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1 Optimization under Uncertainty of a Biomass-Integrated Renewable Energy 
2 Microgrid with Energy Storage
3 Yingying Zhenga,*, Bryan M. Jenkinsa, Kurt Kornblutha, Chresten Træholtb, 

4 a Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, 
5 Davis, Ca 95616, USA

6 b Department of Electrical Engineering, Technical University of  Denmark, Elektrovej, 2800 Kgs. Lyngby, Denmark

7 Nomenclature
Abbreviations
MG microgrid
CHP combined heat and power
BCHP biomass-based CHP
GS biomass gasifier
ICE internal combustion engine
WT wind turbine 
PV photovoltaic
ES energy storage 
BT battery
PGS producer gas storage
TES thermal energy storage
HOB heat-only boiler
MCS Monte Carlo simulation
COE cost of energy
PDF probability density function
Symbols
E electricity demand (kWh)
H heat demand (kWh)        
Z net acquisition cost ($)
P purchase and installation (capital) cost ($)
O&M operation & maintenance cost ($/kWh)
F feedstock or fuel cost ($/kWh)
C hourly capital cost ($/h)
M rated capacity (kW)
N expected life (years)
s economic scaling factor
T length of planning horizon (h)
V set of all system components that contribute to capital cost
U set of all system components that contribute to O&M cost
x decision variable: hourly energy flow (kWh/h)
Superscripts and subscripts
t time step (s)
p actual facility
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o reference facility
i index of installed units that contribute to capital cost

j index of installed units that contribute to O&M and fuel 
cost

chr charging
dis discharging
min minimum charging and discharging rate (kWh/h)
max maximum charging and discharging rate (kWh/h)

8

9 Abstract
10 Deterministic constrained optimization and stochastic optimization approaches were used 
11 to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An 
12 economic linear programming model with a sliding time window was developed to assess design 
13 and scheduling of biomass combined heat and power (BCHP) based microgrid systems. Other 
14 available technologies considered within the microgrid were small-scale wind turbines, 
15 photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and 
16 heat-only boilers. As an illustrative example, a case study was examined for a conceptual utility 
17 grid-connected microgrid application in Davis, California. The results show that for the 
18 assumptions used, a BCHP/PV with battery storage combination is the most cost effective design 
19 based on the assumed energy load profile, local climate data, utility tariff structure, and technical 
20 and financial performance of the various components of the microgrid. Monte Carlo simulation 
21 was used to evaluate uncertainties in weather and economic assumptions, generating a 
22 probability density function for the cost of energy.

23 Keywords: microgrids, renewables integration, combined heat and power, biomass, modeling, 
24 energy storage, uncertainty, stochastic analysis

25 1. Introduction
26  Microgrids (MG) are smaller distribution networks usually installed close to the end 
27 users, and frequently contain hybrid energy resources, storage devices, and controllable loads. 
28 The traditional power grid is generally a large-scale centralized network where power plants 
29 generate high voltage electricity that is transferred and distributed to lower voltage end users. A 
30 significant fraction of electrical energy is dissipated in delivery due to the long distances between 
31 generator and load. Microgrids have been developed around the world as a means to address the 
32 high penetration level of renewable generation and reduce greenhouse gas emissions while 
33 attempting to address supply-demand balancing at a more local level [1]. 

34 The electricity generation of microgrid via solar PV and wind turbines depends, of course, 
35 on the total solar radiation and the wind speed in general. Due to the stochastic nature of these 
36 renewable energy resources, load behaviors, and market prices, a dispatchable generation unit is 
37 frequently included that can be turned on or off or modulated to adjust power output accordingly. 
38 The most common dispatchable units are diesel, natural gas, or biomass powered engine-
39 generators. Moreover, an energy storage system is adopted in most cases to neutralize mismatch 
40 between generation and demand and tackle the uncertainty of demand forecasts. Energy storage 
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41 provides the necessary means to shift the microgrid supply to a higher market price period based 
42 on the time of use. As an alternative to energy storage, load shifting can be applied to match 
43 demand with renewable energy generation. Load shedding may also be feasible, or other types of 
44 generation added to ensure demand is satisfied [2]. MG can also be operated with connection to 
45 the central power grid, in which case the central grid is used as a backup to reduce or eliminate 
46 the need for local storage, or while completely disconnected from the central grid or islanded [3]. 
47 When connected, the customer sometimes has the option of selling surplus electricity back to the 
48 utility grid operator under a net metering, feed-in, or other power purchase agreement.

49 In microgrid applications, both manufacturers and customers are interested to know the 
50 optimal capacity of the associated components of the system and the dispatch strategy to use in 
51 order to minimize cost and environmental impacts. Due to the computational complexity, a 
52 number of software packages have been developed to assist in microgrid design and assessment 
53 including HOMER [4-8] and DER-CAM [9-11]. Rohit et al. [12] proposed a hybrid off-grid 
54 system for a rural application with HOMER. Braslavsky et al. [13] presented an economic model 
55 of a shopping center, developed in DER-CAM, using on-site-specific demand, tariffs, and 
56 performance data for each technology option available. 

57 Furthermore, substantial studies on microgrid optimal design and operation are typically 
58 formulated as minimization or maximization problem constrained by energy demand, capacity 
59 limits, ramping rate, and startup or shutdown times [14-21], and most address electricity only 
60 although thermal loads may also exist. Both thermal and electrical load profiles can fluctuate 
61 hourly and seasonally and utility tariff prices for natural gas and electricity may change 
62 dynamically as well. In these cases, electricity-led assumptions cannot guarantee an optimal 
63 solution overall. A number of modeling studies incorporating CHP units in the microgrid have 
64 considered both electricity and thermal demand [22-29] but few address biomass integration 
65 including separation of the fuel production and power generation components.

