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Abstract 
 
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the 

outbreak of foodborne diseases, known as serious threats to human health. Conventional 

bacterial culturing methods for foodborne pathogen detection are time consuming, 

laborious, and with poor pathogen diagnosis competences. This has prompted 

researchers to call the current status of detection approaches into question and leverage 

new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on 

incorporating all the steps from sample preparation to detection in miniaturized devices for 

online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost 

effective manner. Lab on chip is a blooming area in diagnosis, which exploits different 

mechanical and biological techniques to detect very low concentrations of pathogens in 

food samples. This is achieved through streamlining the sample handling and 

concentrating procedures, which will subsequently reduce human errors and enhance the 

accuracy of the sensing methods. Integration of sample preparation techniques into these 

devices can effectively minimize the impact of complex food matrix on pathogen diagnosis 

and improve the limit of detections. Integration of pathogen capturing bio-receptors on 

microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh 

chemical and physical conditions, offering a great commercial benefit to the food-

manufacturing sector. This article reviews recent advances in current state-of-the-art of 

sample preparation and concentration from food matrices with focus on bacterial capturing 

methods and sensing technologies, along with their advantages and limitations when 

integrated into microfluidic devices for online rapid detection of pathogens in foods and 

food production line. 

 
 
 
 
Keywords: Microfluidic Device, Foodborne Pathogen, Lab-on-a-Chip, Point of Care 

Detection, Optical Biosensor, Electrochemical Biosensor, DNA Amplification, 

Immunological Detection, Acoustophoresis, Magnetophoresis 
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1. Introduction 
 

Foodborne diseases, caused by the consumption of foods contaminated with pathogens 

or their toxins, are one of the major burdens to public health, causing a significant 

impediment to socioeconomic development worldwide (Newman et al., 2015). The use of 

unhygienic water in food processing, poor food handling, inadequate food storage 

infrastructure, and poorly enforced regulatory standards, are the primary contributing 

factors for the outbreak of foodborne diseases. According to World Health Organization 

(WHO), around 600 million illnesses and 420,000 deaths in 2010 were attributed to 

diseases associated with various pathogens in food products (WHO, 2015). The U.S. 

Public Health Service has identified the main microorganisms responsible for foodborne 

diseases, listed in Table 1 (CDC, 2017; IFSAC, 2017; Scallan et al., 2015). Among these 

pathogens, Norovirus is responsible for 37% of viral foodborne outbreaks and Salmonella 

causes 34% of bacterial foodborne outbreaks (CDC, 2017). To cope with this global 

challenge and provide safe food for consumers, rapid detection of foodborne pathogens is 

needed. Over the last decades, great effort has been made for rapid detection of 

foodborne pathogens in food samples. Nevertheless, two of the most challenging issues, 

including i) limitations of sample preparation from food matrix and ii) sensitivity of detection 

methods still remained unsolved. In addition to conventional bacterial culturing, a variety of 

other approaches, such as nucleic acid-based (e.g., PCR, LAMP, NASBA, RPA, and 

Helicase), immunological-based (e.g., LFD, ELISA, and ELFA), and biosensor-based (e.g., 

optical, electrochemical, and mass-based biosensors) methods are used for rapid 

detection of foodborne pathogen in food samples (Law et al., 2014; Mandal et al., 2011; 

Zhao et al., 2014). The working principles of these methods are well known and have been 

exceedingly employed to quantify foodborne pathogens with high sensitivity and specificity 
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(Law et al., 2015; Zhao et al., 2014). Due to the complexity of food matrix, these methods 

often require expensive equipment, well-trained operators, and labour-intensive 

processing steps, which are not suitable for online testing. Therefore, simple, rapid, 

accurate, inexpensive, real-time, portable, and easy-to-use methods are needed for on 

demand detection of pathogens in food matrices. This will require further advance and 

adaptation of new revolutionary technologies to facile rapid diagnosis of foodborne 

pathogens. In recent years, intensive researches on microfluidic systems have generated 

powerful tools for diagnostic applications. These progresses are achieved due to 

advantages associated with miniaturization, i.e. improved sensitivity and specificity, 

automation, portability, versatility in design, multiple and parallel sample detection, minimal 

handling of hazardous materials, and time and cost savings (Kumar et al., 2013; Lei, 2012; 

Tasoglu et al., 2013). Additionally, all analytical processes, such as sample pre-treatment, 

separation, chemical reactions, and real-time quantification can be integrated into a single 

microfluidic platform for at site testing applications (Wang et al., 2015). Several microfluidic 

platforms have been reported for this purpose using various techniques (Duarte et al., 

2013; Lei, 2012; Mairhofer et al., 2009; Tasoglu et al., 2013). For example, a prototype of 

nano-porous silicon sensor array, integrated on a microfluidic platform, was used for 

sensitive, rapid and simultaneous detection of multi-pathogens (Tan et al., 2011). 

However, microfluidic-based methods for the detection of bacterial pathogens in foods are 

still challenging due to the complex matrices of the food samples and limitations related to 

the integration of different crucial steps, such as sample pre-treatment, assay operations 

and detection on a single microfluidic chip (Kim et al., 2014). In addition, the requirement 

of small volume of sample in microfluidic channels might render certain hurdles in terms of 

desirable sensitivity, selectivity, and stability of the microfluidics sensors. Attaining 
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desirable physico-mechanical properties along with considerations regarding the dominant 

impact of surface forces, sample transition and integration of efficient recognition 

molecules on the micro-scaled platform are other challenging issues for the development 

of such devices (Foudeh et al., 2012). Many strategies, such as gravitational, electrical, 

magnetic, acoustic, affinity chemistry, hydrodynamic, etc., have been developed to 

alleviate unsolved issues related to rapid separation, enrichment and detection of 

foodborne pathogens by microfluidic devices (Foudeh et al., 2012; Mairhofer et al., 2009; 

P. K. Mandal et al., 2011; Velusamy et al., 2010; Zaytseva et al., 2005; Zhao et al., 2014). 

Still, it is believed that this area of research is in its infancy and additional efforts are 

required to facilitate concentration and detection of pathogens. 

In this review, we provide a comprehensive discussion over recent developments in 

integrated-microfluidic systems for concentration and detection of foodborne pathogens in 

food samples and describe the most promising strategies that can cope with current 

shortcomings and challenges of rapid on line detection. We will first review the current 

advances in bio-recognition ligands applied for the capturing of the pathogens on the 

microfluidic devices. Next, we will provide an overview of recent achievements and 

strategies for sample preparation using microfluidic technology along with advantages and 

drawbacks of each method for day-to-day use on microfluidic devices. Current 

technologies used for the detection of pathogens will also be reviewed before discussing 

perspectives and outlook for microfluidic detection of foodborne pathogens. 
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Table 1. The most common pathogens involved in foodborne diseases (CDC, 2017; 

IFSAC, 2017; Scallan et al., 2015). 

Pathogens Relationship to foodborne diseases Main source 

Viral Norovirus The leading viral cause of diarrhoea 

Any food 
contaminated with this 
virus, including 
vegetables, fruits, 
meat., etc. 

Bacterial 

Salmonella 
One of the most common bacterial cause of 
diarrhoea and the most common cause of 
foodborne deaths 

Seeded vegetables, 
eggs, chicken, pork, 
beef, and fruits  

E. coli O157:H7 
Produces a deadly toxin that causes severe 
cramps, bloody diarrhoea, renal failure, and 
vomiting 

Vegetable, raw crops 
(e.g., leafy 
vegetables) and beef 

Listeria 
monocytogenes 

The bacterium causes a serious disease (listeriosis) 
for pregnant women, newborns, and adults with a 
weakened immune system 

Fruits and dairy 

Campylobacter Common causes of bacterial diarrhoea 

Chicken, other 
seafood, seeded 
vegetables, vegetable 
row crops, and other 
meat/poultry 

Clostridium 
botulinum 

This strain secretes a toxin causing botulism, which 
can be fatal. 

Home-canned foods 
(e.g., green beans, 
corn, and beets), root 
and other 
underground 
vegetables 

Staphylococcus 
aureus 

The bacterium secretes a toxin that causes 
vomiting shortly after being ingested. 

Cooked foods high in 
protein (e.g., cooked 
ham, salads, bakery 
products, dairy 
products, chicken) 
that are held too long 
at room temperature 

Clostridium 
perfringens 

Produces a toxin in the intestine that causes illness 
Beef, poultry, gravies, 
and dried or pre-
cooked foods 

Parasitic 
Toxoplasma 
gondii 

Causing toxoplasmosis and central nervous system 
disorders (e.g., mental retardation and visual 
impairment in children) 

Raw and half-cooked 
pork 
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2. Bio-recognition ligands for foodborne pathogen detection on microfluidic devices  

It is a critical challenge to detect pathogens from a complex food matrix. A strategy 

used to address this issue is through highly specific interaction between surface antigenic 

biomarkers of pathogens and recognition ligands. These ligands can be used to 

concentrate and identify target pathogens on microfluidic devices. In the case of bacteria, 

there are a number of bacterial surface antigenic markers, such as virulence factors, 

adhesins, capsular polysaccharides, lipopolysaccharide (LPS), teichoic acids, surface 

glycoproteins, fimbriae, etc., that are employed for diagnostic purposes. The capsular 

polysaccharides are repeating units of oligosaccharides possessing unique structures for 

particular bacterial strains (Roberts, 1996). LPS, also known as endotoxins, are glycolipids 

on the outer surface membrane of Gram-negative bacteria (Alexander and Pfaller, 2006). 

Teichoic acids are generally found on the surface of Gram-positive bacteria as a cell wall 

component (Weidenmaier and Peschel, 2008) while surface glycoproteins can be found on 

the surface of both Gram-positive and Gram-negative bacteria (Flemming and Wingender, 

2010). In general, several different types of bio-recognition molecules, such as antibodies, 

peptides, aptamers or bacteriophages can be used for efficient pathogen capturing 

(Perumal and Hashim, 2014; Singh et al., 2014). Figure 1 gives an overview of available 

motifs on the surface of different pathogens as well as capturing agents that can be used 

for enrichment or concentration of foodborne pathogens on microfluidic devices.  
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Figure 1. Schematic overview of surface bio-recognition motifs of bacterial pathogens and 
ligands that can be used for capturing the bacteria. Carbohydrate-binding proteins, 
antibodies, aptamers, peptides, endolysin, and cardiolipin binding ligands are the main 
capturing agents, which have been investigated for enrichment or concentration of 
foodborne pathogens. The capturing mechanisms are illustrated for all the ligands. 
Depending on the surface properties of target pathogen, particular types of ligands can be 
used to capture pathogens.  
 
 
2.1. Antibodies 

High-affinity pathogen separation by specific interactions between antigens and their 

respective antibodies is a well-known mechanism most widely applied in microfluidic 

devices. Guan et al. (2010) reported the integration of glass beads, covalently immobilized 

with anti-E. coli O157:H7 antibody, in a microfluidic chip to detect E. coli O157:H7 at a 
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concentration range from 3.2×101 CFU/μl to 3.2×105 CFU/μl within 20 min. Integration of 

microbeads on miniaturized devices can solve the limitations regarding the low surface 

area of planar microchannels available for antibody-pathogen binding. This study 

demonstrated excellent reproducibility and stability, while being able to specifically and  

accurately detect the pathogenic bacteria in food samples. In another example, antibody 

modified magnetic nanoparticles were used for bacterial capturing in a circular microfluidic 

polydimethylsiloxane (PDMS) chip using permanent magnets, embedded beneath the 

microchannels for multiplexed detection of waterborne pathogens (Agrawal et al., 2012). 

