highly selective to 

the analyte and does not elute other reagents non-specifically bound to the MIP.  This is  

recommended especially for aqueous samples where the clean-up step by non-polar solvent 

may give rise to miscibility issues (Lasáková and Jandera, 2009).  
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There are several reports in the literature showing the application of MIP-SPE in extracting 

antibiotics, pesticides, and mycotoxins from food samples (Baggiani et al., 2007; Cacho et 

al., 2003; Chauhan et al., 2016; Chen et al., 2009; Muzyka et al., 2014b; Khan et al., 2016; 

Molinelli et al., 2002).  By enhancing selectivity, MIP-SPE has been demonstrated to be 

superior compared to traditional SPEs. For example, the detection of fluoroquinolones in 

baby food was successfully achieved (limit of detection (LOD) of 0.03 to 0.11 µg. g-1) after 

loading the samples onto bulk imprinted polymer (Díaz-Alvarez et al., 2009). Besides MIPs 

made by bulk polymerization, nano-based core-shell type molecularly imprinted sorbents 

were also utilized for food analysis. For example, Wang et al. (Xiaoyan Wang et al., 2014) 

were able to extract estradiol from milk samples using core-shell molecularly imprinted 

hollow spheres. 

  

Previously, it was difficult for SPE to analyze several analytes at the same time (Lejeune and 

Spivak, 2009; Schweitz et al., 2002). Zhang et al. overcame the challenge of multi-analyte 

analysis in SPE by developing novel multiple-template MIPs (MT-MIP) (Zhang et al., 2015). 

The MT-MIP was synthesized by dispersion polymerization, using ofloxacin and 17β-

estradiol as templates and modified monodispersed poly(glycidylmethacrylate-co-ethylene 

dimethacrylate) (PGMA/EDMA) beads as the support material. The MT-MIP could 

simultaneously extract trace quinolones and estrogens in milk samples with the recoveries in 

the range of 77.6–98.0%.  

 

3.2 MIP-based SPME 

SPME is a sample preparation method which uses a syringe with a needle containing stainless 

steel microtubing and fused-silica fiber tips coated with an organic polymer (Arthur and 

Pawliszyn, 1990). This coated silica fiber is capable of moving forwards and backwards with 
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the syringe plunger. The unique design of  SPME provides advantages such as reduced time 

for sample preparation, non-usage of organic solvents, low cost, and ease of automation (Vas 

and Vékey, 2004; Zhang et al., 2013). However, the main drawback associated with SPME is 

the lack of selectivity, the same as traditional SPE.  

By coating the fiber tips with MIPs, SPME has demonstrated superior sensitivity and 

selectivity. For example, MIP-coated stainless-steel fibers were developed to extract a Sudan 

(I–IV) carcinogen dyes in hot poultry and chili powder samples. The sensitivity of the 

method was very high, being able to achieve LODs of 2.5–4.6 ng/g for Sudan I–IV dyes  (Hu 

et al., 2012). 

 

One of the most interesting ideas recently appeared is the combination of MIP and sol-gel 

technologies to produce water-compatible MIP based extraction systems (C. Li et al., 2015b; 

Wang et al., 2013).  For example, Wang et al. reported sol-gel coating of MIP while using 

polyethylene glycol as functional monomer and diazinon as template (Wang et al., 2013). The 

authors were able to show selective detection of diazinon and its analogs in cabbage, 

eggplant, green pepper, cucumber, and lettuce samples. In addition to outstanding chemical 

and thermal stability, the extraction capability was higher than commercial fibers and non-

imprinted polymer due to selective adsorption and the highly porous surface.  

 

Temperature sensitive MIPs coupled to SPME has recently been demonstrated by Zhao et al. 

(Zhao et al., 2015). They were able to successfully extract ofloxacin (OFL) from milk and 

analyse it using HPLC coupled to MIP coated SPME. In addition to temperature sensitive 

MIPs, new molecularly imprinted SPME fibers with the ability to renew their selective 

binding sites through the gradual thermal decomposition of the polymeric network were 

reported (Xu et al., 2016). In the desorption step, the polymeric network can degrade from the 
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surface to the core in the presence of volatile compounds that do not cause any interference 

with the analyte. High precision and accuracy were observed for the successful extraction of 

triazole fungicides, such as triadimenol, tebuconazole, and metconazole from grape juice 

samples using this renewable MIP fiber (Pozo-Bayón et al., 2001; Sabik et al., 2012).  

 

In addition to the above-mentioned examples, some of the most interesting work in MIP-

based SPE and SPME is summarized in Table 1.  

 

3.3 Magnetic MIP nanoparticle-based extraction 

Recently, another sample preparation method based on magnetic MIP nanoparticles has 

received considerable attention. The magnetic MIPs typically consist of a magnetic core and 

a MIP layer at the shell, thus they possess both magnetically susceptible characteristics and 

good selectivity for the target molecules (Figure 2). In the separation procedure, the magnetic 

MIP sorbents can be dispersed directly in food samples to extract analytes. The nanoparticles 

together with captured analytes are then recovered from the solution with the aid of a magnet. 

The combination of magnetic nanoparticles with MIP technology has proven to be a powerful 

method for sample pre-treatment and enrichment attributed to the effective analyte-sorbent 

interaction and facile separation from the sample matrices (Chen and Li, 2012).   

Magnetic MIP nanoparticle-based extraction has been increasingly used for concentrating 

food contaminants such as pesticides, herbicides, endocrine disrupting chemicals, antibiotics, 

and growth hormones in complex sample matrices that include milk, fruit juices, honey, egg 

and meat products (Chen and Li, 2012b, Kwasniewska et al., 2015). The sample recoveries 

shown by magnetic MIPs were between 75% and 95% on average for various contaminants. 
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Chen et al. revealed that magnetic MIP nanoparticle-based extraction was superior over the 

MIP-SPME and MIP-SPE methods (Chen et al., 2009).  They compared the performance of 

the three methods for separation of tetracycline and oxytetracycline antibiotics from egg and 

tissue samples. The magnetic MIP method showed better analytical results with a detection 

limit of 0.06–0.19 ng g-1 and a recovery rate of 72.8–96.5%, while the recovery rates for 

MIP-SPME and MIP-SPE were 71.6-93.7% and 66-69%, respectively. In addition, the 

sample preparation time used in the magnetic MIP method was much shorter since the 

extraction and clean-up were easily done by separating the magnetic polymers from the 

sample matrix.    