66 Variables that are subject to uncertainty in microgrid design and operation include 
67 unscheduled maintenance, climatic conditions (e.g. wind and cloudiness), and energy market 
68 prices and demands [30-40]. Model prediction control and receding horizon control (RHC) are 
69 frequently used to predict and make decisions under uncertainty [41-47]. Jiang and Fei addressed 
70 the problem of adopting multiple CHPs for cost reduction in microgrid using hierarchical 
71 optimization [48]. Xie et al. [49] developed a look-ahead optimal control algorithm for 
72 dispatching the generation units with the objective of minimizing both generation and 
73 environmental costs. Silvente et al. [50] used the RHC approach to analyze uncertainty in both 
74 energy generation and demand. Monte Carlo simulation (MCS) has been widely used to evaluate 
75 the reliability of a microgrid by generating data from fixed probability distributions of stochastic 
76 variables, such as wind speed, solar irradiance, customer demands, and others [51-55].

77 Currently most of the CHP integrated microgrid sizing and scheduling studies have 
78 assumed the CHP system as a single unit. However, where a fuel generation unit, such as a 
79 biomass gasifier, is deployed, producer gas production and electricity generation can also be 
80 treated as two separate and independent processes. The producer gas after biomass gasification 
81 can be used directly to fuel an internal combustion engine, microturbine, or another prime mover 
82 for power generation, and also used in a furnace or boiler for heat generation to offset utility 
83 natural gas demand [56]. Most studies considering energy storage include thermal storage or 
84 battery; separate gas storage is typically not considered, instead relying on pipeline supply as the 
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85 storage equivalent and thereby subject to utility pricing. Biomass integrated models using RHC 
86 to schedule combined fuel gas generation and storage, engine cogeneration, auxiliary boiler and 
87 thermal energy storage operations have not previously been developed. 

88 To address the above-mentioned issues, a model was developed to optimize the design 
89 and scheduling of an integrated biomass combined heat and power microgrid (BCHP-MG) 
90 system. The model combines a deterministic optimization module with a stochastic module and 
91 Monte Carlo simulation. Developing a more general model capable of solving for the optimal 
92 configuration and dispatch of a renewable energy microgrid with the flexibility of biomass 
93 integration was the primary objective for this work. Specifically, the objectives include: 1) 
94 finding the optimal capacity of wind and PV generation in each proposed scenario, 2) developing 
95 an optimal dispatch strategy between the various BCHP, wind turbine (WT), PV, battery (BT), 
96 producer gas storage (PGS), thermal energy storage (TES), and heat-only boiler (HOB) 
97 components of the microgrid and the main utility grid (electricity and natural gas) based on 
98 hourly energy demands and tariff rates, 3) estimating the effects of BT capacity on the cost of 
99 energy (COE) for different scenarios, 4) evaluating the influence of tariff rates and demand 

100 profiles on the COE and unit dispatch strategies, and 5) investigating the impact of stochastic 
101 variables on the final COE probability distribution. 

102 2. Model development 
103 2.1. Microgrid system design
104 For quantifying the analysis, microgrid systems with the following components are 
105 considered (Fig.1): 

106
107 Fig. 1. Schematic microgrid system.
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108 The electricity demand is met by the sum of the BCHP, WT, PV generation and the BT 
109 discharge, within their operating limits and constraints. The electricity generated via the PV 
110 array and WT depends on the solar radiation and the wind speed in general. The power from the 
111 BCHP, WT and PV modules is allowed to charge the BT, depending on the operating strategy 
112 selected. Producer gas from the BCHP unit is assumed to be purified and cooled, and can be used 
113 directly as fuel for the engine-generator sets and the boiler, stored in the producer gas storage 
114 tank, or simply flared for disposal if no economic demand exists and storage is at full capacity 
115 [57]. The PGS can be charged when the energy demand is low and discharge during high 
116 demand to improve system reliability. It can also be deployed to increase export electricity under 
117 a power purchase agreement to raise system revenue when the utility price is high if on a time of 
118 use tariff. For internal combustion reciprocating-type engines, heat for other uses can typically 
119 be recovered from the engine cooling jacket, exhaust, and potentially the engine surfaces in a 
120 combined heat and power mode. The recovered heat can be employed for a number of purposes, 
121 including direct heat utilization but also chilling, cooling, and additional electricity generation in 
122 a combined cycle mode although the latter is not included here. Similar to PGS, the recovered 
123 thermal energy can be used immediately or stored in a thermal energy storage system, in this 
124 case a warm water tank is assumed. The auxiliary HOB operates to make up any heat shortage, 
125 with heat otherwise supplied from producer gas burned directly from the gasifier, producer gas 
126 taken from storage (PGS), or utility natural gas.

127 For utility grid-connected scenarios, any electricity or heat supply deficits from the 
128 microgrid are satisfied by purchasing electricity or natural gas from the utility. In some 
129 circumstances surplus electricity from the microgrid is available for delivery to the utility under a 
130 net metering, feed-in tariff, or other power purchase arrangement generating revenue for the 
131 microgrid operation. 

132 2.2. Microgrid component modeling
133 2.2.1. BCHP 
134 BCHP is assumed to operate as a load following power plant and alter its output to meet 
135 varying demands within the capacity limit. 