Anti-E. coli antibody and anti-Salmonella typhimurium antibody were used for capturing the 

bacteria, while CdTe quantum dots (QDs) with two different fluorescent colours were used 

as detector probes conjugated to anti-E. coli and anti-Salmonella typhimurium (S. 

typhimurium) antibodies. This approach resulted in efficient capturing of bacteria and 

enhanced fluorescence signal, allowing simultaneous detection of pathogens with a limit of 

detection (LOD) of 103-107 CFU/ml in a 20-μl sample. Antibody-coated magnetic bead 

integrated with the centrifugal microfluidic device is also reported for capturing and 

detection of Salmonella in spiked milk samples (Kim et al., 2014). Through the combining 

of DNA extraction and isothermal Recombinase Polymerase Amplification (RPA) in a 

single centrifugal microfluidic device, Salmonella could be detected in milk within 30 min in 

a fully automated fashion with a detection limit of 102 CFU/ml. Bacterial capturing 

efficiencies of 90% and 43% were achieved in PBS when 102−104 CFU/ml and 10 CFU/ml 

of Salmonella were spiked, respectively. Salmonella spiked milk samples showed a 

relatively lower efficiency (<30%) due to the inhibiting effect of milk matrix on the binding of 

target pathogens to the antibodies. An antibody-integrated lab-on-a-chip (LOC) device is 

also reported for water borne pathogen detection using Immuno-Nucleic Acid Sequence 
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Based Amplification (NASBA) technique (Zhao et al., 2012). This device was able to detect 

E. coli and rotavirus at concentrations from 10-9 mol/L to 10-16 mol/L. An impedimetric-

microfluidic sensor has also been developed for the detection of S. typhimurium using 

monoclonal anti-Salmonella antibodies immobilized on a high-density interdigitated 

electrode array (Ghosh Dastider et al., 2015). One of the main features of this device is its 

capability to provide qualitative and quantitative results in 3 hours with a detection limit of 

3×103 CFU/ml, without any enrichment step. It is shown that the immobilization of 

antibodies on the interdigitated electrode array can significantly improve the impedance 

response (3 times) and increase the sensitivity by 10-fold, owing to increased number of 

target cells per unit volume in the detection region. Another novel aspect is the use of 

antibody mediated QD based sandwich fluorescence technique in a microfluidic chip. 

Wang et al. (2015) reported the integration of light-emitting diode-induced fluorescence 

detection (LIF) microsystem in a multichannel microfluidic chip for detecting of S. 

typhimurium in pork samples. Using this system, a detection limit of 37 CFU/ml was 

achieved and the sensitivity of the assay were improved when CdSe/ZnS QDs were used 

as fluorescent detecting markers. Despite all the advances of antibody mediated 

foodborne pathogen concentration and detection in microfluidic devices, a number of 

drawbacks, such as batch-to-batch variation, the possibility of cross-reactions between 

different target motifs, high cost, and poor chemical and physical stability of antibodies are 

known as hurdles that force scientists to study other alternative bio-recognition ligands 

(Sapsford et al., 2008). Table 2 represents detail information of some new advances in 

foodborne sample preparation using antibodies and other alternative ligands, which are 

discussed in the next sections. 
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Table 2. Examples of foodborne pathogen concentration using different capturing ligands. 

Target pathogen Capturing 
Ligand 

Sample type Limit of 
detection 
(LOD) 

Detection 
principle 

Reference 

E. coli Antibody 
immobilized on 
magnetic 
nanoparticle 
clusters 
(MNCs) 

Milk 10 CFU/ml in 
PBS 
100 CFU/ml in 
milk samples 

Absorbance and 
Luminescence 

(Law et al., 
2015) 

E. coli K12 Antibody 
immobilized on 
magnetic 
beads 

Milk 100 CFU/ml Amperometric 
sensor 

(Laczka et 
al., 2011) 

E. coli O157:H7 Antibody Water 1 CFU/ ml qPCR (Dharmasiri 
et al., 2010) 

E. coli O157:H7 
E. coli K12 

Antibody 
immobilized on 
latex 
microbeads 

Iceberg lettuce 10 CFU/ml Mie light 
scattering 
principle 

(You et al., 
2011) 

E. coli,  
Rotavirus 

Antibody 
immobilized in 
microchip  

Water 10
-9

 mol/l−10
-16

 
mol/l 

PCR (Zhao et al., 
2012) 

E. coli and 
Salmonella 

Magainin I 
peptide  

Water 1 bacterium∕μl Impedometry (Mannoor et 
al., 2010) 

S. typhimurium Antibody 
immobilized on 
magnetic 
beads and 
QDs 

Chicken extract 10
3
 CFU/ml QD based 

fluorescence 
(Kim et al., 
2015) 

S. typhimurium Antibody 
immobilized in 
microchip 

Pork  37 CFU/ml QD based 
fluorescence 

(R. Wang et 
al., 2015) 

S. typhimurium Antibody 
immobilized on 
magnetic 
beads 

Milk 10 CFU/ml in 
PBS, 
10

2
 CFU/ml in 

milk 

PCR (Kim et al., 
2015) 

S. typhimurium Aptamer Milk 15 CFU/ml Raman scattering (Duan et al., 
2016) 

S. typhimurium Aptamer  Milk  100 CFU/ml Quartz crystal 
microbalance 
sensor 

(Ozalp et 
al., 2015) 

C. parvum Antibody 
immobilized on 
polystyrene 
beads 

water 1–10 oocysts/ml Optical scattering  (Angus et 
al., 2012) 

B. cinerea Antibody  Apple (Fruit 
extract) 

0.008 μg/ml Amperometric 
sensor 

(Fernández-
Baldo et al., 
2010) 

S. aureus Endolysin 
(CBD plyV12) 
immobilized 
magnetic 
beads 

Milk 400 CFU/ml ELISA (Yu et al., 
2016) 

S. aureus,  
V. 

Aptamers Milk and Shrimp  25 CFU/ml,  
10 CFU/ml, 

Luminescence (Wu et al., 
2014) 
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2.2. Aptamers 

Aptamers are single stranded DNA or RNA oligonucleotides of 25 to 90 bases 

excavated from a huge library of randomly created sequences and can form target specific 

structural motifs, such as stems, internal loops, purine-rich bulges, hairpin structures, 

pseudoknots or G-quadruplex structures (Tombelli et al., 2007). These biomolecules have 

drawn attention because of their unique ability of binding to a wide range of non-nucleic 

acid targets with high affinity and specificity. A number of remarkable advantages, such as 

feasibility of commercial scale up, storage stability, affinity retention and the ability to 

differentiate between structurally similar analytes are reported as advantages that offer 

great potentials to aptamers for pathogen and biomolecular screening (Torres-Chavolla 

and Alocilja, 2009). In the past decades, researches have extensively focused on 

aptamers as alternative promising bio-recognition ligands in food analysis, particularly 

through their integration into microfluidic sensors for multi-analytes detection of very 

complex food samples. Aptamers can easily be modified at their 5` or 3` terminus with 

thiols, amines or epoxy groups to facilitate their immobilization in a microfluidic chamber. 

For example, Yoo et al. (Yoo et al., 2015) performed a proof-of-concept study using 

aptamers, immobilized on a Localized Surface Plasmon Resonance (LSPR)-based sensor 

to detect and identify different bacterial species. In this system, the thiolated aptamers 

were immobilized on a multi-spot gold-capped nanoparticle array (MG-NPA) chip to 

recognize and capture Lactobacillus acidophilus, S. typhimurium, and Pseudomonas 

aeruginosa. The mixture of different bacterial species was spotted on various locations of 

the aptamer-functionalized sensor chip. The chip was then incubated for 1 h at room 

parahemolyticus,  
S. typhimurium 

15 CFU/ml 
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temperature before the detection process. This technique resulted in a logarithmic 

increase in the extinction intensity over a concentration range of 109–104 CFU/ml with a 

detection limit of 30 CFU of bacteria in a 3-μl reaction volume.  

Aptamers have been tested for their multiplexing capacity to recognize specific bacteria 

in real food samples, promising the possibility of their future usage in microfluidic systems. 

Wu et al. (2014) reported a highly specific multiplex method using aptamers as the 

molecular recognition elements coupled with multicolour nanoparticles as luminescence 

labels for efficient capturing and quantification of S. aureus, Vibrio parahemolyticus, and S. 

typhimurium in milk and shrimp samples with a LOD of 25, 10, and 15 CFU/ml, 

respectively. 

Despite the variety of aptamer-based strategies developed so far for food safety 

analysis, aptamers pose some limitations, including rapid degradation by nucleases, short 

duration of action, probability of interaction with other components of samples, and cross-

reactivity with target molecules with similar structures to their practical application. 

Therefore, attention to all these restrictions is essential for the development of an efficient 

detecting device (Lakhin et al., 2013). 

 

2.3. Peptide ligands  

The capability of peptides in the capturing of different bacteria highlights their potential 

as interesting candidates for the microbial recognition, mainly due to their broad spectrum 

of activity and high degree of robustness and intrinsic stability. In nature, antibacterial 

peptides secreted on the skin of some animals are the primary line of defence against a 

broad spectrum of bacteria and fungi (Boman et al., 1995). The bio-functionality of these 

biomolecules is dependent on their secondary structures, which are defined based on the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

amphipathic conformations. In general, cationic peptides are rich in primary amino groups 

and can ionically bind to the negatively charged lipids located on the bacterial membrane. 

In addition, extra hydrophobic interactions also take place between the cell membrane and 

hydrophobic compartments of the peptide (Figure 1). This concept can be applied in 

microfluidic devices for efficient capturing of bacteria. Magainins, polymyxins, and 

cecropins are examples of natural bacterial capturing peptides that can be used because 

of their small molecular size and intrinsic stability (Mannoor et al., 2010). Magainin I is one 

of the naturally occurring peptides on the skin of African clawed frogs possessing a short 

sequence (GIGKFLHSAGKFGKAFVGEIMKS) that can bind selectively to E. coli O157∶H7. 

However, this peptide has also a broad-spectrum affinity toward other Gram-negative 

bacteria (Matsuzaki et al., 1997). Mannoor et al. (2010) have reported Magainin I 

functionalized microcapacitive electrode arrays for the sensitive detection of pathogenic E. 

coli and Salmonella in microfluidic flow cells. The C terminus of the Magainin I was first 

modified with cysteine residues, and then, immobilized on the gold electrodes through 

classical chemisorption chemistry to specifically capture and detect E. coli O157∶H7 cells 

with a LOD of approximately 1 bacterium per μl. The detection method was based on 

impedance spectroscopy and dielectric property of the cell membrane (Mannoor et al., 

2010). 

Despite the proved potential of peptides in bacterial capturing, the main drawback of 

these biomolecules is non-specific or semi-selective binding, which limits the use of 

peptides where specific recognition is required. Nevertheless, these ligands can be used 

in microfluidic devices with an aim to concentrate a broad range of bacterial pathogens in 

food matrix due to their capability to adhere on the surface of a wide range of bacterial 

pathogens. If specific recognition is required, particular peptide sequences can be 
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synthesized and applied for capturing and detection of targeted pathogens. So far, no 

work showing the integration of specific peptides into the microfluidic devices has been 

reported and future studies are needed to explore this field. 

 

2.4. Carbohydrate-binding proteins and glycoprotein based ligands 

Carbohydrate-binding proteins are used much less in microfluidic platforms for 

capturing of bacterial pathogens in comparison to other ligands, such as antibodies, 

aptamers, and peptides. In this category, mannose-binding lectins (MBL), such as 

Concanavalin A (Con A) are the most frequently used capturing ligands owing to their 

broad spectrum of pathogen capturing capability. MBL recognized as the first line of 

defence mechanism in the host body through binding to terminal mannose and fucose 

residues, which are expressed on the surface of over 90 different bacteria, fungi, protozoa, 

and viruses. This naturally occurring phenomenon can be inspired to target and capture 

foodborne pathogens on microdevices. For example, a microfluidic based device 

combined with recombinant MBL modified magnetic beads was developed and used for 

detection of various pathogens, such as C. albicans in less than 3 hours with an extremely 

high sensitivity (1 cell/ml) (Cooper et al., 2013). A similar approach was also applied for 

the capturing of S. aureus from plasma and blood with a LOD of 102 CFU/l (Kang et al., 

2015). Although these systems have not been comprehensively studied in a LOC device 

for foodborne pathogen monitoring, the results mentioned above demonstrate the potential 

of such systems for this purpose.  

Glycosylated proteins have also been suggested as pathogen capturing ligands. These 

structures possess higher stability than free peptide and proteins due to the covalent 

attachment of oligosaccharide chains to protein backbone (Lakhin et al., 2013). Mucins are 
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a group of high molecular mass glycoproteins composed of either O-linked 

oligosaccharides or occasionally N-linked oligosaccharides as 50%–90% of their 

carbohydrates by mass (Corfield, 2015). The structure of mucins is often extended by N-

acetylgalactosamine, N-acetylglucosamine, fucose, sialic acid, or sulphate groups to 

facilitate their immobilization in a microfluidic chamber (Flannery et al., 2015). Tian et al. 