 

A recent paper demonstrated the use of magnetic MIP nanoparticles to extract 1,7-dioxaspiro-

[5,5]-undecane (DSU), a potential biomarker for infected olive oil caused by olive fruit flies 

(del Carmen Alcudia-León et al., 2016).  The magnetic MIPs were prepared using 3-

aminopropyltriethoxysilane (APTES) to associate the target analyte on the surface of the 

magnetic substrate, followed by the polymerization of ethylene glycol dimethacrylate 

(EGDMA). The simple methodology showed remarkable recovery rate ranging between 95 

and 99%. 

 

Novel magnetic hollow nanoparticles, where the core of the nanoparticle undergoes etching, 

have been used for highly selective recognition and fast enrichment of triazines in food 

samples  (Wang et al., 2016). The magnetic hollow MIPs were prepared using multi-step 

swelling polymerization, followed by in situ growth of magnetic nanoparticles on the surface 

of hollow MIPs. They were applied to extract atrazine, simazine, propazine, and 

terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries in the range of 

80.62–101.69% were obtained.  
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Magnetic MIP nanoparticle-based extraction technique surpasses most of the classical sample 

preparation procedures with simpler operation and higher adsorption capacity. The technique 

significantly simplifies the sample handling and pre-treatment protocols. Up to date, sample 

preparation is widely recognized as the critical roadblock in realizing online or at-site food 

contaminant analysis. Emerging microfluidic technology that enables the integration of 

sample preparation and biosensing in one portable system could offer a promising solution. 

Magnetic beads have been explored for on-chip sample preparation (Bunyakul and 

Baeumner, 2015). The possible combination of magnetic MIPs with microfluidic platforms 

would open up new opportunities for online analysis of trace compounds in complex food 

sample matrices.  

 

4. MIP-based biosensors in food analysis 

Besides being used as adsorbents for sample preparation, more recently, MIPs have been 

increasingly applied in sensing technology. Over the past few decades, the food industry is 

actively seeking novel sensing platforms that can be employed at point of use. The 

development of biosensors has improved the overall capabilities to detect chemical and 

biological molecules. However, applications of biosensors in the real world are greatly 

hindered by the limited operational and storage stability of the bio-receptors. With the 

inherent molecular recognition abilities and high stability in harsh chemical and physical 

conditions, MIPs have been recognized as a promising alternative to bio-receptors.  

The advances in MIP synthesis technologies have greatly propelled the development of MIP-

based biosensors. New polymerization methods have allowed the MIP materials to be 

immobilized on transducer surfaces, and novel multi-functional MIP nanoparticles have also 
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contributed to transform the binding events into measurable signals.  Examples of MIP-based 

biosensors include electrochemical, QCM, SPR and optical sensors (Cieplak and Kutner et 

al., 2016). They have shown great potential in the area of food and environmental monitoring, 

as they are cost-effective, fast and potentially portable. A schematic diagram of MIP based 

biosensors is shown in Figure 3 and some recent examples of MIPs used as selective 

recognition elements in a broad range of transducer types are summarised in Table 2.    

4.1 Electrochemical sensors 

MIP electrochemical sensors based on voltammetry/amperometric, conductivity and 

potentiometric transduction modes have been reported in the literature (Suryanarayanan et al., 

2010).  Many MIP electrochemical sensors incorporate conducting monomers into the MIP to 

allow for signal transduction (Malitesta et al., 2012).  A change in signal can be induced upon 

direct binding of the analyte, or via competitive displacement measurements.  To enable 

signal transduction, the MIP receptor needs to be in close proximity to the transducer surface, 

and this can be achieved either by in situ electro-polymerization of the monomers and 

crosslinkers or by coating a preformed polymer on the transducer surface.  The majority of 

papers on MIP-based electrochemical sensors in food analysis deal with the detection of 

small analytes, while only a small portion of work target larger biomolecules. 

MIP based potentiometric biosensors have displayed advantages over other electrochemical 

techniques such as simple design and good selectivity.  In addition, the potentiometric sensor 

does not require dispersion of the template throughout the membrane on the electrode (Weng 

et al., 2007). Anirudhan et al. demonstrated the use of multi carbon walled carbon nanotubes 

with MIPs to develop potentiometric based sensor for the detection of monosodium glutamate 

in different food samples with a sensitivity of as low as 1 nmol L-1(Anirudhan and Alexander, 

2015).  
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MIP based amperometric electrochemical sensors have shown promise in food analysis with 

several publications in the literature (Zhao et al., 2013; Li et al., 2012; Farre and Barcelo, 

2007). They rely on the relationship between the analyte concentration and the current 

density at a constant potential.  A recent paper demonstrated the use of an electrochemical 

biosensor for the detection of sulfadimethoxine in milk samples using amperometric analysis 

(Turco et al., 2015).  The MIP was deposited on the gold electrode via galvanostatic 

deposition of pyrrole in the presence of the template.  The sensor achieved a detection limit 

of 70 µmol L-1.   

MIP-based voltammetric biosensors measure the current density produced from   potential 

sweep.  The potential sweep can be produced by either linear sweep voltammetry (LSV), 

cyclic voltammetry (CV), differential pulse voltammetry (DPW) and square wave 

voltammetry (SWV) modes.  In 2015 Deng et al developed a highly sensitive and selective 

MIP electrochemical sensor using square wave voltammetry to detect melamine in milk 

samples (Deng et al., 2015). The MIP was fabricated by electro polymerisation onto a glassy 

carbon electrode and could detect melamine with a detection limit of 1.4 nmol L-1.   

Although impedance is not strictly counted as an electrochemical technique, the fundamental 

basis for the technique is similar to other electrochemical methods.  A recent example of an 

impedance based biosensor was developed by Yang et al. in which a hybrid of MIP carbon 

nanotubes and graphene was fabricated on a glassy carbon tube. It was capable of measuring 

rutin in buck wheat tea and orange juice samples with a detection limit of 5 nmol L-1 (Yang et 

al., 2016).        

 

4.2 Piezoelectric biosensors 

MIPs have also been utilized in quartz crystal microbalance (QCM) biosensors which are 

based on the piezoelectric effect.  This type of biosensors is most suitable for large analytes 
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since they can induce big mass difference and consequently a large signal change upon 

binding. QCM uses a thin disc of quartz, which is cut at a specific crystal plane and inserted 

between a pair of gold electrodes as the transducer. QCM sensor can exhibit superior 

sensitivity down to the picomolar range. QCM provides a flexible technique to determine 

protein analyte concentration by measuring variations of the mass and physicochemical 

properties of the polymer sensing surface (Harz et al., 2011). Eren et al. developed a MIP-

QCM biosensor for the detection of lovastatin in red yeast rice, and detection limit of 30 pM 

after extraction using Trichloroacetic acid was achieved (Eren et al., 2015).  The sensor was 

fabricated by attaching a polymerizable self-assembly monolayer (SAM) to the gold surface 

via a thiol bond and imprinting lovastatin using free radical polymerization.  In 2014, Dai et 

al. developed a MIP based QCM biosensor for the detection of histamine in tuna food 

samples, which obtained a LOD of 7.49 x 10-4 mg kg-1 (Dai et al., 2014).  The sensor was 

fabricated by molecularly imprinting histamine using TEOS and 3-

mercaptopropyltriethoxysilane, and the subsequent MIP was immobilised onto the gold 

surface using PVC in dichloromethane.  The sensor displayed excellent sensitivity compared 

to HPLC for spiked fish samples after homogenization and extraction in h-hexane.  MIP 

based QCM sensors also provide the possibility for high-throughput analysis as demonstrated 

by researchers in 2010. They developed a QCM array for the detection of  six different herbs 

using polystyrene based MIP membranes which were fabricated by spin coating layers onto 

the surface (Iqbal et al., 2010).   