136                                           (1)PBCHP(t) = 𝑓(load)

137 In the case of BCHP, routine maintenance is required, but there is also the risk of 
138 unscheduled outages due to mechanical and other failures. In this study both the gasifier and 
139 engine are assumed to have a certain failure risk for unscheduled maintenance and would not be 
140 available for generation. The gasifier and engine failures are assumed to be independent, so that 
141 the gasifier or the engine may be available when the other fails. Both the gasifier and engine 
142 operation are treated as binary being either on (1) or off (0) with variable capacity when the units 
143 are on. The probability density function of the Bernoulli distribution is used to represent the 
144 stochastic nature of gasifier and engine. 

145                                                                                                     (2)                                      f(O) = { 1         for  Pf ≤  x < 1
0         for  0 ≤ x ≤ Pf �

146 Where f (O) is the operating mode of the gasifier or engine (independent); Pf is the failure chance 
147 of gasifier or engine.
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148 2.2.2. Wind turbine
149 Wind power generation depends on wind speed and the interference of the turbine with 
150 the wind. The output power of the turbine can be one of these three values [44]:

151                                             (3)          Pwt(t) = { 0                               if V(t) < Vcutin or V(t) > Vcutout
1
2CpρAwtV(t)3                      if Vcutin < V(t) < Vrated

   
1
2CpρAwtV

3
rated                      if Vrated < V(t) < Vcutout

 �
152 Where Pwt is the mechanical output power of the turbine (W), ρ is air density (kg /m3), Awt is the 
153 turbine swept area (m2), V is the undisturbed wind speed (m/s), Cp is the performance coefficient 
154 (or power coefficient) of the turbine, and Vcutin, Vrated and Vcutout are the cut in, rated, and cut out 
155 wind speed (m/s) of the turbine. 

156 Probability density functions (PDF) were used to characterize the stochastic behavior of 
157 wind speed. The wind speed over a predefined time period was estimated using a Weibull PDF 
158 [55].  

159                                                                                                       (4)f(V) =
k
c(V

c) 
k ‒ 1 

exp ( ‒ (
V
c))k

160                                                                                                                                 (5)k = (σ
μ) ‒ 1.086

161                                                                                                                                    c =
μ

Γ(1 + k ‒ 1)
162 (6)

163 Where f(V) is the frequency rate of wind velocity; c is the Weibull scale parameter, a measure of 
164 the characteristic wind speed of the distribution; k is the Weibull shape parameter and specifies 
165 the shape of a Weibull distribution, taking on a value of between 1 and 3; μ is the mean wind 
166 speed (m/s) and σ is the standard deviation of the wind speed (m/s). The parameters k and c can 
167 be computed from μ and σ. A small value for k signifies highly variable winds, while constant 
168 winds are characterized by a larger k. 

169 2.2.3. Photovoltaic module
170 The output power of the PV is given by the following equation [58] :

171                                                                                                                           (7)Ppv(t) = ηpvApvS

172 Where Ppv is the output power of the PV (W), 𝞰pv denotes the conversion efficiency of the PV 
173 array (%) including the intrinsic module efficiency and array shading factor as appropriate, Apv is 
174 the array area (m2), and S is the solar radiation, treated as a random variable (W/m2). 

175 Solar irradiation is a stochastic variable that depends on the weather conditions and 
176 possible changes in shading throughout the day. Local shading or terrain effects that may also 



ACCEPTED MANUSCRIPT

7

177 influence the resource availability are highly site-specific and not part of this analysis. The 
178 probabilistic nature of solar irradiance is considered to follow a beta PDF [59].

179                                                                     (8)                             f(S) =
Γ(α + β)

Γ(α) + Γ(β)S(α ‒ 1)(1 ‒ S)β ‒ 1,      α ≥ 0,β ≥ 0  

180                                                                                                                (9)β = (1 ‒ μ)(
μ(1 + μ)

σ2 ‒ 1)

181                                                                                                                                         α =
μβ

1 ‒ μ
182 (10)                 

183 Where α and β are the function parameters and S is the horizontal solar irradiance (kW/m2); α 
184 and β are calculated from the mean and standard deviation of solar irradiance μ and σ. Similar to 
185 the wind speed, an hourly average solar irradiance is used. 

186 2.2.4. Energy storage
187 As an energy storage device, the battery storage injects power to the microgrid when the 
188 local generation is insufficient and absorbs power from the microgrid when the local generation 
189 is abundant or a model decision criterion indicates that saving the electrical energy for the future 
190 hours would increase net economic benefit. Producer gas storage can be charged when the 
191 producer gas production is abundant or a model decision criterion decides that storing the 
192 producer gas for future generation either as electricity or heat would improve the value of the 
193 objective function. Thermal energy storage was modeled as sensible heat storage, using water as 
194 the storage medium, and considering only energy flows through the warm water storage tank. 

195 2.3. Mathematical formulation
196 2.3.1. Decision variables 
197 Decision variables express the microgrid operating modes and the energy flows (kWh/h) 
198 between system components. The x variables define the energy flows throughout the microgrid 
199 system, each labeled with a subscript denoting the specific energy transfer (Fig. 1). The variables 
200 mentioned, along with other energy transfers, are now defined according to this notation. Each 
201 hour of the analysis involves 31 decision variables (Table 1). 