(2010) reported the use of magnetic beads modified with porcine gastric mucin (PGM) to 

concentrate diverse strains of Noroviruses, including Norovirus group I and II with high 

capturing efficiencies of 100% and 85%, respectively. This finding was further validated 

and confirmed in another work by Dancho et al. (2012). 

 

2.5. Bacteriophage endolysins 

Bacteriophages have drawn a great attention in recent years as potential ligands for 

foodborne pathogen detection. Bacteriophages express peptidoglycan hydrolases called 

endolysins at the late stage of their lytic cycle. These endolysins plays a role in the lysis of 

the host cell after phage replication and propagation. Generally, endolysins possesses N-

terminal enzymatic activity domain (EAD) and C-terminal cell wall binding domain (CBD). 

Endolysins specifically target the peptidoglycan layer of bacteria where the CBD plays a 

role in specific host recognition and binding due to its high specificity (Kong et al., 2015). 

CBDs can be attractive substitute candidates of antibodies for bacterial capturing on 

microfluidic devices because of their smaller size (usually 10–20 kDa) than that of 

antibodies (usually 150 kDa) and a higher number of CBD binding sites available on 

bacterial cell wall (Yu et al., 2016). Various fluorescent proteins fused CBDs have been 

generated to specifically target and detect different Gram-positive foodborne pathogens, 

including L. monocytogenes, S. aureus, and B. cereus (Eugster et al., 2011; Kong and 
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Ryu, 2015; Yu et al., 2016). Yu et al. (2016) performed an immunomagnetic separation 

study to detect S. aureus in milk samples with a high affinity using plyV12 CBD 

immobilized beads. In this work, S. aureus spiked milk samples were initially concentrated 

using antibody immobilized magnetic beads, followed by biotinylated CBD (Yu et al., 

2016). The detection range was linear between 103 and 106 CFU/ml with a LOD of 400 

CFU of S. aureus in the spiked milk sample within 1.5 hours. Despite all the advantages 

mentioned above, CBDs suffer from an inability to recognize and adhere to gram-negative 

bacteria, mainly due to the outer membrane of these bacteria, which shield the 

peptidoglycan (Figure 1). Nevertheless, the above-explained reports show a promising 

potential to further explore the integration of bacteriophage CBDs into microfluidic chips 

with the aim to generate devices for online monitoring of gram positive foodborne bacteria. 

 

2.6. Cardiolipin binding ligands 

There has been much interest in understanding the difference in composition of lipid 

domains in bacterial membranes and mammalian cells. There is evidence that the outer 

cell membrane of many bacteria is rich in anionic cardiolipin while it can only be found in 

mitochondrial membranes of mammalian cells (Epand and Epand, 2009a,b). This might 

open a new direction of investigation to evaluate the use of cardiolipin binding ligands not 

only for bio sensing but also for imaging and diagnosis applications. One of the 

biomolecules presenting a high cardiolipin binding affinity is apolipoprotein H (Apo-H), a 38 

kDa multifunctional biomolecule composed of positively charged amino acids (Borchman 

et al., 1995). In a recent study performed on the bacterial capturing capacity of Apo-H, 

Vutukuru et al. (2016) revealed that Apo-H coated magnetic beads could be used for 

concentrating E. coli, Enterococcus gallinarum and Candida tropicalis from 5 mL of blood 
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samples with a LOD of 1 CFU/ml. Although this is a promising achievement, the main 

challenge of using cardiolipin binding ligands as bacterial capturing motifs is the variation 

in its distribution and abundance in the cell membrane of different bacteria (Epand and 

Epand, 2009a), generating fluctuation in capturing efficiency between various pathogens. 

 

3. Sample preparation in microfluidic devices 

In general, it is impossible or challenging to detect food borne pathogens directly from 

food samples by exposing untreated food samples to diagnostic biomarkers without proper 

sample preparation steps. Many pathogens are present in a very low concentration in food 

samples. Therefore, enrichment of targeted analytes or cells is of high importance for 

detection purposes (Atalay et al., 2011; Buldini et al., 2002). A number of microfluidic 

platforms, based on different principles, have been reported to cope with the complexity of 

sample preparation and enrichment (Foudeh et al., 2012; Mairhofer et al., 2009; Velusamy 

et al., 2010; Zaytseva et al., 2005). However, this challenge is not addressed for highly 

sensitive and accurate detection of microorganisms in food matrices. In this section, we 

will comprehensively elaborate recent advances in microfluidic-based sample preparation 

techniques to elucidate the prominent potential of such systems in foodborne pathogen 

detection. 

 

3.1. Microbeads and porous membranes 

Micro-sized iron oxide magnetic particles are widely applied in microfluidic devices to 

increase the chance of pathogen bio-recognition due to their high surface-to-volume ratio. 

The most popular strategy for magnetic bead-based sample preparation is simple mixing 

of the capturing ligand-functionalized beads with the contaminated food samples. This 
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results in attachment of pathogens to the beads, followed by pathogen enrichment and 

collection using a magnetic field (Bu et al., 2008; Ikeda et al., 2006; Sasso et al., 2012). 

Antibodies are the most recognized motifs that have been intensively used for 

functionalization of magnetic particles to separate bacteria from food matrices (Lim and 

Zhang, 2007; Ng et al., 2010). After the bacterial enrichment step, fluorescent molecules 

or quantum dots can be used to label captured bacteria and quantitatively discriminate 

bacteria-magnetic bead complexes from magnetic beads without bacteria (Gao et al., 

2006; J. J. Lee et al., 2014). Size-based separation of free magnetic nanoparticles from 

bacteria-magnetic nanoparticle complexes using filter membranes is also suggested to 

skip complicated labelling procedures (Shim et al., 2014). Both methods can be combined 

with microfluidic devices to concentrate target microorganisms or cells, although low 

sensitivity has remained a challenge. Other microfluidic separation methods, such as 

surface acoustic waves, deterministic lateral displacement and inertial focusing have been 

explored to develop highly efficient sample separation methods. Lee et al. (2015) have 

shown efficient separation of free magnetic beads from E. coli bacteria-magnetic bead 

complexes by inertial focusing method based on Dean drag force and in the presence of a 

sheath flow in a microfluidic device. The antibody functionalized magnetic beads were 

used to capture E. coli bacteria in milk. In the next step, a 3D-printed helical microchannel 

was used to separate free magnetic beads from E. coli-magnetic bead complexes using 

inertial focusing method as illustrated schematically in Figure 2A. By this method, it is 

feasible to reduce the physical damage of cells during separation and to control the 

operating condition with no external force. In addition, contrary to spiral channels used on 

a flat surface (Martel and Toner, 2012), the 3D-printed helical microchannel has a constant 

radius of curvature and Dean number that can facile the prediction of the flow behaviour 
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and separate pathogens from the mixture in a controllable manner. Combination of this 

technology with UV-vis absorption spectroscopy could detect 10 CFU/ml and 100 CFU/ml 

of bacteria in buffer and milk, respectively. 

In another work (Lee et al., 2014), a 3D-printed microfluidic device was used for 

immunomagnetic flow assay and rapid detection of pathogenic bacteria in large-volume 

food samples. As illustrated schematically in Figure 2B, antibody-functionalized magnetic 

nanoclusters were magnetically immobilized on the surfaces of a 3D-printed microchannel 

by a strong magnet located inside the hollow space of a cylinder. The high flow rate 

injection of a Salmonella-spiked sample solution into the microchannel resulted in rapid 

binding between the antibody-functionalized magnetic nanoclusters and Salmonella due to 

their high affinity. After a washing step, the magnet was removed, and the bacteria flushed 

out and collected, resulting in a LOD of 10 CFU/ml. This study is one of the exceptional 

achievements for ultrafast detection of foodborne pathogens in microfluidic devices since a 

3 min-procedure is enough for binding, washing, and detection of targets in a 10 ml-

sample. 
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Figure 2. (A1) Schematic illustration of the device used to separate captured bacteria by 
inertial focusing and (A2) photographic image of the 3D printed device. (A3) Illustration of 
Dean vortices in a channel with trapezoid cross-section. Sample solution containing free 
magnetic beads and magnetic bead-bacteria complexes is injected into the outer inlet 
while a sheath flow is injected into the inner inlet of the device. This results in the 
generation of Dean vortices and separation of free bacteria from the ones complexed with 
the beads when the fluid passes through the curved microchannel. The fabricated device 
incorporated 10 loops of the helical microchannel to provide sufficient length needed for 
particle migration. Reprinted with permission from Ref. (Lee et al., 2015), copyright 2015 
Nature Publishing Group. (B1) Schematic representation of 3D immunomagnetic flow 
assay. The magnet was placed in the hollow centre of the device during the capture and 
rinsing of the antibody functionalized magnetic bead-Salmonella complexes. The magnet 
was then removed from the device and bead-bacteria complex was collected using a 
disposable syringe. Reprinted with permission from Ref. (Lee et al., 2014), copyright 2014 
American Chemical Society publications. 
 

Immunomagnetic separation followed by pathogen labelling using QDs or fluorescent 

nanoparticles in a microfluidic device is recognized as a rapid and sensitive quantitative 

detection approach for foodborne pathogens. Kim et al. (2015) have used anti-Salmonella 
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antibody-coated superparamagnetic beads to concentrate S. typhimurium cells for rapid 

sensing in a microfluidic device when anti-Salmonella polyclonal antibody-conjugated QDs 

was used to form a “sandwich” complex with the bead–cell conjugates. The bacteria were 

separated at room temperature after mixing with the magnetic beads for 30 min. After 

sample enrichment and washing, the captured cells and antibody-conjugated QDs were 

injected into two different inlets of the microfluidic device. The two solutions were then 

mixed in the meandering channel, and the cells were labelled with the antibody-conjugated 

QDs (Figure 3A). Next, the QD-labelled cells were concentrated in the detection zone 

using an external magnetic field introduced by a permanent magnet placed in the 

detection zone of the microfluidic chip. The unbounded QDs were washed away using 

borate buffer injected into the inlet, and the microfluidic chip was then inserted into the 

portable fluorimeter for measurement. Using this system, a LOD of 103 CFU/ml of 

Salmonella in the chicken extract was archived (Kim et al., 2015). 
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Figure 3. (A) The layout of the microfluidic design and schematic illustration of the 
detection zone, where the QDs tethered to the bacteria-bead complex can be 
quantitatively detected by a fluorimeter. Reprinted with permission from Ref. (Kim et al., 
2015), 2015 copyright Elsevier B.V. (B) Schematic demonstration of whole detection 
processes of murine norovirus by microfluidic chip module. Reprinted with permission from 
Ref. (Chung et al., 2015), 2015 copyright Elsevier B.V. 
 

While the literature includes several examples of bacterial pathogen detection in food 

samples using bead mediated microfluidic devices, such methods are not fully examined 

for the detection of viral pathogens due to the limitations associated with the sample 

preparation of viruses. Attention has slowly been shifting towards this challenge thanks to 

the development of miniaturized microfluidic chips as interdisciplinary technologies for 

diagnostic applications. For example, Chung et al. (2015) developed a novel microfluidic 

device for the detection of murine norovirus in oysters by charge switchable micro-bead 
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beating technology (Figure 3B). In this system, several steps were integrated within a chip 

to detect norovirus in food samples. First, the chopped oyster and buffer mixture were 

loaded into a chamber containing packed charge switchable microbeads for the adsorption 

of Norovirus to the beads by electrostatic interaction. After washing step, all the adsorbed 

viruses were effectively lysed by applying vibration mediated bead beating. The released 

RNA virus was then extracted and transferred to another chamber by syringe pump 

system for reverse transcriptase amplification. The use of microbeads for both sample 

concentration and lysis resulted in an efficient recovery of over 60% of murine norovirus 

RNA in oyster samples with a LOD of 102 CFU/single oyster in 4 hours. 