One of the main challenges to develop MIP-based QCM biosensors is the complexity in 

fabricating the sensor surface.  Chemistries used to attach the MIP or form it on the surface of 

the sensor must be compatible with gold or the self-assembly monolayer.  As this technique 

cannot distinguish between specific and non-specific interactions (i.e. the interaction of the 



22 
 

analytes with the sensor surface rather than the MIP), there is a need to both reduce non-

specific interactions and incorporate the non-imprinted polymer as a reference channel.       

4.3 SPR biosensors 

SPR is also considered as a mass sensitive technique.  MIPs have proven to be effective 

receptors in SPR sensors. Methods to fabricate these types of biosensors include surface 

initiated atom radical polymerization (ATRP), amine coupling of MIP nanoparticles, 

photopolymerization of films using water compatible cross-linker and monomers, and amine 

coupling of MIP-NPs (Altintas et al., 2016; Jing et al., 2016; N. Zhao et al., 2012).   

A number of MIP-based SPR biosensors for detection of food analytes have been reported in 

the literature (Lautner et al., 2011; Matsui et al., 2009).  Yao et al. reported the use of a MIP 

based SPR sensor for the detection of pesticide residues (Yao et al., 2013).  By combining 

SPR detection with MIP functionalised iron oxide nanoparticles, the magnetic iron oxide 

nanoparticles could serve a dual role of extracting the analyte from the sample while also 

acting to amplify the SPR signal.  This increase in signal gave rise to a detection limit of 0.76 

nM.   The same group went on to develop novel nano-hybrid MIP based biosensor for the 

detection of ractopamine which incorporated both gold nanoparticles and reduced graphene 

oxide (Yao et al., 2016).  The sensor was capable of measuring ractopamine down to 5 ng/ 

ml.  

4.4 Optical Biosensors 

Optical based biosensors are particularly desirable in food analysis due to their high 

sensitivity (Narsaiah et al., 2012).   Colorimetric biosensors are the simplest type of optical 

sensors which offer label-free detection based on changes in colour. Colorimetric detection 

was combined with MIP technology in 2012 to detect the food additive vanillin (Peng et al., 
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2012).  A change in the colour was induced when the photonic hydrogels bound to the 

analyte.  

MIP based fluorescence sensors are also known for their rapid and sensitive measurements in 

solution. Composite nanomaterials which combine quantum dot labels and MIPs as the 

recognition layer have been developed for an array of food contaminants such as polycyclic 

aromatic hydrocarbons, proteins, and penicillin in food samples (Benito-Peña et al., 2006; Ge 

et al., 2013; Li et al., 2013; Lin et al., 2004).  In 2012, Zhao et al. developed multi-functional 

QD-MIP nanospheres for the detection of pesticides in aqueous solutions (Y. Zhao et al., 

2012).  Upon recognition and binding of the analytes, there was a marked increase in 

fluorescence quenching which allowed for the quantitative measurement of diazinon 

concentration down to 36 ng ml-1.    

The development of surface enhanced Raman spectroscopy (SERS) biosensors has generated 

huge interest in the research community due to their high sensitivity and ability to perform 

multiplex detection (Bantz et al., 2011; Rodriguez-Lorenzo et al., 2012).  In food analysis, 

several papers have described the use of these types of sensors with MIP receptors (Feng et 

al., 2017; Feng and Lu, 2015). In 2013,  bisphenol A molecularly imprinted gold 

nanoparticles were made as the substrate for a SERS biosensor which was capable of 

detecting bisphenol A in beverages with a detection limit of 0.12 mg L−1 (Xue et al., 2013).  

Recent applications of SERS biosensors with MIP receptor include the detection of melamine 

in milk, Sudan 1 in paprika and histamine in tuna samples (Gao et al., 2015a, 2015b; Hu and 

Lu, 2016).    

5. Challenges of MIPs in food analysis 

Despite the rapidly expanding literature on the use of MIPs in food analysis, the commercial 

exploitation of MIPs is still in its infancy. There are very few commercial products which use 
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MIPs as sorbents for sample preparation.  For example, SupeIMIP™ from Sigma Aldrich 

utilises MIPs in its solid phase extraction cartridges for the extraction of aminoglycosides 

from pork samples and mycotoxin from fruit samples (Sigma-Aldrich, 2016).  Biotage offers 

customisable MIP technology for solid phase extraction (Biotage, 2016).  In contrast to the 

commercialisation of MIPs in the area of sample preparation, there are no known commercial 

examples of MIP-based biosensors in food analysis.  

The applications of MIPs have been hampered by several issues. For MIP-based sample 

preparation, the challenges include incomplete removal of template, non-specific binding due 

to the low yields of specific anchoring sites, as well as undesired adsorption due to the 

hydrophobic nature of many MIPs. The inability to completely remove the residual templates 

from the column matrix can result in its residual leakage during sample loading, washing 

operation, and more critical in elution steps (Baggiani et al., 2007; He et al., 2007). The 

presence of non-selective binding sites in MIPs may lead to the co-extraction of undesired 

matrix components, which could severely interfere with the quantification of molecule of 

interest in complex matrices. Problems with non-specific adsorption to polymer surface are 

often encountered for many hydrophobic MIPs. If the majority of binding events occur 

through adsorption to the polymer surface, the selectivity associated with the imprinted sites 

may remain obscured. 

For MIP-based biosensors, the lack of commercial products is partly due to the unmet 

selectivity and binding affinity required for an effective biosensor. Limited by template 

quality and synthetic conditions, it is generally difficult for MIPs to achieve selectivity 

comparable to natural bio-receptors. Another challenge lies in the complexity in fabricating 

MIPs on sensor surfaces.  This is especially true when multiple channels are involved such as 

in SPR, QCM based sensors which require both reference channels and analyte channels.  