202 Table 1 Decision variables.

Decision 
variables

Energy Flow from Energy Flow in to 

x1 gasifier  
x2 gasifier gas storage
x3 gas storage
x4 gas storage engine
x5 engine
x6 engine electricity demand
x7 electricity grid electricity demand
x8 electricity demand

BCHP

x9 gasifier engine
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x10 gasifier boiler
x11 storage boiler
x12 boiler
x13 natural gas grid boiler
x14 boiler
x15 engine heat recovery thermal demand
x16 thermal production
x17 thermal production thermal storage
x18 thermal production heating demand
x19 thermal storage heating demand
x20 heating demand
x21 gasifier flare
x22 engine electricity grid
x23 engine battery
x24 wind turbine electricity demand
x25 wind turbine electricity gridWT
x26 wind turbine battery
x27 solar panel electricity demand
x28 solar panel electricity gridPV
x29 solar panel battery
x30  batteryBT
x31 battery electricity demand

203

204 2.3.2. Objective function
205 The optimization in this case is developed from the objective to minimize the cost of 
206 energy of over a particular time horizon (T) using an hourly time base. The objective function is 
207 formulated as:

208                                                                                                        Min COE =
Z

T

∑
t = 1

(E t
load + H t

load)
209 (11)

210 Where Z is the net energy supply cost ($); Eload and Hload are the electricity and heating demand 
211 (kWh); T is the length of the planning horizon (h) and t is the time step.

212 The net energy supply cost consists of the levelized fixed or capital costs of the system, 
213 the feedstock and fuel supply costs, and all operating and maintenance (O&M) costs, all resolved 
214 to a uniform cost of energy considering the time value of money. Capital and O&M costs in 
215 general are subject to economies of scale and hence influenced by the size of the units included 
216 in the system [60]. Feedstock and O&M costs assumed not to be subject to economies of scale 
217 although in practice pricing may depend on supply quantities. 
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218                                                                         (12)                                                                                       Z =  
T

∑
t = 1

 ( ∑
i ∈ V

Ct
i + ∑

j ∈ U
(O&Mj

t + F
t

j
) ∗ xt

j  )

219                                                                                                                        Ci =
Pi

8760
ir(1 + ir)N

(1 + ir)N ‒ 1
220 (13)

221                                                                                                                                   (14) 
Pp

Po
= (Mp

Mo
)s

222 Where V is the set of all installed system components that contribute to capital cost; i is the index 
223 for all the installed units that contribute to capital cost; U is the set of all energy flows that create 
224 O&M and fuel cost; j is the index for the energy flows that create O&M and fuel cost; C is the 
225 hourly levelized capital cost ($); O&M and F are the hourly O&M and fuel cost of energy flow j 
226 at time t ($/kWh); x is the energy flow (kWh); P is the overnight purchase and installation cost 
227 that is influenced by an economy of scale defined by the value of s (0 ≤ s ≤ 1) [61]; ir is the 
228 interest rate, and N is expected life time (y). The constant 8760 is the conversion for the number 
229 of hours per year and is uncorrected for leap years. For the equation defining the economy of 
230 scale, Pp is the capital cost of facility or unit under consideration within the microgrid; Po is the 
231 known capital cost of a reference facility or unit of the same type, Mp is the rated capacity of the 
232 unit under consideration; Mo is the rated capacity of the reference unit.

233 2.3.3. Constraints
234 All energy flows (x1-31) are signed with lower (zero) and upper bounds with the latter 
235 being the maximum acceptable capacities. The electricity balance constraints the electrical 
236 demand to be satisfied by BCHP, WT, PV, BT or the grid power. The heat balance constraints 
237 the heating demand to be satisfied by the producer gas powered boiler, the natural gas powered 
238 boiler, the heat recovered from engine generator set, or some combination of these sources. 
239 Therefore, the energy balances at time t for the microgrid can be written as follows: 

240                                                                                              (15)                    xt
6 + xt

7 + x t
24 + x t

27 + x t
31 = E t

load

241                                                                                                                                    (16)  x t
20 = H t

load

242 The BT and PGS storage levels at the current time step t depend on the storage level at 
243 previous time step (t-1) and the current charging or discharging rate. The BT and PGS energy 
244 balances are:

245                                                                                                             (17)                         BTt = BTt ‒ 1 + x t
30 ‒ x t

31

246                                                                                                            (18)PGSt = PGSt ‒ 1 + xt
2 ‒ xt

3

247 Where BTt and PGSt are the energy storage level at current time step t, BTt-1 and PGSt-1 
248 the amounts of energy stored in BT and PGS at previous time step t-1. 

249 Storage level constraints require that storage levels should be in the range between the 
250 minimum and maximum determined safety and economy. The constraints of charging and 
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251 discharging indicate the changing rate for BT and PGS should be within the upper and lower 
252 limits. The maximum charge and discharge rate is for the model developed here assumed to be 
253 half of the rated capacity. The charging and discharging efficiencies of BT and PGS are assumed 
254 small although this is not a general constraint of the model. The constraints for TES are as same 
255 as BT and PGS.

256                                                                                                                (19)BTmin ≤ BTt ≤ BTmax  

257                                                                                                    (20)BT_chrmin ≤ x t
30 ≤ BT_chrmax

258                                                                                                     (21)                                                                              BT_dismin ≤ x t
31 ≤ BT_dismax

259                                                                                                            (22)PGSmin ≤ PGSt ≤ PGSmax

260                                                                                                 (23)PGS_chrmin ≤ xt
2 ≤  PGS_chrmax

261                                                                                                   (24)        PGS_dismin ≤ xt
3 ≤ PGS_dismax

262 Where BTmin and BTmax are the minimum and maximum allowed BT energy storage level 
263 at any time, and the same goes for PGS; chrmax and dismax are the maximum allowed charging and 
264 discharging rates; chrmin and dismin  are the minimum allowed charging and discharging rates. 

265 The power ramping constraint, expressed in kWh per hour, indicates how much a 
266 generator can change its output between two successive time steps.