In addition to the microfluidic devices integrated with magnetic beads, filters and 

membranes are the other straightforward and cost-effective alternatives for the rapid 

concentrating of targeted pathogens, particularly for very large volume samples. For 

example, Dharmasiri et al. (2010) reported the use of a microfluidic system with integrated 

polycarbonate-based filters to physically enrich E. coli bacteria up to 2 × 102-fold. One of 

the main potentials of the filters is the possibility to chemically functionalize their surface 

for selective capturing of foodborne pathogens. Tan et al. (2011) described a PDMS 

microfluidic immunosensor, fabricated by a simple micro-fabrication process, for efficient 

detection of S. aureus and E. coli O157:H7 using antibody immobilized nanoporous 

alumina membrane integrated into the device. The antibody was covalently immobilized on 

nanoporous alumina membrane using (3-glycidoxypropyl) trimethoxysilane (GPMS) silane 

monolayer as cross linker (Figure 4A). The membrane had 13 mm diameter and a 

thickness of 60 µm. The membrane was integrated between two oxygen plasma treated 

PDMS layers, and a platinum wire electrode was used for impedance sensing (Figure 4B). 

The sample containing bacteria was loaded into the upper compartment where antibodies 
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tethered on the nanoporous alumina membrane were able to capture pathogens. This 

resulted in the blockage of electrolyte current through the membrane and consequently led 

to an increase in impedance, which was detectable in the impedance spectrum (Figure 

4C). This microfluidic immunosensor device could rapidly detect bacteria within 2 hours 

with a LOD of 102 CFU/ml, showing more desirable sensitivity in comparison to traditional 

microelectrode based impedance sensors. Overall, the membrane assisted sample 

enrichment in microfluidic systems are still in an infancy state, and therefore, extra efforts 

are needed to investigate new concepts that can be practically applied to design such 

miniaturized sensing devices. 
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Figure 4. (A) Immobilization of antibodies on nanoporous alumina membrane. The 
membranes were first treated with a 10% hydrogen peroxide (H2O2) to remove any 
contaminants and generate reactive hydroxyl group on the surface. After drying, toluene 
solution with 1% GPMS was applied overnight to functionalize the surface with epoxide 
groups. Next, the antibody was immobilized on the surface through the reaction of the 
amine groups on antibody with the epoxy groups on the surface of the membrane. (B) 
Schematic illustration of the PDMS microfluidic device integrated with nanoporous alumina 
membrane and SEM image of the porous membrane. (C) The mechanism of impedance 
sensing via antibody immobilized on nanoporous alumina membrane. The pathogen will 
anchor to complimentary antibodies on the modified nanoporous alumina membrane, once 
the sample with target bacteria loads into the upper compartment. When bacteria are 
captured on the membrane, the nanopores will be blocked, and subsequently, the 
electrolyte current through the membrane will decrease and can be observed in the 
impedance spectrum. (D) Fluorescence image of S. aureus captured on antibody modified 
membrane with a concentration of 1 × 105 CFU/ml. Reprinted with permission from Ref. 
(Tan et al., 2011), 2011 copyright Elsevier B.V. 
 

3.2. Continuous-flow sample-preparation methods 

Although magnetic bead assisted enrichment of pathogens in microfluidic devices 

allows quick and robust detection of the pathogens in food matrices, this technique suffers 

from some drawbacks related to the pre-processing necessity, loss of beads in matrices 

with fatty components and the high cost of the beads (Jenïkovâ et al., 2000; Li et al., 

2013). To address these challenges, continuous flow separation methods in microfluidic 

devices have been introduced to allow cheap, fast, and reliable sample separation and 

processing (Hejazian et al., 2015; Lee et al., 2012; Lenshof and Laurell, 2010). 

Acoustophoresis, magnetophoresis, and dielectrophoresis are the main methods 

investigated for continuous flow sample separation (Abdallah et al., 2015; Ngamsom et al., 

2016a; Zhang et al., 2010). Acoustophoresis mediated cell separation in the microfluidic 

devices allows gentle pathogen concentration without any labelling and only based on the 

difference of their size, density, and compressibility compared to the surrounding medium 

(Ngamsom et al., 2016b). The principle of acoustophoresis is based on the exertion of 

radiation force on suspended cells in the presence of a resonant acoustic field (Abdallah et 
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al., 2015; Ngamsom et al., 2016b). Acoustic radiation force on a cell or particles can highly 

change with a small change of their size, facilitating the size dependent fractionation of 

different components of a sample (González et al., 2010). This will result in a faster 

transfer of bigger sized components to the pressure node located in the centre of the flow 

channel. This concept has been applied to separate foodborne pathogens by designing 

microfluidic devices with multiple outlet branches, and adjusting the acoustic power so that 

the pathogens reach the centre of the column before the flow split. Ngamsom et al. 

(2016b) fabricated an acoustophoresis based pre-analytical technique to collect foodborne 

pathogens on a chip. The device was composed of three inlets, a central channel for 

sample separation and three outlets (Figure 5). The sample was injected from the side 

inlets, and buffer solution was loaded through the central inlet. By applying ultrasound 

actuation, pathogenic cells could remain near the wall corner of the channel while the 

large debris particles (10–100 μm) of meat samples were continuously fractionated into 

the centre of the flow channel. This system was used to detect S. typhimurium in chicken 

and minced beef with successful recovery (60–90%) of ca. 103 CFU/ml. 
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Figure 5. (A) Schematic illustration of the acoustophoresis based microfluidic device for 
the collection and separation of pathogens under ultrasonic radiation force. Debris 
particles move to the pressure nodal plane in the central outlet containing the buffer 
stream, whilst the microbial cells remain in the sample streams exiting the side outlets. A 
piezo-ceramic transducer (Pz) is assembled in the centre of the channel to generate 
ultrasonic wave and acoustic radiation forces. Large debris experience bigger force and 
move into the central buffer stream, while less acoustic radiation force on microbial cells 
allows their collection from side outlets. Section B and C show a microscopic photograph 
of characterization and optimization of acoustophoresis process using polystyrene beads. 
The inlets and part of the separation channel are shown in section B. The outlets and part 
of the separation channel is shown in section C. The side inlets were used to introduce the 
beads into the separation channels. The beads remain in the outer part of the separation 
channel under the laminar flow regime (B). Upon ultrasonic actuation, the beads move to 
the centre of the separation channel due to the generated acoustic force and can be 
collected from the central outlet (C). Reprinted with permission from Ref. (Ngamsom et al., 
2016b), 2016 copyright Elsevier B.V. 
 

Magnetophoresis is another technique that can be applied for continuous flow sample 

separation in microfluidic devices using external magnetic fields (Ngamsom et al., 2016a). 

In contrast to immunomagnetic separation where simultaneous sorting of different 

pathogens are very challenging, free-flow magnetophoresis can separate pathogen-

magnetic bead complexes based on the differences in their sizes and magnetic power by 
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varying their deflection from the straight direction of laminar flow. This method has 

attracted lots of attention for continuous sorting of magnetic beads from nonmagnetic 

components or two different magnetic beads from each other (Krishnan et al., 2009; 

Pamme et al., 2006). However, the potential of this strategy for sorting and analysis of 

foodborne pathogen has not been explored intensively despite its capability for automated 

sample separation. Combining magnetophoresis techniques with immunomagnetic 

separation might be the future direction towards high throughput concentrating of target 

pathogens from complex food samples. Ngamson et al. (Ngamsom et al., 2016a) have 

applied this combination for rapid enrichment, sorting and detection of viable S. 

typhimurium and E. coli O157 from food samples. The pathogen specific magnetic beads 

with different sizes and magnetite contents were utilized for the capturing and 

concentrating of viable S. typhimurium and E. coli O157:H7. Two different types of beads 

were used to specifically capture and separate different bacteria by means of an 

inhomogeneous magnetic field applied perpendicularly (y-direction) to the direction of the 

flow. Depending on the size of the beads and the quantity of magnetic materials, different 

extent of bead deflection from the flow direction takes place within the chip (Figure 6). 

Figure 6B shows the design of the polymethyl methacrylate chip. The importance of the 

flow rate and magnetic power optimization for magnetophoresis based pathogen 

separation has also been addressed and examined (Figure 6C). It was shown that, in 

addition to the flow rate dependent cell deflection, a less iron oxide content would result in 

a lower magnetic bead deflection, an exploited concept to enrich more than one pathogen 

from a food sample. 
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Figure 6. (A) Principle of multiplex sorting of two different types of pathogen-bound 
magnetic beads by free-flow magnetophoresis and (B) the photograph of polymethyl 
methacrylate chip. (C) Deflection of anti-salmonella Dynabeads and anti-E. coli Hyglos 
beads as a function of the flow rates of the bead. It was revealed that lower flow rates 
result in a bigger deflection of magnetic beads. In addition, at the same flow rate, 
Dynabeads showed less deflection compared to Hyglosbeads due to the less iron oxide 
content and lower magnetic properties. Reprinted with permission from Ref. (Ngamsom et 
al., 2016a), 2016 copyright Elsevier B.V. 

 

Guo et al. (2015) combined stationary magnetic trap and dynamic magnetophoretic 

separation techniques to separate and detect foodborne pathogens at very low 

concentration. They were able to precisely control the flow direction of magnetic beads in a 

magnetophoretic microfluidic device through the manipulation of the magnetic force 

against the hydrodynamic force. This resulted in simultaneous sample enrichment and 

separation in the microfluidic device. As indicated in Figure 7, the device consists of an 

upper layer of microfluidic channels formed by PDMS, ITO glass with micro-fabricated 

nickel wires and nickel patterns as the bottom layer, and a thin PDMS film as the middle 

layer to encapsulate the nickel structures. The nickel wires act as magnetophoretic 

separation zone while the nickel patterns are applied in the device as the detection zone. 

The S. typhimurium-magnetic particle complexes were separated from free E. coli bacteria 

and other components of the sample by passing through the area covered by micro-
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fabricated nickel wires. Next, the bacterial cells were trapped into the nickel-pattern 

detection zone, where a sandwich immunoassay based on biotin-antibody and streptavidin 

modified QDs (SA-QDs) was used to identify the bacteria. The use of this combined 

approach resulted in a LOD of 5.4×103 CFU/ml in milk. Compared to a similar device 

composed of only stationary magnetic trap, the fluorescence intensity of the detected 

signals are higher in the integrated device, enabling accurate detection of pathogens in 

complex samples. Since foodborne pathogens usually exist at a very low concentration in 

food matrices at initial stages, combining different technologies similar to the one 

described above is essential to achieve a higher sensitivity in microfluidic devices. In 

general, the integration of magnetophoresis technology into the sensing devices is very 

beneficial since the magnetic beads are known as powerful tools for sample concentration 

due to their large surface-to-volume ratio as well as flexible functionalization, while 

rendering the possibility to skip tedious washing process and purification of captured 

pathogens. 
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Figure 7. (A) Schematic illustration of the working principle of the combined stationary 
magnetic trap and dynamic magnetophoretic separation in the microfluidic device. (A1) 
Target pathogens were captured by antibody functionalized magnetic beads in a tube and 
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then injected to an integrated chip in which two pairs of magnets were separately placed 
under the magnetophoretic separation zone (A2) and magnetic trap zones (A3; detection 
zone). (B1) Fluorescence images are taken from four different parts of the separation zone 
(E. coli in red and S. typhimurium in blue colour). The separation of the blue magnetic 
tagged S. typhimurium is observable in outlet 2 while E. coli could be collected in outlet 1. 
(B2) Fluorescence microscopic images of sample collected before and after separation 
(outlet 1 and 2). (C) Comparison of the capturing capability in milk samples for the 
magnetophoretic integrated device and the device with magnetic trap alone. Reprinted 
with permission from Ref. (Guo et al., 2015), 2015 copyright Elsevier B.V. 
 

4. On-chip techniques for rapid foodborne pathogen detection 

Conventional bacterial culture methods for the counting of colony forming unit (CFU) 

provide visual confirmation of microbial growth on a solid nutrient medium. This approach 

is simple and easily adaptable. However, it is laborious, time-consuming (1-6 days), and 

requires special equipment (i.e., incubator with special atmosphere and temperatures) as 

well as various microbial specific culture media for selective pre-enrichment and plating. 