Although a number of methods are available for construction of MIP-based biosensors, 
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transferring these methods from research laboratories to industrial scale production remains a 

significant challenge. 

6. Conclusions and future perspectives 

In this review, preparation methods for MIPs and their applications for sample preparation 

and biosensing in food analysis has been comprehensively summarized. There is no doubt 

that the use of MIPs in food analysis will grow at an even faster pace. The future research 

may focus on the following areas.  

1. Efficient means of preparing MIPs. In order for MIPs to take their place in analytical 

market, novel imprinting techniques are urgently needed to generate imprinting materials 

with high capacity, selectivity and homogeneity of binding affinity. This would be 

beneficial for both sample preparation and biosensing. In addition, large scale synthesis 

routes should be explored to facilitate industrialization of MIP products. 

2. Rational design of MIP materials. The development of MIP-based products demands 

further progress on the understanding of molecular imprinting technology. Rational 

design approaches such as molecular modelling would aid the design and efficient 

selection of new functional and cross-linker monomers, thereby shortening the 

development time and expedite the synthesis process. This is extremely useful when 

imprinting MIPs for templates where their production is challenging and costly.   

3. Development of MIPs for macrobiomolecules. So far most imprinting targets are small 

molecules, such as herbicides, additives, and metal ions. However, bacteria or large 

proteins such as toxins and hormones are also important targets in food analysis. The 

development of tailor-made MIPs for the detection of bacteria and proteins in aqueous 

solutions will be one important research direction.  
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4. Development of more advanced and functional materials. The exploitation of new 

monomers with responsive functionalities and the introduction of new polymerization 

techniques would result in the development of novel sensor devices for different food 

analytes.  

5. Incorporation of MIPs into microfluidic devices. With the recent development of 

microsystems, lab-on-a-chip technology and microfluidics have been utilized as a 

powerful tool where different analytical steps can be integrated on a single device. Taking 

the advantage of the fact that MIPs are fully compatible with lab-on-a-chip and 

nanotechnology, it is possible to use MIPs for both sample preparation and detection on 

the same microfluidic platform. Such an integrated device can allow for on-site and fast 

detection, which would be a big breakthrough in food analysis.  

Acknowledgements 

 

This work was financially supported by the Villum Fonden, Denmark, project No. 13153, and 

the European Union’s Horizon 2020 research and innovation program, grant agreement No. 

687697. 

 

References 

 

Abdin, M.J., Altintas, Z., Tothill, I.E., 2015. Biosens. Bioelectron. 67, 177–183. 
doi:10.1016/j.bios.2014.08.009 

Aguilar-García, D., Ochoa-Terán, A., Paraguay-Delgado, F., Díaz-García, M.E., Pina-Luis, 
G., 2016. J. Mater. Sci. 51, 5651–5663. doi:10.1007/s10853-016-9867-x 

Altintas, Z., Abdin, M.J., Tothill, A.M., Karim, K., Tothill, I.E., 2016. Analytica Chimica 
Acta  Anal. Chim. Acta 935, 239–248. doi:10.1016/j.aca.2016.06.013 

Altintas, Z., Gittens, M., Guerreiro, A., Thompson, K.-A., Walker, J., Piletsky, S., Tothill, 
I.E., 2015a.  Anal. Chem. 87, 6801–7. doi:10.1021/acs.analchem.5b00989 

Altintas, Z., Guerreiro, A., Piletsky, S.A., Tothill, I.E., 2015b. Sensors Actuators, B Chem. 
213, 305–313. doi:10.1016/j.snb.2015.02.043 



27 
 

Ambrosini, S., Beyazit, S., Haupt, K., Tse Sum Bui, B., 2013. Chem. Commun. 49, 6746–
6748. doi:10.1039/c3cc41701h 

Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., 2015. TrAC Trends Anal. 
Chem. 80, 655–667. doi:http://dx.doi.org/10.1016/j.trac.2015.08.014 

Anene, A., Hosni, K., Chevalier, Y., Kalfat, R., Hbaieb, S., 2016. Food Control 70, 90–95. 
doi:http://dx.doi.org/10.1016/j.trac.2015.08.014 

Anirudhan, T.S., Alexander, S., 2015. RSC Adv. 5, 96840–96850. 
doi:10.1039/C5RA17885A 

Arthur, C.L., Pawliszyn, J., 1990. Anal. Chem. 62, 2145–2148. 
doi:http://dx.doi.org/10.1021/ac00218a019 

Ashley, J., Shukor, Y., Tothill, S., 2016. Analyst 1–28. doi:10.1039/C6AN01155A 

Atlabachew, M., Torto, N., Chandravanshi, B.S., Redi-Abshiro, M., Chigome, S., Mothibedi, 
K., Combrinck, S., 2016. Biomed. Chromatogr. 30, 1007–15. doi:10.1002/bmc.3643 

Baggiani, C., Anfossi, L., Giovannoli, C., 2007. Anal. Chim. Acta 591, 29–39. 
doi:http://dx.doi.org/10.1016/j.aca.2007.01.056 

Bantz, K.C., Meyer, A.F., Wittenberg, N.J., Im, H., Kurtuluş, O., Lee, S.H., Lindquist, N.C., 
Oh, S.-H., Haynes, C.L., 2011. Phys. Chem. Chem. Phys. 13, 11551–67. 
doi:10.1039/c0cp01841d 

Benito-Peña, E., Moreno-Bondi, M.C., Aparicio, S., Orellana, G., Cederfur, J., Kempe, M., 
2006.  Anal. Chem. 78, 2019–2027. doi:10.1021/ac051939b 

Biotage, 2016. Biotage - MIPs - Molecularly Imprinted Polymers [WWW Document]. URL 
http://www.biotage.com/product-page/mips---molecularly-imprinted-polymers 

Bunyakul, N., Baeumner, A.J., 2015. Sensors (Basel). 15, 547–564. doi:10.3390/s150100547 

Caballero, B., Trugo, L., Finglas, P.M., 2003. Encyclopedia of Food Science and Nutrition. 
Wiley. 