267                                                                                                            (25)|xt
1 ‒ xt ‒ 1

1 | ≤ G_ramprate

268                                                                                                            (26)|xt
6 ‒ xt ‒ 1

6 | ≤ E_ramprate

269 Where x1 is the biomass gasifier production at time t; x6 is the ICE production at time t; G_ 
270 ramprate and E_ ramprate are the ramping rates of the gasifier and the engine-generator, which is 
271 related to the capacity and type. 

272 Some decision variables are coupling with each other and constrained by energy balance, 
273 for example:

274                                                                                                                 xt
1 = xt

2 + xt
9 + x t

10 + x t
21

275 (27)                                                                                               

276 Where x2, x9, x10, and x21 represents the energy flow out of biomass gasifier to either gas storage, 
277 engine, boiler, or flare, respectively (Table 5). Similar energy balance constraints are shown in 
278 Fig. 1. 

279 This mathematical formulation of the system design and unit commitment problem is a 
280 linear convex optimization problem. The model implementation was here solved using 
281 MATLAB with its optimization toolbox (MATLAB 2016a, Mathworks, Natick, Massachusetts).1 

1 mention of a specific tradename does not constitute an endorsement by the University of California.
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282 2.4. Solution method
283 The model discussed here chains a deterministic planning optimization module with a 
284 stochastic module (Fig. 2). 

285
286 Fig. 2. Microgrid optimization modules.

287 2.4.1. Performance surface method 
288 The model is first solved deterministically to derive the optimal wind and solar capacities 
289 for each proposed microgrid scenario. The capacity of WT and PV units is gradually increased 
290 from none to 250 kW (with 10 kW of increment) in a search for the optimal capacity yielding 
291 minimum cost with the rest of units fixed. The criterion of selecting the best hybrid energy 
292 system combination for a proposed site is based on minimizing the cost for different renewable 
293 combinations, the output of the optimal sizing and operation being the preferred set of WT and 
294 PV modules. The entire procedure is repeated for all the possible combinations. The combination 
295 with the lowest cost overall is selected as optimal design for each scenario.  

296 2.4.2. Sliding time window
297 Once all the unit capacity has been fixed, the dispatch of the available units to meet 
298 demand at the lowest cost is required. The hourly operation strategy of the different hybrid 
299 configurations is determined by using linear constrained optimization. The sizing and operating 
300 strategies are interdependent so a different set of component configurations is analyzed in each 
301 hybrid combination to find the optimal hybrid system. 

302 A sliding time window method is used to first determine the optimal operation of all 
303 microgrid components [43, 50]. For the examples included here, a 4-hour time window is used 
304 with known electrical and heat demand. Each hour has a total of 31 solution variables (Fig. 1), 
305 which for a 4-hour horizon requires solving for 124 variables. Within each time window, linear 
306 optimization is applied to obtain the gasifier, gas storage, engine, boiler, thermal storage, WT, 
307 PV and BT operation giving the minimum operating cost. Only the solution for the first hour is 
308 retained to compute the actual generation and cost. At the same time, the new initial conditions 
309 of all the energy storage devices including the BT, PGS, TES units are updated. The time 
310 window is then incremented by one hour, and the process repeated for the entire time horizon (27 
311 hours for a 24 hour period). The sliding time window approach is summarized in the following 
312 steps (Fig. 3).
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313

1 hour 4-hour optimization based on 
 actual energy demand and price 

1 hour 4-hour optimization based on 
 actual energy demand and price 

1 hour 4-hour optimization based on 
 actual energy demand and price 

1 hour 4-hour optimization based on 
 actual energy demand and price 

1 hour 4-hour optimization based on 
 actual energy demand and price 

hour 1 hour 2 hour 3 hour 4 hour 5

314 Fig. 3. Sliding window method (4-hour window illustrated over a period of 5 hours).

315 1. Specify initial conditions of energy storages. 
316 2. Optimize the system operation as outlined above for the period from t_initial to t_initial+ 
317 T (T: sliding time window width).
318 3. Obtain the optimal operating points of all units.
319 4. Set the operating conditions of the first hour of the window to the optimal conditions. 
320 5. Update energy storage conditions. 
321 6. Slide the window 1 hour forward in time. 
322 7. Repeat from step 2. 

323 2.4.3. Monte Carlo simulation
324 Monte Carlo simulation was conducted to generate a finite number of possible outcomes 
325 based on the probability distributions of assumed stochastic parameters. A total of 1000 Monte 
326 Carol simulations were used to generate the cost of energy distributions for each scenario. The 
327 distribution of simulated outcomes for the 1000 realizations of the COE provided the risk profile. 

328 3. Model application
329 3.1. Case study definition
330 The input data for the model were divided into the following categories: 1) customer 
331 information (load profile and weather data), 2) technical information (physical characteristics 
332 and specifications of all units, efficiency, heat to power ratio, power generation PDF, etc.), 3) 
333 financial information (capital cost, O&M cost, fuel costs, tariff rate). In the deterministic model, 
334 the output of the model is the optimal microgrid design and dispatch (based on the COE values). 
335 In the stochastic model, the output of the model is the probability distribution of COE.  

336 For the case study located in Davis, California, a typical winter daily residential 
337 electricity load profile from the local utility was scaled up and used for analysis. A winter daily 
338 thermal demand profile from the UC Davis campus was scaled down to represent thermal energy 
339 usage (Fig. 4). The studied microgrid scale is around 100 kW. Therefore, the input load profiles 
340 are scaled up or down to the desired range. For the scenario analyses, the peak and base load 
341 demand for electricity and heating were in the range of 72-200 kW and 50-172 kW, respectively. 
342 Davis hourly solar and wind data in February were obtained from the California Irrigation 
343 Management Information System (CIMIS).
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344
345 Fig. 4. Model hourly electricity and heat demand for February in Davis, California.