Therefore, other alternatives, such as electrochemical, immunological and nucleic acid 

based methods with broad spectrum of applicability are proposed to detect foodborne 

pathogens in foods. All these methods often face a major intrinsic problem associated with 

the complexity of food matrix. For example, inhibition of PCR has been observed when 

exposed to carbohydrates, high salt or fat concentration, sucrose, lysine and some 

polyphenolic compounds which may bind to nucleic acid templates or interfere with DNA 

polymerase activity (Adami et al., 2016; Dwivedi and Jaykus, 2011). Enzymes or other 

antimicrobial components and by-products released during food processing and sample 

pre-treatments (e.g., homogenization or blending) may also interfere with the outcome of 

the detection methods (Bhunia, 2014; Sharma and Mutharasan, 2013). Therefore, when 

developing a new detection technique, attention to possible interferences with any step of 

the on chip sample preparation must be taken into account. In this section, the most 

relevant, appropriate and practical biosensing methods, as well as immunological and 
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nucleic acid based strategies for rapid detection of foodborne pathogens will be discussed 

in detail. 

 

4.1. Surface plasmon resonance biosensors 

Surface plasmon resonance (SPR) is the fundamental principle behind many colour-

based or lab-on-a-chip sensors by measuring the adsorption of materials onto metal 

surfaces. SPR technologies (Nguyen et al., 2015; Tokel et al., 2014) that uses a planar 

thin gold film or metal nanostructures with surface plasmon modes at the structural 

interface have been widely exploited to detect bacteria, viruses, nucleic acids, proteins, 

drugs, and in monitoring of biomolecular interactions (e.g., nucleic acid hybridization or 

protein-ligand interaction) (Mayer et al., 2011; Nguyen et al., 2015; Tokel et al., 2014; 

Unser et al., 2015; Wang et al., 2012). Conventional SPR biosensors, which apply 

reflectance spectroscopy, are of interest for the detection of foodborne pathogens 

(Velusamy et al., 2010). In these biosensors, the capturing ligands are often immobilized 

on the surface of thin metal where the electromagnetic radiation of certain wavelength will 

interact with the electron cloud of the thin metal layer to produce a strong resonance. The 

capturing of pathogens on the surface will change the refractive index of the metal surface 

and result in the change of wavelength for electron resonance (Zhang, 2013; Zhao et al., 

2014). With a number of advantages, such as label-free, sensitive, and real-time capacity, 

SPR sensors have advantages over other conventional techniques, such as fluorescence 

and isotope labelling. This is the main reason for the wide exploitation of this technique in 

disease monitoring, diagnostics, homeland security, food safety, and biological imaging 

(Wittenberg et al., 2014). Commercial SPR sensors, such as SPREETA and BIACORE 

3000 biosensors are currently utilized for the detection of E. coli O157:H7, Salmonella  
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enteritidis (S. enteritidis), S. typhimurium, and Listeria monocytogenes in food samples 

with a LOD of 102-105 CFU/ml (Stephen Inbaraj and Chen, 2016). By combining recent 

advances in plasmonic technologies with cutting-edge nanotechnologies, a new 

generation of SPR biosensors with superior sensitivity, multiplexing capability, and 

quantification capability are developed for detection of a variety of pathogens, such as E. 

coli O157:H7, Campylobacter jejuni, P. aeruginosa, S. typhimurium, and methicillin-

resistant S. aureus (MRSA) (Singh et al., 2011; Tawil et al., 2013, 2012; Torun et al., 2012; 

Wan et al., 2014; Wang et al., 2012). Despite all these efforts, the development of simple, 

cost-effective, portable, and easy-to-use SPR based POC platforms are still in an early 

stage, and there is a demand for miniaturization of the SPR based system suitable for on-

site testing without using relatively large equipment. Therefore, the efforts are now focused 

on the integration of SPR biosensors into microfluidic devices (Wang and Fan, 2016). 

Zordan et al. (2009) reported a hybrid SPR microfluidic chip that has successfully been 

developed for the detection of E. coli O157:H7. A SPRi apparatus (GenOptic, France), 

which was equipped with an 800 nm light-emitting diode (LED) source, a charge-coupled 

device (CCD) camera, and a microfluidic cell, was able to identify 16S rRNA sequence of 

Legionella peneumophila with a detection limit of 0.45 fM (Foudeh et al., 2014). Despite all 

these advances, both these SPR systems are still very complex and far from the POC 

stage. With an aim to miniaturize the SPR integrated microfluidic systems, Coskun et al. 

(2014) developed a portable lightweight (40 grams with 8.8 cm in height) microfluidic SPR 

device (Figure 8A) that contains a complementary metal–oxide–semiconductor (CMOS) 

sensor instead of a CCD camera to enable real-time and label-free monitoring of 

biomolecular interactions. Cappi et al. (2015) developed a system based on transmission 

configuration using a wide emission spectrum white light LED and a CMOS detector 
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camera incorporating with a simple two channel microfluidics (Figure 8B) for real-time 

detection purposes. Combining this system with specific aptamers as bioreceptors resulted 

in a LOD of 0.5 µM. Although both platforms described above are still at proof-of-concept 

stage and are not applied for pathogen detection, they are good examples of simple, cost-

effective, and sensitive platforms with the potential to be employed as POC devices for 

rapid online pathogen detection in food samples in a near future. Tokel et al. (2015) 

reported a multiplex cost-effective microfluidic-integrated SPR device (Figure 8C) for 

detection and quantification of E. coli and S. aureus with a LOD of 105 and 3.2×107 

CFU/ml in spiked phosphate buffered saline and peritoneal dialysis fluid, respectively. In 

this system, specific antibodies for capturing of E. coli (anti-lipopolysaccharide/anti-LPS) 

and S. aureus (anti-lipotheichoic acid/anti-LAT) were utilized to functionalize the 

disposable microfluidic chips with gold coated surface through several activators, 

including, 11-mercaptoundeconoic acid (MUA), N-(3-Dimethylaminopropyl)-N'-

ethylcarbodiimide Hydrochloride (EDC), N-Hydroxysuccinimide (NHS) and protein G. 

When the bacteria is captured on the gold-coated surface of the microchannel, a signature 

on the reflected light will be generated via a change in the local refractive index, which will 

be detected by the CMOS sensor and transferred to a computer for analysis. 

In summary, all the systems mentioned above are still at the research stage and not 

commercialized yet. However, the results indicate a possibility to generate a portable, 

specific, and sensitive POC device for rapid on-site detection of foodborne pathogens. The 

integration of SPR sensors in micro-chambers connected with multiple microchannels in 

the flow-through microfluidic systems can pose a high-throughput SPR imaging sensor for 

multiplexed on-site testing of different targets (P. Chen et al., 2015; Im et al., 2014; Inci et 

al., 2015). However, due to the complexity of food sample as well as the very low 
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concentration of pathogens in the food, the sample preparation techniques described in 

section 3 are crucial for subsequent high-quality SPR sensing of foodborne pathogens. 

There is, though, a long road ahead for this emerging technology to be fully adapted to 

microfluidic-integrated SPR sensors devices for analytical performance. 
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Figure 8. Demonstrations of SPR-based integrated microfluidic devices. (A) 
Representation of plasmonic biosensor platform integrated microfluidics onto nanohole 
arrays. Reprinted with permission from Ref. (Coskun et al., 2014), copyright 2015 
Macmilllan Publishers Ltd. (B) Illustration of a complete custom-made transmission-LSPR 
setup combining the digital rendering of the components and their relative distances. 
Reprinted with permission from (Cappi et al., 2015), copyright 2015 American Chemical 
Society. (C) A scheme of all the components in a portable plasmonic device for detection 
and quantification of the bacterial pathogen and a SPR integrated microfluidic platform. 
The disposable microfluidic chip with the functionalization of the gold-coated surface is 
placed on the rectangular prism and mounted on the top side of the device. The electronic 
setup of the device including LED source and CMOS sensor is represented from the 
bottom. Reprinted with permission from Ref. (Tokel et al., 2015), copyright 2015 
Macmilllan Publishers Ltd. 
 

4.2. Optical fibre biosensors 

Optical fibre biosensors have been widely exploited for the detection of a board range of 

analytical targets, including viruses, spores, bacterial pathogens, pesticides, toxins and 

other small molecules from clinical and food samples (Bhunia, 2014; Bosch et al., 2007; 

Liu et al., 2014; Marazuela and Moreno-Bondi, 2002; Urrutia et al., 2015; Velusamy et al., 

2010; Wang et al., 2009). The working principle of the optical fibre biosensors and their 

applications are well known and have been extensively reviewed (Bosch et al., 2007; 

Chen and Ding, 2013; Marazuela and Moreno-Bondi, 2002; Wang and Wolfbeis, 2016, 

2013). One of the approaches pursued in the last decade is the combination of optical 

fibre biosensors with various spectroscopic techniques such as absorption, fluorescence, 

Raman, SPR, etc., for detection of foodborne pathogens (Demarco, D.R. and Lim, 2002; 

Ko and Grant, 2006; Liu et al., 2003; Ohk and Bhunia, 2012; Sharma and Mutharasan, 

2013). At present, the focus is shifting towards the integration of SPR into microfluidic 

systems to establish versatile lab-on-fibre technology for the POC applications (Blue and 

Uttamchandani, 2016; Chen et al., 2016; Lin et al., 2015; Luka et al., 2015; Oscar et al., 

2017; Ricciardi et al., 2015; Sun et al., 2016; M. Yin et al., 2016). For instance, two 

portable devices with microfluidic setup (Analyte 2000™ and RAPTOR™) are 
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commercially developed for the detection of Salmonella spp., Bacillus anthracis, 

Francisella tularensis, Listeria monocytogenes, and E. coli O157:H7 from various food 

matrices with a LOD ranging from 102 to 104 CFU/ml (Bhunia, 2014; Ohk and Bhunia, 

2012; Sharma and Mutharasan, 2013; Valadez et al., 2009). Recently, Gauri et al. (2017) 

designed a fibre optic microchannel biosensor for ultra-rapid UV-Vis based detection of 

Aeromonas hydrophila in less than 10 min using a total sample volume of 3 µl. The fibre 

optic was used to transmit and receive the light signals for detection and identification of 

the pathogen. Similar concept was applied for rapid detection of E. coli in less than 10 min 

with an LOD of 1×102 cells/ml (Abidin, Z. Z., Gauri, S., Mahdi, M. A., Yunus, 2016). 

The combination of optical fibre biosensors with Raman spectroscopic techniques for 

ultra-sensitive detection of foodborne pathogens is growing very rapidly (Walter et al., 

2011;; Sengupta et al., 2012; Craig et al., 2013; Xie et al., 2013; Stöckel et al., 2016;; C. 

Wang et al., 2017;) since Raman spectra can provide a broad range of information about 

the chemical composition of the structure of biomolecules within the microorganisms 

(Stöckel et al., 2016). A number of studies have demonstrated that surface-enhanced 

Raman spectroscopy (SERS) coupled with metallic (e.g., silver or gold) nanoparticles can 

perform ultra-rapid and sensitive detection of foodborne pathogenic microorganisms 

including E. coli O157:H7, S. aureus, Salmonella spp, Shigella spp, Listeria 

monocytogenes, Enterococcus faecelis, Bacillus spp, and Enterobacter spp without any 

labelling (Craig et al., 2013; Sengupta et al., 2012; Xie et al., 2013). Rapid measurement 

time, high resolution, sensitivity, and ease of operation make the SERS technology a 

promising diagnostic tool for foodborne pathogens (Wang et al., 2011; Gracie et al., 2014; 

Kearns et al., 2017;). The capability of SERS for identification and discrimination of 

bacterial species and strains rely on the bio recognition probes since the Raman peaks of 
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all bacteria are very similar. The sensitivity of the SERS depends on the methodology of 

sample preparation, property of substrates and diagnostic nanoparticle used, and binding 

of bacteria on the SERS-active surface (Zhou et al., 2014; Yang et al., 2016). To date, 

there have been many reports on SERS biosensors for bacterial pathogen detection 

(Wang et al., 2011; Sundaram et al., 2013; Zhou et al., 2014; Granger et al., 2016). Taking 

advantages of the cutting-edge microfluidic techniques, the integration of SERS into 

microfluidics has also been conducted to fabricate portable biosensors for high speed and 

ultra-sensitive detection of different bacteria (Walter et al., 2011; L. Chen et al., 2015; 

Mungroo et al., 2016; C. Wang et al., 2017). For examples, Walter et al. (2011) 

successfully demonstrated a SERS based microfluidic platform for rapid and highly 

specific identification and classification of different E. coli strains using a microscopy with 

laser setup mounted on top of microfluidic channels. Researchers were able to detect 

bacteria by designing a system consisting of a microfluidic device and a micro-pump, 

which flushed the bacterial sample through the device to a Raman microscope where 

multiple bacterial strains were detected and analyzed using a 785 nm laser at 

concentrations of 106 CFU/ml (Pazos-Perez et al., 2016). SERS based microfluidic 

platforms are reported  in other studies for the detection of various foodborne pathogens 

(e.g., S. typhimirium, S. enteritis, Pseudomonas aeruginosa, L. monocytogenes, L. 

innocua, MRSA 35 and 86) (L. Chen et al., 2015; Mungroo et al., 2016).  