Cacho, C., Turiel, E., Martín-Esteban, A., Pérez-Conde, C., Cámara, C., 2003. Anal. Bioanal. 
Chem. 376, 491–6. doi:10.1007/s00216-003-1915-0 

Canfarotta, F., Poma, A., Guerreiro, A., Piletsky, S., 2016. Nat. Protoc. 11, 443–55. 
doi:10.1038/nprot.2016.030 

Carro-Diaz, A.M., Lorenzo-Ferreira, R.A., 2010. Anal. Chim. Acta 668, 87–99. 
doi:10.1016/j.aca.2010.04.019 

Chauhan, R., Singh, J., Sachdev, T., Basu, T., Malhotra, B.D., 2016. Biosens. Bioelectron. 
81, 532–545. doi:10.1016/j.bios.2016.03.004 

Chen, C., Zhang, X., Long, Z., Zhang, J., Zheng, C., 2012. Microchim. Acta 178, 293–299. 
doi:10.1007/s00604-012-0833-2 

Chen, L., Li, B., 2012. Anal. Methods 4, 2613. doi:10.1039/c2ay25354b 



28 
 

Chen, L., Liu, J., Zeng, Q., Wang, H., Yu, A., Zhang, H., Ding, L., 2009. J. Chromatogr. A 
1216, 3710–9. doi:10.1016/j.chroma.2009.02.044 

Chen, L., Wang, X., Lu, W., Wu, X., Li, J., 2016. Chem. Soc. Rev. 45. 
doi:10.1039/C6CS00061D 

Chen, L., Xu, S., Li, J., 2011. Chem. Soc. Rev. 40, 2922–2942. doi:10.1039/c0cs00084a 

Cieplak, M., Kutner, W., 2016. Trends Biotechnol. 34, 922–941. 
doi:10.1016/j.tibtech.2016.05.011 

Curk, T., Dobnikar, J., Frenkel, D., 2016. Soft Matter 12, 35–44. doi:10.1039/c5sm02144h 

Dai, J., Zhang, Y., Pan, M., Kong, L., Wang, S., 2014. J. Agric. Food Chem. 62, 5269–5274. 
doi:10.1021/jf501092u 

Del Carmen Alcudia-León, M., Lucena, R., Cárdenas, S., Valcárcel, M., 2016. J. 
Chromatogr. A. 1455, 57–64. doi:10.1016/j.chroma.2016.05.088 

Deng, J., Ju, S., Liu, Y., Xiao, N., Xie, J., Zhao, H., 2015. Food Anal. Methods 8, 2437–
2446. doi:10.1007/s12161-015-0134-6 

Díaz-Alvarez, M., Turiel, E., Martín-Esteban, A., 2009. Anal. Bioanal. Chem. 393, 899–905. 
doi:http://dx.doi.org/10.1016/j.chroma.2013.12.083 

Djozan, D., Ebrahimi, B., Mahkam, M., Farajzadeh, M.A., 2010. Anal. Chim. Acta 674, 40–
8. doi:http://dx.doi.org/10.1016/j.aca.2010.06.006 

Eren, T., Atar, N., Yola, M.L., Karimi-Maleh, H., 2015. Food Chem. 185, 430–436. 
doi:10.1016/j.foodchem.2015.03.153 

Fang, G., Wang, H., Yang, Y., Liu, G., Wang, S., 2016. Sensors Actuators, B Chem. 237, 
239–246. doi:10.1016/j.snb.2016.06.099 

Farre, M., Barcelo, D., 2007. Chapter 16 - Sensor, biosensors and MIP based sensors, in: 
Pico, Y., Food Toxicants Analysis, Elsevier, Amsterdam, 599-636. doi:10.1016/B978-
044452843-8/50017-1 

Feng, S., Hu Y., Ma, L., Lu, X., 2017. Sensors and Actuators, B: Chemical, 241, 750-757. 
doi: 10.1016/j.snb.2016.10.131 

Feng, S., Lu X., 2015. Lipid Technology, 27 , 14-17. doi: 10.1002/lite.201400073 

Gao, F., Grant, E., Lu, X., 2015a. Anal. Chim. Acta 901, 68–75. 
doi:10.1016/j.aca.2015.10.025 

Gao, F., Hu, Y., Chen, D., Li-Chan, E.C.Y., Grant, E., Lu, X., 2015b. Talanta 143, 344–352. 
doi:10.1016/j.talanta.2015.05.003 

Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A. V, Peng, D., Zboril, R., 
Varma, R.S., 2015.  Chem. Soc. Rev. 44, 7540–7590. doi:10.1039/C5CS00343A 

Ge, L., Wang, S., Yu, J., Li, N., Ge, S., Yan, M., 2013. Adv. Funct. Mater. 23, 3115–3123. 
doi:10.1002/adfm.201202785 



29 
 

Han, S., Li, X., Wang, Y., Su, C., 2014. Anal. Methods. 6, 2855. doi:10.1039/c3ay41924j 

Harz, S., Schimmelpfennig, M., Tse Sum Bui, B., Marchyk, N., Haupt, K., Feller, K.H., 
2011.  Eng. Life Sci. 11, 559–565. doi:10.1002/elsc.201000222 

Hawari, H.F., Samsudin, N.M., Shakaff, A.Y.M., Wahab, Y., Hashim, U., Zakaria, A., Ghani, 
S.A., Ahmad, M.N., 2013. Sensors Actuators, B Chem. 187, 434–444. 
doi:10.1016/j.snb.2013.01.045 

He, C., Long, Y., Pan, J., Li, K., Liu, F., 2007. J. Biochem. Biophys. Methods 70, 133–50. 
doi:http://dx.doi.org/10.1016/j.jbbm.2006.07.005 

Hoshino, Y., Kodama, T., Okahata, Y., Shea, K.J., 2008. J. Am. Chem. Soc. 130, 15242–
15243. doi:10.1021/ja8062875 

Hu, X., Cai, Q., Fan, Y., Ye, T., Cao, Y., Guo, C., 2012. J. Chromatogr. A 1219, 39–46. 
doi:http://dx.doi.org/10.1016/j.chroma.2011.10.089 

Hu, X., Wu, X., Yang, F., Wang, Q., He, C., Liu, S., 2016. Talanta 148, 29–36. 
doi:http://dx.doi.org/10.1016/j.talanta.2015.10.057 

Hu, Y., Feng, S., Gao, F., Li-Chan, E.C.Y., Grant, E., Lu, X., 2015. Food Chem. 176, 123–
129. doi:10.1016/j.foodchem.2014.12.051 

Hu, Y., Lu, X., 2016. J. Food Sci. 81, N1272–N1280. doi:10.1111/1750-3841.13283 

Hu, Y., Wang, Y., Chen, X., Hu, Y., Li, G., 2010. Talanta 80, 2099–105. 
doi:http://dx.doi.org/10.1016/j.talanta.2009.11.015 

Iqbal, N., Mustafa, G., Rehman, A., Biedermann, A., Najafi, B., Lieberzeit, P.A., Dickert, 
F.L., 2010. Sensors 10, 6361–6376. doi:10.3390/s100706361 

Irshad, M., Iqbal, N., Mujahid, A., Afzal, A., Hussain, T., Sharif, A., Ahmad, E., Athar, M., 
2013. 3, 615–637. doi:10.3390/nano3040615 