346 Technical and economic parameters for the wind turbines and PV assumed here are based 
347 on a 10 kW unit capacity. The efficiency and cost of the power converters have been included in 
348 the overall PV and wind turbines’ efficiencies and costs. All parameters assumed for BCHP is 
349 based on a 100 kW unit capacity. All units are assumed to subject to 20 years life time and 6% of 
350 interest rate (Table 2). 

351

352 Table 2 Technical parameters and cost assumptions for components of the microgrid [62-65]. 

 
Parameters Unit Value
Discount/interest rate % 6
Economic life years 20

All 
units

Economic scale factor - 0.9
Rated power kW 100
Capital cost  $/kW 4500
O & M cost    $/kWh 0.03
Feedstock cost $/kWh 0.02
Electricity efficiency - 0.3

BCHP

Heat recovery factor - 0.6
Reference module rated power kW 10
Reference module rotor diameter m 7
Capital cost   $/kW 2154
O & M cost   $/kWh 0.005
Fuel cost       $/kWh 0
Cut-in wind speed m/s 2.5

WT

Cut-off wind speed m/s 50
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Rated wind speed m/s 11
Air density kg/m^3 1.23
Betz Coefficient - 0.593
Reference module rated power kW 10
Reference module surface area m^2 64
Capital cost   $/kW 3463
O & M cost   $/kWh 0.005
Fuel cost       $/kWh 0

PV

Electricity efficiency - 0.2
Rated capacity kWh 200
Capital cost   $/kWh 255
O & M cost    $/kWh 0

BT

Round trip efficiency - 0.9
Rated capacity kWh 200
Capital cost   $/kWh 80 
O & M cost   $/kWh 0.005

PGS

Round trip efficiency - 1
Rated power kW 150
Capital cost   $/kW 120
O & M cost    ($/kWh) $/kWh 0.005

HOB

Efficiency - 0.85
353 Both capital and operating costs are also subject to uncertainty. An assumption was made 
354 here that all the capital and O&M costs are uniformly distributed over the range from zero to 
355 twice the reference cost, the lower bound representing an extreme incentive case with a high 
356 subsidy. The gasifier and engine are both assumed to have 5% of failure risk for unscheduled 
357 maintenance and would not be available for generation. The shape and scale factors for Weibull 
358 and Beta distribution are estimated by the curve fitting function in Matlab based on historical 
359 wind speed and solar irradiance data. Table 3 lists the 13 uncertainty parameters and their 
360 associated PDFs. 

361 Table 3 Stochastic parameters and assumed PDF.

Stochastic parameter PDF PDF specifications

BCHP Capital cost  ($/kW) Uniform [0,9000]

WT Capital cost ($/kW) Uniform [0,4308]

PV Capital cost ($/kW) Uniform [0,6926]

BT Capital cost ($/kW) Uniform [0,510]

GS O&M cost  ($/kWh) Uniform [0,0.04]

ICE O&M cost ($/kWh) Uniform [0,0.02]

WT O&M cost ($/kWh) Uniform [0,0.01]
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PV O&M cost ($/kWh) Uniform [0,0.01]

BT O&M cost ($/kWh) Uniform [0,0.002]

Wind speed (m/s) Weibull Shape factor k=1.6337; scale factor c=2.7813 

Solar irradiance (w/m^2) Beta Shape factor a=0.0058; scale factor b=0.070

GS availability Bernoulli Pf = 0.05

ICE availability Bernoulli Pf = 0.05

362 For TOU rates, the price of electricity changes by time of day (Table 4). For natural gas, 
363 the price is assumed to be constant throughout the day. The electricity buyback price is assumed 
364 to be $0.04/kWh based on the net surplus compensation rate approved by the California Public 
365 Utilities Commission (CPUC) [66].

366 Table 4 Electricity tariff rate

Energy Source Category Tariff rate ($/ kWh) Time
off-peak 0.22 00:00-09:59 am; 09:00-11:59 pm
partial-peak 0.30 10:00-11:59 am; 07:00-08:59 pm

Electricity Buy

peak 0.40 12:00-06:59 pm
Electricity Sell all day 0.04 N/A
Natural gas Buy all day 0.08 N/A

367 Five design configuration scenarios were selected to investigate various aspects of the 
368 biomass integrated microgrid optimization (Table 5). All are utility grid interconnected, installed 
369 with a 200 kW HOB and a 200 kWh TES. A net energy metering agreement is included with 
370 compensation for surplus electricity delivered from the microgrid to the utility. BCHP, PV and 
371 WT are allowed for connection to a utility meter. Scenario 1 includes only wind and PV 
372 generation with battery storage. This option is a good alternative for locations with very limited 
373 heat demand but abundant wind and solar resources, or areas without abundant biomass 
374 resources. Scenario 2 includes all the all three renewable sources but without producers gas 
375 storage. Scenario 3 also includes all three renewable sources with a full complement of producer 
376 gas, thermal, and battery storage but the biomass component is insufficient to meet peak load by 
377 itself. Scenario 4 is the same as Scenario 3 but with added BCHP capacity, in this case a 
378 duplicate unit for a total biomass generation of 200 kW, slightly higher than peak load. Scenario 
379 5 is the presumed conventional system and supplies energy demands entirely from the utility 
380 electricity and natural gas grids. 