Integration of nano-dielectrophoretic (nano-DEP) as a bacterial concentration approach 

(Cho et al., 2010; Khoshmanesh et al., 2012, 2011; Páez-Avilés et al., 2016) with ultra-

sensitive SERS detection has enabled Wang et al. (C. Wang et al., 2017) to demonstrate a 

portable lab-on-a-chip platform for the detection of E. coli O157:H7 with a LOD range of 1 

to 10 CFU/ml. The Nano-DEP microfluidic device consisted of a reservoir section with 
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carbon nanofiber nanoelectrode array on the bottom and fluidic in and out channels 

(Figure 9A) to enrich the samples before mixing with SERS nanoprobes. The carbon 

nanofiber nanoelectrode in the Nano-DEP could generate a large DEP force (FDEP : 1020 

V2m-3) when an alternating current voltage source was applied, resulting in the separation 

and concentration of the target cells by overcoming the hydrodynamic drag influence 

(FDAG). Next, the concentrated samples were detected by bioconjugated gold 

nanoparticles, nanorods or nanocages used as SERS enhancers. 

 

4.3. Electrochemical biosensors  

Electrochemical biosensors are applied in many fields of technology due to their low 

cost, user-friendly properties, ease of integration into microfluidic devices, compatibility 

with different fabrication methods, and well-established detecting performance. 

Conductometric/impedimetric, amperometric/voltammetric, and potentiometric methods 

are the most common electrochemical biosensing strategies that can be used and 

integrated into microfluidic devices. For example, Yang et al. (2008) miniaturized an 

impedance measurement into biochips and successfully increased the sensitivity of the 

impedance signals and reduced the time needed for the detection of foodborne bacteria. 

The attachment of bacteria cell on electrode surfaces can alter the interface impedance 

due to the insulating properties of the bacterial cell membrane, providing a simpler and 

cheaper detecting method than that of optical techniques (Ramaswamy et al., 2013). 

Besides, because of the quick response of the impedance biosensors, they can be used 

for real-time detection purposes. For example, Li et al. (2016) presented a microfluidic 

device with vertical electrodes for the impedance-based detection of foodborne pathogens. 

An easy to fabricate microfluidic impedance biosensor has been reported for rapid and 
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accurate detection of S. typhimurium (Figure 9B). Monoclonal anti-Salmonella antibodies 

were immobilized on a high-density electrode array inside a microfluidic chip for selective 

detection using an impedance analyser. This microfluidic biosensor showed a 10-fold 

increase in sensitivity compared to a non-microfluidic biosensor (Ghosh Dastider et al., 

2015). Online bacterial separation and detection is also achieved by integrating 

electrochemical impedance analysis and urease catalysis into a microfluidic device (Chen 

et al., 2016). For this purpose, Listeria monocytogenes cells, magnetic nanoparticles 

modified with the anti-Listeria monoclonal antibodies, and gold nanoparticles modified with 

anti-Listeria polyclonal antibodies and urease, were all mixed and incubated in a fluidic 

separation chip to form sandwich complexes of magnetic nanoparticle-Listeria-urease 

conjugated gold nanoparticles. After concentrating the complex by applying a high 

gradient magnetic field, urea was injected into the microfluidic system and hydrolysed into 

ammonium and carbonate ions due to the catalysis effect of the urease. These ions were 

then transported into a detection chamber integrated with interdigitated microelectrodes to 

detect the pathogen with a LOD of 1.6×102 CFU/ml in 1 hour. Voltammetric detection of 

Campylobacter spp. in raw poultry meat samples using thin-film gold electrodes deposited 

onto cyclo olefin polymer substrates is also reported. This LOC device was capable of 

detecting PCR amplicon of Campylobacter spp. with a LOD of 90 pM (Morant-Miñana and 

Elizalde, 2015). Tien et al. (2017) have also developed a microfluidic biochip for real-time 

electrochemical monitoring of viral pathogens based on nucleic acid amplification by loop-

mediated isothermal amplification (LAMP) technique. This platform offers an easy tool for 

quantification of foodborne pathogens with limited risk of cross-contamination.  
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Figure 9. (A) Illustration of SERS based microfluidic system for pathogen detection. (A1) 
Schematic structure of nano-DEP microfluidic chip showing the design of microfluidic 
channel. (A2) Carbon-nanofiber nanoelectrode arrays at the central part of the device for 
sample concentration. Reprinted with permission from Ref. (Wang et al., 2017) copyright 
2017 BioMedCentral Publisher. (B1) 3D schematic of the impedance biosensor showing 
the electrode array embedded under a microchannel with inlet and outlet. (B2) Cross-
sectional profile demonstrating various layers of the impedance biosensor. (B3) The 
equivalent circuit of the impedance biosensor demonstrating various circuit components. 
(B4) Optical image of immobilized bacteria on the array. (B5) Impedance response for 
different concentrations of S. typhimurium. Reprinted with permission from Ref. (Ghosh 
Dastider et al., 2015) copyright 2015 Hindawi Publisher. 
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Nanomaterials are widely used in electrochemical biosensing devices. Gold nanoparticles, 

iron oxide magnetic nanoparticles, and carbon-based nanomaterials have provided 

promising opportunities to explore nanoscale electrochemical biosensors due to their 

biocompatibility and high surface areas that can enhance bio-receptor loading and 

stability. These conductive materials can serve as efficient agents for electron transfer 

between the bio-receptors and the electrode surface, allowing electrochemical sensing of 

foodborne pathogens without necessity of using electron transfer mediators (Wang, 2005; 

Hernandez and Ozalp, 2012; Wang and Dai, 2015; Zeng et al., 2016; Chen et al., 2016). 

Ma et al. (2014) proposed an impedimetric biosensor using graphene oxide and gold 

nanoparticle modified glassy carbon electrodes as transducers for Salmonella spp. 

detection. Graphene oxide particles were first dispersed and dried on the electrode, 

followed by electrodeposition of gold nanoparticles and surface functionalization with 

Salmonella-specific aptamer. A LOD of 3 CFU/ml was achieved and recoveries were close 

to 100% for the 10 to 1000 CFU/ml of bacteria spiked in pork samples. Multiplexed 

detection of pathogens is also reported by electrochemical biosensing platforms. Dou et 

al., (2013) reported an interesting work where E. coli O157:H7 and Enterobacter sakazakii 

(E. sakazakii) were detected using carbon screen-printed low-density arrays coated with 

multi-walled carbon nanotubes/sodium alginate/carboxymethyl chitosan composite films 

that were further functionalized with horseradish peroxidase labeled antibodies. The LODs 

were 3.47×103 and 4.57×103 CFU/ml for E. coli O157:H7 and E. sakazakii, respectively. 

Table 3 has summarized examples of nanomaterial used for foodborne pathogen 

detection. 
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Table 3. Examples of nanomaterials used for electrochemical biosensing of foodborne 

pathogens. 

 

4.4. Microfluidics based immunological detection methods  

POC testing is a rapidly growing diagnosis strategy in food safety as it provides results 

faster than conventional methods. Lateral flow assays (LFAs) based POC devices are one 

of the most common approaches for rapid online detection of foodborne pathogens. LFA 

provides a visual response based on the immunochromatographic concept. This 

technology is based on capillary forces for fluid transport where the test sample flows 

along  a series of capillary beds (e.g., porous paper, microstructured polymer, or sintered 

polymer), and encounters and binds to labelled diagnostic markers (colouring agent) on its 

way, and then reaches to a detection zone where capturing molecules are localized on the 

capillary bed. When more fluid passes through the detection zone, more colouring agent 

accumulates, and colour change can be observed (Cho et al., 2015). The LFA technology 

renders many advantages to foodborne pathogen detection, including rapid one step 

analysis, low operational cost, simple instrumentation, user-friendly format, high specificity 

and sensitivity, less interferences due to chromatographic separation, and portability (Sajid 

Bacteria Nanomaterial Bioreceptor Sample LOD Reference 

Brucella 
melitensis 

Gold nanoparticle Antibodies Spiked milk 4×10
5
 

CFU/ml 
(Wu et al., 
2013) 

Campylobacter 
jejuni  

Carboxylated carbon 
nanotubes 

Antibodies Spiked bovine 
milk 

400 CFU/ml (Viswanathan 
et al., 2012) 

Bacillus cereus  Gold nanoparticles  Antibodies Spiked milk 10 CFU/ml (Kang et al., 
2013) 

Listeria 
monocytogenes  

Iron oxide 
nanoparticles 

Antibodies Milk, lettuce, 
and ground beef 

10
3
 CFU/ml (KANAYEVA 

et al., 2012) 

E. coli O157:H7  Carboxylated carbon 
nanotubes 

Antibodies Spiked bovine 
milk 

800 CFU/ml (Viswanathan 
et al., 2012) 

S. aureus  Graphene oxide and 
gold nanoparticles  

Aptamers Fish, water 10 CFU/ml (Jia et al., 
2014) 

Salmonella spp.  Graphene oxide and 
gold nanoparticles 

Aptamers Spiked pork 
meat 

3 CFU/ml (Ma et al., 
2014) 
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et al., 2015; Shan et al., 2015). Moreover, the capillary force principle applied in LFA 

devices allows the performance of the assay without any external power, and the white 

background of the paper (or other capillary bed materials) allows naked-eye observation of 

the colour change in the detection zone. The LFA technology has been combined with 

various techniques, such as paper chromatography, chemical colorimetric assay, enzyme 

inhibition technology, immune-sandwich assay, biochemical and biomolecular reactions to 

facile pathogen detection in food samples (Cheng et al., 2014). Different types of labels, 

including gold, silver, and selenium nanoparticles, quantum dots, up-converting 

phosphors, fluorescent and luminescent materials, etc., are utilized as visualizing markers 

for LFAs to improve the sensitivity of detection (Quesada-González and Merkoçi, 2015; 

Tripathi et al., 2017). In a study performed by Wang et al. (W. Wang et al., 2017), the test 

line of the nitrocellulose membrane was functionalized with monoclonal antibodies against 

P60 protein of Listeria, and L. monocytogenes monoclonal antibodies labelled with gold 

nanoparticles were used to specifically detect the pathogen using antibody-based 

sandwich concept. This LFA was applied to detect L. monocytogenes in spiked milk 

samples with a detection limit of 3.7 × 106 CFU/ml within 13 hours. Table 4 shows a list of 

recent studies using LFA to detect foodborne pathogens in food samples. 

Enzyme-linked immunosorbent assay (ELISA) is another immunological technology, 

which can be employed in LOC systems for rapid online detection of foodborne pathogens 

(Wang and Salazar, 2016; Yoon and Kim, 2012). This technology can be integrated into 

microchannels of LOC systems instead of the conventional micro-well plates (Seo et al., 

2010). In this method, the target solution will flow continuously in the microchannels and 

antibodies immobilized on the surface of the microchannel can subsequently capture 

pathogens. Then, a labelled secondary antibody can be used for the detection of the 
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pathogens using a sensor placed on top of the location where the primary pathogen 

capturing antibodies are immobilized. The key benefit of this method is very effective 

rinsing of residues in the channels by continuous flow, as well as rapidity and simplicity of 

the procedures. However, using ELISA methods in microfluidic devices usually suffer from 

minimal signal amplification, necessity of time-consuming procedures for the 

immobilization of capturing antibodies on the device, non-specific bindings, high cost of 

antibodies, possible occurrence of cross-reactivity that might result in nonspecific signals, 

and strict considerations for storage condition to maintain the activity of antibodies 

(Lequin, 2005; Baid, 2016).   