Jiang, H., Jiang, D., Shao, J., Sun, X., 2016. Biosens. Bioelectron. 75, 411–419. 
doi:10.1016/j.bios.2015.07.045 

Jing, L., Zhang, Q., Wang, Y., Liu, X., Wei, T., 2016. S Anal. Methods 8, 2349–2356. 
doi:10.1039/C6AY00028B 

Karaseva, N., Ermolaeva, T., Mizaikoff, B., 2016. Sensors Actuators, B Chem. 225, 199–208. 
doi:10.1016/j.snb.2015.11.045 

Khan, M.S., Wate, P.S., Krupadam, R.J., 2012. C J. Mol. Model. 18, 1969–1981. 
doi:10.1007/s00894-011-1218-x 

Khan, S., Bhatia, T., Trivedi, P., Satyanarayana, G.N. V, Mandrah, K., Saxena, P.N., 
Mudiam, M.K.R., Roy, S.K., 2016. Food Chem. 199, 870–5. 
doi:http://dx.doi.org/10.1016/j.foodchem.2015.12.091 

Koesdjojo, M.T., Rasmussen, H.T., Fermier, A.M., Patel, P., Remcho, V.T., 2007. J. Comb. 
Chem. 9, 929–934. doi:10.1021/cc0700243 

Kryscio, D.R., Shi, Y., Ren, P., Peppas, N.A., 2011. Ind. Eng. Chem. Res. 50, 13877–13884. 



30 
 

doi:10.1021/ie201858n 

Lasáková, M., Jandera, P., 2009. J. Sep. Sci. 32, 799–812. doi:10.1002/jssc.200800506 

Lautner, G., Kaev, J., Reut, J., Öpik, A., Rappich, J., Syritski, V., Gyurcsányi, R.E., 2011. 
Adv. Funct. Mater. 21, 591–597. doi:10.1002/adfm.201001753 

Lejeune, J., Spivak, D.A., 2009. Biosens. Bioelectron. 25, 604–8. 
doi:10.1016/j.bios.2009.02.014 

Li, C., Ma, Y., Niu, H., Zhang, H., 2015a. ACS Appl. Mater. Interfaces 7, 27340–27350. 
doi:10.1021/acsami.5b08868 

Li, C., Ma, Y., Niu, H., Zhang, H., 2015b. ACS Appl. Mater. Interfaces 7, 27340–50. 
doi:10.1021/acsami.5b08868 

Li, H., Wang, L., 2013. ACS Appl Mater Interfaces 5, 10502–10509. 
doi:10.1021/am4020605 

Li, H., Guan, H., Dai, H., Tong, Y., Zhao, X., Qi, W., Majeed, S., Xu, G., 2012. Talanta. 99, 
811-815. doi:10.1016/j.talanta.2012.07.033 

Li, J., Li, Y., Zhang, Y., Wei, G., 2012. Anal. Chem. 84, 1888–1893. doi:10.1021/ac2026817 

Li, Y., Li, Y., Huang, L., Bin, Q., Lin, Z., Yang, H., Cai, Z., Chen, G., 2013. J. Mater. Chem. 
B 1, 1256. doi:10.1039/c2tb00398h 

Li, Z., Quan, H., Gong, C., Yang, Y., Tang, Q., Wei, Y., Ma, X., Lam, H., 2015. Food Chem. 
172, 56–62. doi:10.1016/j.foodchem.2014.09.027 

Lin, C.I., Joseph, A.K., Chang, C.K., Lee, Y. Der, 2004. J. Chromatogr. A 1027, 259–262. 
doi:10.1016/j.chroma.2003.10.037 

Liu, H.L., Fang, G.Z., Li, C.M., Pan, M.F., Liu, C.C., Fan, C., Wang, S., 2012. J. Mater. 
Chem. 22, 19882–19887. doi:10.1039/c2jm33522k 

Liu, X., Lei, J., 2012. Polym. Eng. Sci. 52, 2099–2105. doi:10.1002/pen.23159 

Liu, Y., Liu, L., He, Y., He, Q., Ma, H., 2016. Biosens. Bioelectron. 77, 886–893. 
doi:10.1016/j.bios.2015.10.024 

Lu, H., Xu, S., 2015. Talanta 144, 303–11. doi:10.1016/j.talanta.2015.06.017 

Lu, W., Xue, M., Xu, Z., Dong, X., Xue, F., Wang, F., Wang, Q., Meng, Z., 2015. Curr. Org. 
Chem. 19, 62–71. doi:10.2174/1385272819666141201215551 

Ma, Y., Pan, G., Zhang, Y., Guo, X., Zhang, H., 2013. J. Mol. Recognit. 26, 240–51. 
doi:10.1002/jmr.2267 

Malitesta, C., Mazzotta, E., Picca, R.A., Poma, A., Chianella, I., Piletsky, S.A., 2012. Anal. 
Bioanal. Chem. 402, 1827–1846. doi:10.1007/s00216-011-5405-5 

Matsui, J., Takayose, M., Akamatsu, K., Nawafune, H., Tamaki, K., Sugimoto, N., 2009. 
Analyst 134, 80–86. doi:10.1039/b803350a 

Muzyka, K., Karim, K., Guerreiro, A., Poma, A., Piletsky, S., 2014. Nanoscale Res. Lett. 9, 



31 
 

154–160. doi:10.1186/1556-276X-9-154 

Narsaiah, K., Jha, S.N., Bhardwaj, R., Sharma, R., Kumar, R., 2012. J. Food Sci. Technol. 49, 
383–406. doi:10.1007/s13197-011-0437-6 

Nicholls, I.A., Chavan, S., Golker, K., Karlsson, B.C.G., Olsson, G.D., Rosengren, A.M., 
Suriyanarayanan, S., Wiklander, J.G., 2015. Springer International Publishing, pp. 25–
50. doi:10.1007/10_2015_318 

Otles, S., Yalcin, B., 2012. Review on the application of nanobiosensors in food analysis. 
Acta Sci. Pol. Technol. Aliment. 11, 7–18. 