381 Table 5 System components of the 5 proposed scenarios (●=unit included, x=unit excluded).

Scenario BCHP_1 BCHP_2 WT PV PGS BT
1 x x ● ● x ●
2 ● x ● ● x ●
3 ● x ● ● ● ●
4 ● ● ● ● ● ●
5 x x x x x x

382
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383 3.2. Deterministic model results
384 3.2.1. Optimal microgrid design
385 The lowest COE was found among all the possible combinations of WT and PV modules 
386 (WT: 0-250 kW; PV: 0-250 kW) (Table 6). 

387 Table 6 Optimal system combinations.   

Scenarios System Configuration                                Optimal WT Installed 
units 

Optimal PV Installed 
units

1 BCHP (0),  PGS (0), BT (200) 180 170
2 BCHP (100), PGS (0), BT (200) 0 160
3 BCHP (100), PGS(200), BT(200) 0 160
4 BCHP (200), PGS(200), BT(200) 0 130
5 BCHP (0), PGS(0), BT(0) N/A N/A

388

389  Figs.5-8 illustrate the 3D surface of cost response as a function of the capacities of WT 
390 and PV for scenarios 1 to 4. The optimum WT and PV capacity can be found around the 
391 minimum points in the figures. For scenario 1, when no BCHP is considered, the model yields 
392 the lowest cost with 180 kW of wind capacity and 170 kW of PV capacity. For scenarios 2, 3 and 
393 4, when BCHP is included, no wind capacity is adopted for the cost structure assumed. The 
394 reference installed capital cost for PV was assumed to be $3165/kW with $0.005/kWh for O&M; 
395 for wind, the reference capital cost was $2175/kW with $0.005/kWh for O&M. Although the 
396 wind is assumed to have a lower capital cost, the wind speed profile for the site selected (Davis, 
397 California) has only 9 hours of the day with speeds above 2.5 m/s, the cut-in wind speed. Hence, 
398 generation is low and generation cost exceeds that of PV. From an economic viewpoint, PV and 
399 BCHP are the most attractive technology for this site under these cost assumptions. The optimal 
400 outcomes will in general differ depending on location. Comparing scenarios 2 and 3, no change 
401 in installed PV capacity is associated with the addition of producer gas storage. For scenario 4, 
402 with an oversized 200 kW BCHP, the optimal PV capacity declines to 130 kW. 

403
404 Fig. 5. COE surface of scenario 1 as a function of WT and PV capacities.
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405
406 Fig. 6. COE surface of scenario 2 as a function of WT and PV capacities.

407
408 Fig. 7. COE surface of scenario 3 as a function of WT and PV capacities.
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409
410 Fig. 8. COE surface of scenario 4 as a function of WT and PV capacities.

411 For the assumptions used in these examples, the total cost of the optimal system 
412 configuration varies from a low of $0.1182/kWh for Scenario 2, the 100 kW BCHP with 200 
413 kWh battery storage scenario, to a high of $0.2029/kWh for Scenario 5, the utility only supply 
414 scenario. Scenario 4, with a 200 kW BCHP capacity and 130 kW of PV achieves 100% 
415 renewable supply through the microgrid with no utility purchase, but is higher in generation cost 
416 than the hybrid microgrids of Scenarios 2 and 3 relying on both microgrid and utility generation. 
417 Because of the boiler’s installation, there is also installation cost in scenario 5 (Table 7). 

418

419

420 Table 7 Optimal COE values and cost composition for 5 scenarios.

Composition of total cost ($) scenario 1 scenario 2 scenario 3 scenario 4 scenario 5
Installation 239.75 259.91 263.37 334.94 7.70
O&M+Fuel 19.44 276.51 281.33 342.99 11.60
Electricity purchase 290.26 55.18 55.18 0.00 804.42
Natural gas purchase 218.44 28.44 28.45 0.00 218.44
Net metering credit -16.48 -12.77 -10.95 -5.01 0.00
Daily total cost 751.40 607.27 617.37 672.91 1042.16
COE ($/kWh)  0.1462 0.1182 0.1202 0.1310 0.2029

421

422 Fig. 9 illustrates the economic results for the proposed 5 scenarios. Even with additional 
423 capital and installation costs, the introduction of BCHP reduces the need for electricity and 
424 natural gas purchases, and the overall total cost and COE are decreased through this on-site 
425 generation. In addition, the producer gas storage does not lead to obvious economic gains, due to 
426 the low cost assumed for purchased natural gas. 
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427
428 Fig. 9. COE values and cost composition for various scenarios.

429 To evaluate the effect of demand patterns from other times of the year on the optimal 
430 microgrid configuration, the model was also tested using daily electrical and thermal load data 
431 for summer. The lowest cost, $0.1136/kWh, is also found for scenario 2 employing the 100 kW 
432 BCHP with solar PV and battery storage. Scenario 1, with a 170 kW wind turbine capacity and 
433 130 kW of PV achieves a COE of $0.1349/kWh, which is lower than the COE of scenario 1 in 
434 winter. That is because the heating demand is much lower in summer and the influence from the 
435 absence of a heat source in scenario 1 is minimized. For the same reason, the COE of scenario 4, 
436 with a 200 kW gasifier, is $0.1390/kWh in summer, which is higher compared to the COE in 
437 winter.

438 3.2.2. Optimal microgrid dispatch
439 Figs. 10-13 illustrate the optimal energy flows from the BCHP, WT, PV, and BT units as 
440 well as the grid to the demand during the selected 24 hour period. These graphs show the optimal 
441 dynamic operation based on the cost minimization.