Table 4. Various examples of lateral flow based microfluidic technologies used for the 
detection of foodborne pathogens. 

Detection technologies 
for lateral flow test 
assay (DNA/Protein 
targets) 

Label 
Foodborne 
pathogen 

Sample 
matrix 

Assay 
sensitivity 

Referenc
e 

DNA targets  
PCR based nucleic acid 
amplification 

Gold 
nanoparticle
s 

E. coli O157:H7 
Purified 
DNA 
solution 

7 pg/μl PCR 
Amplicon (Ben 

Aissa et 
al., 2017) Salmonella 

enterica 

95 pg/ul 
PCR 
Amplicon 

DNA targets 
Multiple cross 
displacement amplification 

Gold 
nanoparticle
s 

Listeria 
monocytogenes 

Extracted 
DNA from 
spiked 
pork 
sample 

10 fg 
DNA/reactio
n 

(Li  et al., 
2017) 

Protein targets 
Signal 
amplification immunoassa
y 

FITC 
labelled 
antigen and 
antibody 

E. coli O157:H7 
Bread 
Milk 
Jelly 

1 CFU/ml 
(Song et 
al., 2016) 

Protein targets 
Immuno-magnetic 
separation 

Fluorescent 
nanobeads 

E. coli O157:H7 Milk 1 CFU 
(Huang et 
al., 2016) 

DNA targets 
Multiplex loop-mediated 
isothermal amplification 

Gold 
nanoparticle
s 

Staphylococcal 
enterotoxins 

Milk 
Apple 
juice 
Cheese 
Rice 

1 CFU/ml 
(H. Y. Yin 
et al., 
2016) 

Protein targets 
Immunoassay 

Luminescent 
reporter (Up-

E. coli 
O157:H17, 

Dairy 
products 

10 
CFU/0.6 mg 

(Zhao et 
al., 2016) 
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4.5. Nucleic acid-based methods for on-chip pathogen detection 

The integration of nucleic acid-based detection technologies in microfluidic devices 

have attracted attention from researchers due to the low sample volume, rapidity of assay 

time and facile sample handling process. Nucleic acid-based detection methods play an 

important role in improved sensitivity and specificity of pathogen sensing in food samples 

(Gomez-Zavaglia et al., 2016; Mangal et al., 2017). Nucleic acid (NA) amplification 

technologies can be an efficient substitute for the time-consuming culture based detection 

methods, particularly when the target concentration is very low. A number of NA-based 

methods, such as polymerase chain reaction (PCR), loop-mediated isothermal 

amplification (LAMP), recombinase polymerase amplification (RPA), nucleic acid 

sequence-based amplification (NASBA), and helicase dependent amplification (HDA), 

recently used for POC diagnostic of foodborne pathogens, are described in this section. 

converting 
Phosphor 
Technology) 

S. enteritidis, 
S. choleraesuis, 
V. cholera O139, 
V. 
parahaemolyticu
s 

Marine 
products 
Beverage
s 
Snacks 
Meats 

DNA targets 
Aptamer-based isothermal 
strand displacement 
amplification (SDA) 

Colorimetric 
beads 

E. coli O157:H7 PBS 
10 CFU per 
test 

(Wu et al., 
2015) 

Protein targets 
Immunoassay 

Colorimetric 
beads 

E. coli O157:H7, 
Salmonella 
enterica, Listeria 
monocytogenes 

Spinach, 
ground 
beef, 
hotdogs, 
and eggs 

1 CFU/g 
(Hahm et 
al., 2015) 

Protein targets  
Enzyme signal 
amplification 
immunoassay 

Gold 
nanoparticle 

E. coli O157:H7 
Casein-
PBS 

100 CFU/ml 
(Cho et 
al., 2015) 

DNA targets  
Aptamer based isothermal 
strand displacement 
amplification 

Colorimetric 
beads 

S. enteritidis 
Spiked 
milk 

10 CFU/test 
(Fang et 
al., 2014) 
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4.5.1. Polymerase chain reaction (PCR)  

PCR is one of the most widely used techniques in molecular biology for DNA 

amplification. Integration of PCR into microfluidic devices, which are capable to provide 

higher surface to volume ratio, faster rate of mass and heat transfer and the ability to 

precisely handle very small volume of reagents, can result in miniaturized, portable and 

rapid detection platforms with favourable performance. Tachibana et al. (Tachibana et al., 

2015) fabricated a self-propelled continuous-flow PCR (SP-CF-PCR) chip for rapid and 

quantitative detection of E. coli O157 with a detection sensitivity of 0.031 pg/µl of purified 

DNA. Injection-moulded cyclo-olefin polymer (COP) was used as a cost-effective method 

to fabricate the disposable microfluidic PCR chip. In this system, the PCR chip was placed 

on two heater blocks with adjusted temperatures of 95 °C and 60 °C (Figure 10A). The 

PCR solution loaded into the inlet flows into the microchannels by capillary force. A driving 

microchannel placed behind the PCR microchannel maintains the capillary force to control 

the flow of the solution. DNA amplification was performed within the chip and fluorescence 

signals were screened as the detection marker. In another study, Shu et al. (2014) 

reported a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) 

on a spiral-channel microfluidic device consisting of disposable polytetrafluoroethylene 

(PTFE) capillary microchannel coiled on three isothermal blocks for multiple identification 

of DNAs of S. enterica, L. monocytogenes, E. coli O157:H7 and S. aureus. The 

segmented flow regimes were sequentially generated in a microchannel, while the channel 

was coiled around three heating zones with constant predefined temperatures for 

denaturation, annealing, and extension (Figure 10B). The multiplex PCR mixture of each 

sample segment was containing multiple pairs of primers together with different (multiple) 
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DNA templates. The system was a proof of concept for the multiplex detection of bacterial 

pathogens using purified DNA isolated from spiked banana, milk, and sausage, with a 

detection limit of 100 copies/µl. 

In addition to PCR integrated microfluidic devices, Bian et al. (2015) described a droplet 

digital PCR (ddPCR) platform for the simultaneous and sensitive detection of pathogenic 

bacteria in water. In this ddPCR platform, a mineral oil-saturated polydimethylsiloxane 

(OSP) chip was used to overcome the problem of water droplet evaporation. The system 

integrated droplet generation, on-chip amplification and end-point fluorescence readout 

(Figure 10C) to detect E. coli O157:H7 and L. monocytogenes with a detection limit of 10 

CFU/ml in drinking water. Hung et al. (2016) reported a novel LOC platform with integrated 

injection-moulded polymeric supercritical angle fluorescence (SAF) micro-lens array for 

rapid multiplexed solid phase amplification and detection of various Salmonella species. 

(Figure 10D). In this system, pathogen-specific DNA probes were immobilized directly on 

the surface of the SAF array located at the bottom of a microchamber. The PCR reaction 

mixture was mixed with small amount of forward and Cy3-labeled reverse primers in 

solution. After the initial amplification of the pathogen DNA in the liquid phase to increase 

the copy number of DNA templates, the targeted DNA will bind to the immobilized probes 

on the SAF array, and the polymerase will extend the matched probes. Using this method, 

highly-multiplexed amplification can be achieved in a small space with thousands of 

different probes located at separate spots. After the reaction, PCR products could remain 

attached on the surface through covalent binding, and fluorescence signals were collected 

through the SAF structures, allowing their detection using a CCD sensor. 
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Figure 10. Different PCR based DNA amplification strategies on microfluidic devices for 
pathogen detection. (A) Self-propelled continuous-flow PCR (SP-CF-PCR) chip. The PCR 
solution is loaded into the inlet hole, where it will autonomously flow by capillary force. The 
driving microchannel shown in the illustration will maintain the capillary force for 
continuous flow of the solution. Adapted with permission from ref. (Tachibana et al., 2015), 
2015 copyright Elsevier B.V. (B) Design principle of the spiral-channel SCF-MPCR 
platform for on-chip amplification. Adapted with permission from ref. (Shu et al., 2014), 
2014 copyright Elsevier B.V. (C) Fabricated mineral oil saturated PDMS (OSP) microfluidic 
chip for simultaneous detection of E. coli O157 and L. monocytogenes by DD-PCR. 
Samples dropped into the inlet were drawn to the cross-section using a syringe pump 
applied at the outlet, resulting in the formation of nano-droplets. Reproduced with 
permission from (Bian et al., 2015), 2015 copyright Elsevier B.V. (D) Concept of SP-PCR 
performance on SAF array design. Adapted with permission from ref. (Hung et al., 2016), 
2016 copyright Elsevier B.V. 

 

4.5.2. Loop mediated isothermal amplification (LAMP) 

Isothermal DNA amplification technologies serve as desirable alternative to PCR 

methods due to their performance at a constant temperature and less energy required. 

PCR methods are limited by the thermal constrains and needs an electrically powered 

thermal cycler with precise control of the three temperature stages and a fast transition 

between stages, which is usually accomplished by a bulky and power-intensive apparatus. 
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Integration of isothermal DNA amplification technologies in microfluidic detection system 

can make it easier to develop portable microfluidic platforms for the POC assays. Table 5 

shows several examples of different isothermal DNA amplification technologies used for 

foodborne pathogen detection. 

In LAMP, the target sequence is amplified at a constant temperature of 60–65 °C using 

either two or three sets of primers and a polymerase with high strand displacement activity 

and replication activity (Nagamine et al., 2002; Notomi, 2000). This technique produces a 

tremendous amount of amplified products that may even be detected by naked eyes when 

using appropriate DNA staining techniques (Amin Almasi, 2012; Xie et al., 2014). LAMP 

has been widely used for identification of various foodborne pathogens, such as 

Salmonella spp., Campylobacter spp., Listeria spp., E. coli, S. aureus, Clostridium, etc. 

(Mori et al., 2013; Niessen et al., 2013). Oh et al. (2016) developed a miniaturized 

colorimetric centrifugal device coupled with LAMP for the identification of multiple 

foodborne pathogens, including S. typhimurium, E. coli O157 and Vibrio parahaemolyticus. 

Similarly, a microfluidic platform with 16 amplification chambers for LAMP reaction coupled 

with colorimetric assay was developed. In this system, all the main steps, such as 

pathogen detection, reagent preparation, LAMP, and detection are integrated into a single 

microfluidic compact disc (Sayad et al., 2016). Different studies have adopted LAMP to 

LOC systems using real-time fluorescence detection for quantitative analysis of multiple 

foodborne pathogens (Tourlousse et al., 2012; Duarte et al., 2013). However, in all these 

systems, the sample preparation and nucleic acid purification processes were performed 

off-chip prior to LAMP amplification. Sun et al (2015) reported a real time quantitative 

detection method using an eight-chamber LOC system integrated with magnetic bead-

based sample preparation and LAMP for rapid real-time detection of Salmonella in 
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enriched pork meat samples.  Simple design, together with the high capacity of integration, 

facile isothermal amplification, and quantitative analysis of multiple samples in short time 

has been shown as the practical applicability of all the LAMP mediated LOC systems for 

rapid on-site screening of various food borne pathogens. 
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Table 5. Examples of different isothermal DNA amplification technologies performed for 
microfluidic based identification of various foodborne pathogens.  