Pardieu, E., Cheap, H., Vedrine, C., Lazerges, M., Lattach, Y., Garnier, F., Remita, S., 
Pernelle, C., 2009. Anal. Chim. Acta 649, 236–245. doi:10.1016/j.aca.2009.07.029 

Peng, H., Wang, S., Zhang, Z., Xiong, H., Li, J., Chen, L., Li, Y., 2012. J. Agric. Food Chem. 
60, 1921–1928. doi:10.1021/jf204736p 

Pérez-Moral, N., Mayes, A.G., 2007. Macromol. Rapid Commun. 28, 2170–2175. 
doi:10.1002/marc.200700532 

Pozo-Bayón, Pueyo, E., Martín-Alvarez, P.J., Polo, M.C., 2001. J. Chromatogr. A 922, 267–
75. doi:http://dx.doi.org/10.1016/S0021-9673(01)00966-9 

Rodriguez-Lorenzo, L., Fabris, L., Alvarez-Puebla, R.A., 2012. Anal. Chim. Acta 745, 10–
23. doi:10.1016/j.aca.2012.08.003 

Sabik, H., Fortin, J., Martin, N., 2012. Food Chem. 133, 1006–1010. 
doi:http://dx.doi.org/10.1016/j.foodchem.2011.07.132 

Salvador, J.P., Estevez, M.C., Marco, M.P., Sanchez-Baeza, F., 2007. Anal. Lett. 40, 1294–
1306. doi:10.1080/00032710701326668 

Saraji, M., Rezaei, B., Boroujeni, M.K., Bidgoli, A.A.H., 2013. J. Chromatogr. A 1279, 20–6. 
doi:http://dx.doi.org/10.1016/j.chroma.2013.01.017 

Schweitz, L., Andersson, L.I., Nilsson, S., 2002. Analyst 127, 22–8. doi:10.1039/B105104K 

Sharma, P.S., Pietrzyk-Le, A., D’Souza, F., Kutner, W., 2012. Anal. Bioanal. Chem. 402, 
3177–3204. doi:10.1007/s00216-011-5696-6 

Sigma-Aldrich, 2016. SupelMIP Molecularly Imprinted Polymer SPE Cartridges [WWW 
Document]. URL http://www.sigmaaldrich.com/analytical-chromatography/sample-
preparation/spe/supelmip.html 

Song, X., Xu, S., Chen, L., Wei, Y., Xiong, H., 2014. J. Appl. Polym. Sci. 131, 40766. 
doi:10.1002/app.40766 

Sorouraddin, S.M., Afshar Mogaddam, M.R., 2016. J. Iran. Chem. Soc. 13, 1093–1104. 
doi:10.1007/s13738-016-0823-0 

Suryanarayanan, V., Wu, C.-T., Ho, K.-C., 2010. Electroanalysis 22, 1795–1811. 
doi:10.1002/elan.200900616 

The Huy, B., Seo, M.H., Zhang, X., Lee, Y.I., 2014. Biosens. Bioelectron. 57, 310–316. 



32 
 

doi:10.1016/j.bios.2014.02.041 

Toshifumi Takeuchi, Daigo Fukuma, A., Matsui, J., 1998. Anal. Chem. 71, 285–290. 
doi:10.1021/AC980858V 

Turco, A., Corvaglia, S., Mazzotta, E., 2015. Biosens. Bioelectron. 63, 240–247. 
doi:10.1016/j.bios.2014.07.045 

Turiel, E., Martín-Esteban, A., Carro-Diaz, A.M., Lorenzo-Ferreira, R.A., 2010. Anal. Chim. 
Acta 668, 87–99. doi:10.1016/j.aca.2010.04.019 

Uzun, L., Turner, A.P.F., 2016. Biosens. Bioelectron. 76, 131–144. 
doi:10.1016/j.bios.2015.07.013 

Uzuriaga-Sánchez, R.J., Khan, S., Wong, A., Picasso, G., Pividori, M.I., Sotomayor, 
M.D.P.T., 2016. Food Chem. 190, 460–467. doi:10.1016/j.foodchem.2015.05.129 

Vaihinger, D., Landfester, K., Kra, I., Brunner, H., Günter E. M. Tovar, 2002. Macromol. 
Chem. Phys. 203, 1965–1973. doi:10.1002/1521-3935(200209)203:13<1965::AID-
MACP1965>3.0.CO;2-C 

Vas, G., Vékey, K., 2004. J. Mass Spectrom. 39, 233–54. doi:10.1002/jms.606 

Wackerlig, J., Lieberzeit, P.A., 2015. Sensors Actuators B Chem. 207, 144–157. 
doi:10.1016/j.snb.2014.09.094 

Wang, A., Lu, H., Xu, S., 2016. 64, 5110–5116. doi:10.1021/acs.jafc.6b01197 

Wang, H., Yao, S., Liu, Y., Wei, S., Su, J., Hu, G., 2017. M Biosens. Bioelectron. 87, 417–
421. doi:10.1016/j.bios.2016.08.092 

Wang, X., Kang, Q., Shen, D., Zhang, Z., Li, J., Chen, L., 2014. Talanta 124, 7–13. 
doi:10.1016/j.talanta.2014.02.040 

Wang, X., Tang, Q., Wang, Q., Qiao, X., Xu, Z., 2014. J. Sci. Food Agric. 94, 1409–15. 
doi:10.1002/jsfa.6429 

Wang, Y.-L., Gao, Y.-L., Wang, P.-P., Shang, H., Pan, S.-Y., Li, X.-J., 2013. Talanta 115, 
920–7. doi:10.1016/j.talanta.2013.06.056 

Wei, S., Liu, Y., Yan, Z., Liu, L., 2015. RSC Adv. 5, 20951–20960. 
doi:10.1039/C4RA16784H 

Weng, C.H., Yeh, W.M., Ho, K.C., Lee, G. Bin, 2007. Sensors Actuators, B Chem. 121, 576–
582. doi:10.1016/j.snb.2006.04.111 

Xu, C.-H., Chen, G.-S., Xiong, Z.-H., Fan, Y.-X., Wang, X.-C., Liu, Y., 2016. TrAC Trends 
Anal. Chem. 80, 12–29. doi:10.1016/j.trac.2016.02.022 

Xu, J., Ambrosini, S., Tamahkar, E., Rossi, C., Haupt, K., Bui, B.T.S., 2015. 
Biomacromolecules 17, 345–353. doi:10.1021/acs.biomac.5b01454 

Xu, Z., Fang, G., Wang, S., 2010. Food Chem. 119, 845–850. 
doi:http://dx.doi.org/10.1016/j.foodchem.2009.08.047 



33 
 

Xue, J.Q., Li, D.W., Qu, L.L., Long, Y.T., 2013. Anal. Chim. Acta 777, 57–62. 
doi:10.1016/j.aca.2013.03.037 

Yang, L., Yang, J., Xu, B., Zhao, F., Zeng, B., 2016. Talanta 161, 413–418. 
doi:10.1016/j.talanta.2016.08.080 

Yao, G., Liang, R., Huang, C., Wang, Y., Qiu, J., 2013. Anal. Chem. 85, 11944–51. 
doi:10.1021/ac402848x 

Yao, T., Gu, X., Li, T., Li, J., Li, J., Zhao, Z., Wang, J., Qin, Y., She, Y., 2016. Biosens. 
Bioelectron. 75, 96–100. doi:10.1016/j.bios.2015.08.027 

Ye, L., Cormack, P.A.G., Mosbach, K., 1999. Anal. Commun. 36, 35–38. 
doi:10.1039/a809014i 

Yu, D., Zeng, Y., Qi, Y., Zhou, T., Shi, G., 2012. Biosens. Bioelectron. 38, 270–277. 
doi:10.1016/j.bios.2012.05.045 

Zhang, J., Ni, Y., Wang, L., Ma, J., Zhang, Z., 2015. Biomed. Chromatogr. 29, 1267–73. 
doi:http://dx.doi.org/10.1016/j.foodchem.2009.08.047 

Zhang, M., Zeng, J., Wang, Y., Chen, X., 2013. J. Chromatogr. Sci. 51, 577–86. 
doi:10.1093/chromsci/bms260 

Zhao,  H., Wang, H., Quan, X., Tan, F., 2013 Procedia. Environ. Sci. 18, 249-257. 
doi:10.1016/j.proenv.2013.04.032  

Zhao, N., Chen, C., zhou, J., 2012. Sensors Actuators B Chem. 166, 473–479. 
doi:10.1016/j.snb.2012.02.089 

Zhao, T., Guan, X., Tang, W., Ma, Y., Zhang, H., 2015. Anal. Chim. Acta 853, 668–75. 
doi:10.1016/j.aca.2014.10.019 

Zhao, Y., Ma, Y., Li, H., Wang, L., 2012. Anal. Chem. 84, 386–395. doi:10.1021/ac202735v 

 

 

 

 

 

 

 

 

 

 

 



34 
 

Figure Captions 

 

Figure 1. Overview of MIP imprinting. 
 
Figure 2. Schematic representation of the preparation of magnetic molecular imprinted 
polymer. (1) Synthesis of magnetic core particle; (2) Silanization by tetraethoxy silane 
(TEOS); (3) Surface modification with 3-N-morpholinopropanesulfonic acid (MOPS); (4) 
Encapsulation and polymerization of MIP layer; (5) Template removal. 
 
 
Figure 3. Schematic representation of integration of MIPs in various types of biosensors. 
(Adapted from Lu et al., 2015). 

 

 

Table Captions 

Table 1. Summary of the applications of MIP-SPE and MIP-SPME in food analysis. 
 
Table 2. Summary of the applications of MIPs as biosensor receptors. 
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Tables 
 
Table 1. 
 
Analyte  Preparation 

method 
sample LOD Recovery Reference 

E1, betaE2, E3 Sol–gel reaction Water 86-430 ng 
L−1 

85-95% (Lu and Xu, 2015) 

Estradiol Copolymerization 
of monomers on 
hollow particles 

milk 4600 ng 
L−1 

94.8-97% (Xiaoyan Wang et al., 
2014) 

Triazines  Thermal 
polymerization of 
microparticles 

Grape juice 0.2-7 ng 
mL−1 

92-98% (Sorouraddin and 
Afshar Mogaddam, 
2016) 

Patulin Polymerization on 
the substrate 

apple juice 8.6 µg L−1 82-98% (Anene et al., 2016) 

Bisphenol A Hybrid imprinting Water 0.3 ng 
mL−1 

97.3–106.0% (Hu et al., 2016) 

Dichlorovos thermal-initiated 
polymerization 

Cucumber, 
lettuce 

94.8 ng 
L−1 

82.1-94.0% (Xu et al., 2010) 

Aflatoxin B1 Emulsification Beer, 
peanut oil 

0.05 µg 
kg−1 

83-96% (Wei et al., 2015) 

Guanine Thermal 
polymerization 

Beer ----- Above 97% (Z. Li et al., 2015) 

Fenarimol precipitation 
polymerization 

Fruit 0.03-0.06 
μg mL−1 

91.16–
99.52% 

(Khan et al., 2016) 

Trichlorfon precipitation 
polymerization 

Vegetables 4.2 μg g−1 88.5–94.2%. (Xilong Wang et al., 
2014) 

Organophosphorus 
pesticides 

electrochemical 
deposition 

Water, 
cucumber, 
lettuce 

1.5–10 ng 
L−1 

80–109% (Saraji et al., 2013) 

Sulfamethazine Thermal 
polymerization 

milk 1.1 μg L−1 89–110% (Chen et al., 2012) 

17beta-estradiol Thermal 
polymerization on 
silica fiber 

fish and 
shrimp 

0.98–
2.39µg 
L−1 

Above 80% (Hu et al., 2010) 

Triazinez Photochemical 
polymerization 

Water, rice, 
onion 

Less than 
85 ng 
mL−1 

Above 85% (Djozan et al., 2010) 
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Table 2.  
 

Quartz Crystal Microbalance (QCM), Surface Plasmon Resonance (SPR), Differential Pulse Voltammetry 
(DPV), Cyclic Voltammetry (CV),  Surface Enhanced Raman Spectroscopy (SERS) 

Biosensor 
transducer 

Analyte Food 
sample 

Sensor surface 
preparation 
method 

LOD Reference 

QCM Patulin Apple juice,  
pear juice 
and  
Haw Flakes 

TEOS 
imprinting 

3.1 ng ml-1 (Fang et al., 
2016) 

QCM Penicillin G, 
ampicillin 

Chicken 
meat 

Suspension 
polymerization 

0.04, 0.09 µg 
ml-1  

(Karaseva et 
al., 2016) 

SPR Ractopamine n.d Hybrid 
nanofilm of 
MIP/gold 
nanoparticles 
and reduced 
graphene oxide 

5 ng ml-1 (Yao et al., 
2016) 

Electrochemical 
(CV) 

Olaquindox Pork and 
Fish 

Electrochemical 
imprinting 

2.7 nM (Wang et al., 
2017) 

Electrochemical 
(DPV) 

N-acyl-homoserine-
lactones 
 

n.d Core-shell 
imprinting   

0.8 nmol L-1 (Jiang et al., 
2016) 

Electrochemical  
(CV and DPV) 

Oxytetracycline milk Electrochemical 
imprinting 

230 fmol L-1 (Li et al., 
2012) 

SERS Melamine Whole milk Bulk 
polymerisation 

12 µmol-1 (Hu et al., 
2015) 

Fluorescence Melamine and 
clenbuterol 

Milk and 
liver  

Core-shell 
imprinting  

0.4 µmol L-1 
and 0.6 µmol 
L-1 

(The Huy et 
al., 2014) 

Fluorescence Polycyclic aromatic 
hydrocarbons  

Milk Core-shell 
imprinting  

3.64ng ml-1 (Li and Wang, 
2013) 