 

4.5.3. Recombinase polymerase amplification (RPA) 

The RPA amplifies DNA at a constant temperature between 37 ˚C to 42 ˚C using target 

specific primer pair in combination with three core enzymes, i.e., recombinase, single 

stranded DNA binding protein and a strand displacing polymerase. The RPA reaction 

progresses rapidly and results in specific DNA amplification from just a few target copies to 

DNA 
amplification 
technology 

 

Technology and 
detection 
system 

 

Foodborne Pathogen 
 

Sample 
matrix 

 

Assay 
sensitivity 

Reference 

LAMP 

centrifugal 

microfluidic 

device 

S. typhimurium , E. coli 
O157:H7, Vibrio 
parahaemolyticus 

Purified 
DNA 
 

0.2 pg (380 
copies) 
 

(Oh et al., 
2016) 

Salmonella 

Purified 
DNA from 
spiked 
Tomatos 

5 pg/ul 
(Sayad et 
al., 2016) 
 

Real time LAMP 
on polymeric 

chip 

Salmonella, Campylobacter 
jejuni, Shigella 
Vibrio cholerae 

Purified 
DNA 
 

10-100 
Genome/ul 
 

(Tourlousse 
et al., 
2012) 
 

Listeria monocytogenes, E. 
coli 
Salmonella 

Cultured 
cell 

10
5
 CFU/ml 

(Duarte et 
al., 2013) 

Salmonella  Spiked pork 
50 
cells/reaction 

(Sun et al., 
2015) 

RPA 

centrifugal 
microfluidic 

device 

Salmonella 
PBS 
Milk 

10 CFU/ml 
10

2
 CFU/ml 

(Choi et al., 
2014) 

S. enterica, E. coli 
O157:H7 , Vibrio 
parahaemolyticus 

Milk 4 cells/3.2 ul 
(Oh et al., 
2016) 

centrifugal 
microfluidic 

device 

Enterococcus faecium, S. 
aureus,  Escherichia coli 
MG 1655,  Pseudomonas 
aeruginosa 
 

PBS,  
Milk  

10 CFU/ml 
10

2
 CFU/ml 

(Kim et al., 
2014) 

NASBA 

immobilized tm 
RNA extraction 

S. pneumoniae 
 

Cultured 
sample 
 

0.1-10 CFU 
 

(Scheler et 
al., 2011) 

Immunocapturing 
coupled with 

NASBA 
E. coli, Rotavirus Water 10

5
 CFU/ml 

(Zhao et 
al., 2012) 
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detectable levels, within 10 min. In RPA, the use of probes containing a nucleotide 

analogue along with exonuclease III enzyme allows real-time fluorescent detection while 

endonuclease IV enzyme facilitates the detection of amplified RPA products in lateral flow 

based strip (Piepenburg et al., 2006). Recently, various RPA based assays have been 

developed for the detection of Salmonella (Santiago-Felipe et al., 2015), Listeria (Eid and 

Santiago, 2017), Norovirus (Moore and Jaykus, 2016) and Shiga toxin-producing 

Escherichia (Murinda et al., 2014). Kim et al. (2014) reported a fully integrated Lab on a 

disk system where three steps, including DNA extraction, RPA amplification, and 

detection, were integrated into a single disc. A single laser diode was utilized for wireless 

control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification 

step. Similarly, Renner et al (2017) described a micro-device for the multiplex detection of 

various food poisoning bacteria. This microdevice was composed of identical triplicate 

functional units, where each unit has four reaction chambers, thereby making it possible to 

perform twelve direct RPA reactions simultaneously. In addition, vacuum degassed 

microfluidic cartridge, preloaded with lyophilized RPA reagents, were used for high 

sensitive (LOD of ∼10 nucleic acid molecules) detection of various bacterial pathogens 

(Enterococcus faecium, Pseudomonas aeruginosa, S. aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, and Enterobacter spp.). This device uses a small portable 

battery-powered electronic reader to endow the device with the advantage of low power 

consumption and cost.  

4.5.4. Nucleic acid sequence based amplification (NASBA) 

NASBA is an alternative method to RT-PCR for the amplification of RNA at a constant 

temperature around 41°C. A NASBA reaction consists of avian myeloblastosis virus (AMV) 

reverse transcriptase (RT), T7 RNA polymerase, RNase H and two oligonucleotide 
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primers. The NASBA reaction does not generate false positive amplification caused by 

genomic dsDNA, as is the case for RT-PCR (Compton, 1991). The amplification product of 

the NASBA is a single stranded RNA, which can be further detected by various techniques 

such as electrophoresis, hybridization probes, and lateral flow assays. A number of real-

time NASBA are already in use for detection of various foodborne pathogens, including S. 

enterica, Vibrio cholerae, S. aureus, Campylobacter jejuni, and Campylobacter coli 

(Simpkins et al., 2000; Churruca et al., 2007; Fykse et al., 2007; O’Grady et al., 2009;). 

Dominov et al. (2008) developed NASBA based microfluidic devices incorporating all the 

steps of transfer-messenger RNA (tRNA) purification, NASBA-based amplification, and 

real-time fluorescence detection in a single, monolithic, PDMS microfluidic device. They 

applied silica bead immobilization on the substrate surface for capturing tRNA, which 

increased the effectiveness of sample purification and sample concentration.  

It is worth pointing out that NASBA-mediated microdevices are not only applied for 

identification of microbes, but also for other purposes such as RNA purification, 

amplification, and detection in different point-of-care molecular diagnostics. For example, 

Zhao et al. (2012) reported a real time immuno-NASBA assay integrated into a PMMA 

LOC device for quantitative detection of waterborne pathogens like E. coli and Rotavirus 

with a LOD of 105 CFU/mL. 

4.5.5. Helicase dependent amplification (HDA)  

In HDA technology, DNA helicase is applied to generate single-stranded templates, 

which are then available for primer hybridization and subsequent primer extension by a 

DNA polymerase (Vincent et al., 2004). HDA occurs at a fixed temperature and utilizes a 

simple and rapid reaction mechanism for exponential amplification of the target sequence. 

These properties show great potential in simplifying portable POC devices for online food 
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analysis. Over the last years, HDA has been implemented in various microfluidic devices. 

In some of these systems, all the steps, including DNA extraction, amplification, and 

detection have been integrated into a single device while some required separate DNA 

extraction steps (Mahalanabis et al., 2010; Huang et al., 2013). Zhang et al. (2011) 

developed a total integrated droplet-based microfluidic system using HDA for detection of 

E. coli.  Andresen et al. (2009) also described the combination of HDA with microarray-

based detection of N. gonorrhoeae and S. aureus pathogens. The simplicity of the reaction 

setup, potential for multiplexed analysis and possibility of miniaturization are the main 

advantages of this system, owning a possibility to be adapted for the integration into LOC 

devices and rapid online detection of foodborne pathogens. However, development of 

such systems is still at its infancy stage and needs further research to develop 

miniaturized devices for foodborne pathogen detection. As a summary, Table 6 has listed 

the main advantages and limitations of various detection techniques applied for 

microfluidic based foodborne pathogen detection. 

Table 6. The summary of advantages and disadvantages of detection methods applied on 
microfluidic devices. 
 

Detection mode Advantages Disadvantages Reference 

Biosensor-
based 

Optical 
Biosensors 

• Desirable sensitivity 
• Allows real-time  
detection 
• Enables label-free 
detection  

• High cost 
• Poor specificity 
• Interference with food 

(Choi et al., 
2016; Yoo and 

Lee, 2016) 

Electrochemical 
Biosensors 

• Automated 
• Handling large 
numbers of samples 
• Enables label-free 
detection  

• Poor specificity 
• Difficult to test samples 
with low amount of 
microorganisms 
• High risk of Interference 
with food matrices 
• Many washing steps 

(Ronkainen et 
al., 2010; Vidal 

et al., 2013) 

Immunological 
methods ELISA 

• Desirable Specificity 
• Possibility of 
detecting bacterial 
toxins 
• Handling large 

• Risk of cross-reactivity 
with similar antigens 
• Low sensitivity 
• False negative results 
• Requires trained personnel 

(Law et al., 
2014; Ng et al., 

2010; Thiha 
and Ibrahim, 

2015) 
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numbers of samples • Requirement of antibodies 
or antigens labelling 

LFA 

• Simplicity to 
operate 
• Sensitive 
• Low cost 
• Reliable 
• Specific 
• Possibility of 
detecting bacterial 
toxins 

• Requirement of antibodies 
and/or antigens for labelling  

(Li and 
Macdonald, 

2016; 
Posthuma-

Trumpie et al., 
2009; Wu et 

al., 2015) 

Nucleic acid-
based 

PCR 

• Automated  
• Desirable specificity 
• Desirable sensitivity 
• Reliable 

• Difficult to distinguish 
between viable and non-
viable 
cells  
• Affected by PCR inhibitors 
• Needs DNA Purification  

(Law et al., 
2014; Lazcka et 
al., 2007; P. K. 
Mandal et al., 

2011) 

LAMP 

• Low cost 
• Desirable sensitivity 
• Desirable specificity 
• No need for 
thermal 
cycling system 
• Easy to operate 

• Insufficient to detect 
unknown or un-sequenced 
targets  
• Complication of primer 
design 

(Law et al., 
2015) 

RPA 

• High specificity 
• Sensitivity  
• Multiplexing is 
possible 
• Robust to biological 
substances 
• No initial heating 
step 
 

•  relatively long primer 
chain (30 or more)  
• Difficulties of optimization  
 

(Vignali, 2000; 
Choi et al., 

2014; Lillis et 
al., 2016) 

NASBA 

• Desirable sensitivity 
• Low cost 
• High specificity 
• Can detect viable 
bacteria without 
interference from 
DNA from dead 
bacteria 
• Does not require 
thermal cycling 
system 
 

• Complicated design 
(Law et al., 

2015) 

HDA 

• Sensitive 
• Simple primer 
design 
• Robust to biological 

• Expensive enzymes 
 

Ramalingam et 
al., 2009; 

Mahalanabis et 
al., 2010; 
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substances 
• No initial heating 
step 

Zaghloul and 
El-shahat, 

2014) 

 
 
7. Conclusion and outlook  
 

Efficient detection of foodborne pathogens is an important priority for the food industry. 

Microfluidic technologies are suggested to improve the selectivity, sensitivity, and 

efficiency of pathogen detection and replace the current conventional labour-intensive and 

slow culturing methods for analysis of pathogens in foods. However, efficient multi-

pathogen capturing from complex food samples for high-throughput multiplex analysis has 

remained elusive. This is mainly due to the lack of “universal bacterial adsorbents” with 

high binding affinity to various pathogens. To date, antibodies are the most commonly 

used molecules for recognition, capturing, and concentrating of target pathogens from 

food sample in integrated microfluidic devices. In recent years, other alternatives 

molecules, such as aptamers, lectins, phage endolysins, etc., have emerged as suitable 

candidates. Using molecularly imprinted polymers (MIPs) is another method, suggested for 

bacterial capturing through highly specific three-dimensional binding sites that are 

complementary to the analyte in size, shape, and orientation (Birnbaumer et al., 2009; 

Haupt  Mosbach, K., 2000). However, this method also suffers from some disadvantages, 

such as incomplete template removal from the MIPs.  

All the strategies suggested above can be integrated into microfluidic systems to 

promote the performance of pre-concentration and sample preparation steps separately or 

in combination with other techniques, such as acoustophoresis, magnetophoresis or 

filtration. Rapid detection technologies, such as nucleic acid amplification using PCR, 

LAMP, RPA or NASBA can be applied with optical or electrochemical techniques in 

microfluidic devices for rapid detection of foodborne pathogens. Although optical 
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techniques usually provides better sensitivity than that of electrochemical detection, they 

are often more expensive and complicated (due to the integration of very sensitive optical 

detectors). Electrochemical-based microfluidics also requires improvement in terms of 

better performance and reproducibility. 

In response to demands for lower price per test of pathogen detection by microfluidic 

devices, the field is rapidly switching from highly sophisticated fabrication technologies to 

polymer or paper-based devices that can fulfil the requirement of the end users. For 

example, most of the silicon-based devices are nowadays replaced with polymethyl 

methacrylate, polycarbonate, and polystyrene polymer chips to overcome limitations that 

stem from optically opaque properties and relatively high expense of fabrication. In 

addition, nitrocellulose paper-based devices offer many advantages, such as compatibility 

with most biological samples, ease of surface functionalization with various ligands, low 

cost, disposability, and capability to let all types of aqueous solutions moving through the 

devices. Additionally, the papers contain well-defined and distributed pores within their 

structure, which allow size dependent separation of sample molecules (Kim et al., 2014; 

Zhang et al., 2015). In the near future, all these methods can be integrated within 

microfluidic systems and connect to smart phone technologies to generate the next 

generation of LOC systems that enable pathogen monitoring directly from foods (Xu et al., 

2015). In the end, it is worth pointing out that access to safe food is now much closer to a 

satisfactory level than ever before. However, more efforts are needed to move the lab-

scale LOC studies to industrial mass production level in order to achieve optimal tools for 

faster online or at site food analysis to improve food safety, healthcare, and quality of life. 
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