442 For scenario 1, when no BCHP is adopted, most of the electricity during midnight to 
443 early morning is supplied by purchasing electricity from the utility due to the absence of PV 
444 generation and low wind speed (<2.5 m/s) for the data set selected. The morning peak load 
445 demand occurs between 07:00 to 09:00 am coinciding with an increasing time of use tariff; 
446 therefore, the BT is used to balance the demand in conjunction with PV. From 10:00 am to 16:00 
447 pm, all of the electricity is generated from PV. After 07:00 pm, PV generation declines while as 
448 does the wind generation and import of grid power again increases to meet the nighttime demand 
449 (Fig.10). 

450 Scenarios 2 and 3 show similar optimal operating schedules except for the addition of the 
451 BCHP that carries most of the demand not met by PV. Grid electricity is purchased after 20:00 
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452 when both BT reserve is depleted, PV is absent and the residual demand exceeds the 100 kW 
453 supply from the BCHP unit (Figs. 11-12). 

454 Scenario 4 considers the case of having an oversized BCHP (200 kW) in the microgrid. 
455 In this case the BCHP is large enough to meet virtually all the nighttime demand when lower 
456 cost PV generation is absent with the exception of a small contribution from the battery in the 
457 later evening. No grid power is purchased and the microgrid independently meets the full system 
458 demand (Fig. 13). 

459
460 Fig. 10. Optimal electricity supply for scenario 1.

461
462 Fig. 11. Optimal electricity supply for scenario 2.
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463
464 Fig. 12. Optimal electricity supply for scenario 3.

465
466 Fig. 13. Optimal electricity supply for scenario 4.

467 3.3. Sensitivity analyses
468 Sensitivity analyses were performed on BT capacity, electricity and natural gas prices, 
469 and energy demands. The analysis was based on the results obtained from the most optimistic 
470 WT and PV capacities giving the lowest cost. 

471 3.3.1. Effects of battery capacity 
472 To study the effect of battery capacity on the COE, the battery energy storage was varied 
473 from 0 to 300 kWh. The upper limit corresponds to the storage size of charging the battery with 
474 100 kWh/h for 3 h. Because the sliding time window width is 4 h, the BT should be able to store 
475 at least 3 h of production. Fig. 14 illustrates COE as a function of the battery size for the 4 
476 scenarios with the optimal capacity of WT and PV. For scenarios 1, 2 and 3, the COE decreases 
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477 as the storage size increases. The larger the storage, the less purchased electricity is required by 
478 the customer during the higher tariff period. At approximately 125 kWh, the COE begins to 
479 increase due to the limitation of the gasifier capacity. With increasing length of the prediction 
480 window, part of the storage capacity becomes redundant. For example, if with an 80 kW engine-
481 generator set and a 12 hours sliding time window, even if  100% of the model generation is 
482 stored over the first 11 hours, the optimal BT capacity will not be 880 kWh, but instead will be 
483 something less to still meet the demand over the model interval. 

484
485 Fig. 14. COE as a function of battery capacity.

486 3.3.2. Effects of electricity and natural gas price
487 Fig. 15 and Fig. 16 show the results for the cost reduction ratio obtained by changing the 
488 electricity and natural gas price from 60% below to 60% above the reference prices. The 
489 microgrid provides greater cost savings as the price of purchased electricity increases (Fig. 15). 
490 However, the marginal benefit of having the microgrid declines with increasing grid price. A 
491 breakeven point is found for scenarios 1 and 4 at grid prices that are 55 and 45% lower than the 
492 assumed base case or reference price (negative cost reduction ratios indicate a preference for 
493 utility grid purchase). Moreover, although scenario 4 has the lowest cost savings at lower grid 
494 prices, as the grid price increases this scenario eventually achieves the same savings as scenarios 
495 2 and 3 and breaks even with scenario 1 at a grid price about 20% lower than the reference price.  
496 If the electricity price is reduced more than 20%, the no-BCHP case, scenario 1, is preferred. As 
497 the purchased electricity price continues to increase, the larger BCHP capacity becomes more 
498 attractive.

499  For scenario 1, as natural gas price changes from 60% below to 60% above the reference 
500 price, the COE cost reduction ratio decreases from 32% to 25% due to the lack of heat recovery 
501 from a BCHP unit (Fig. 16). For scenarios 2, 3 and 4, the BCHP heat recovery and producer gas 
502 can almost meet the full heat demand, therefore, increasing natural gas price does not influence 
503 the COE reduction ratio and a nearly positive linear relationship develops over the remainder of 
504 the cost range. 
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505
506 Fig. 15. COE reduction ratio as a function of increased electricity price.

507
508 Fig. 16. COE reduction ratio as a function of increased natural gas price.

509 3.3.3. Effects of demand changes 
510 Fig. 17 and Fig. 18 show the results for the cost reduction ratio obtained by changing the 
511 electricity and heat demand from 60% below to 60% above the reference values. The model 
512 yields a maximum cost reduction at around a 20% increase in the base electricity demand. At this 
513 demand level, the microgrid capacity is fully utilized for an overall improvement in cost of 
514 generation (Fig. 17). For the case of no BCHP or only a single BCHP unit is installed, the cost 
515 reduction ratio decreases slightly as the heat demand increases (Fig. 18). The overall impact on 
516 the COE is minor for scenarios 2 and 3, however, because the only heat resource in the microgrid 
517 is from BCHP (no electric resistance heating), which is absent in scenario 1, the COE becomes 
518 more sensitive to heat demand. For scenario 4, with 200 kW BCHP capacity, even when the heat 
519 demand is increased by 60% and the peak load is slightly over 200 kW, the microgrid still 
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520 supplies most of the thermal energy from engine heat recovery and the boiler. Therefore, 
521 increasing the heat demand does not require much additional natural gas and a positive 
522 relationship results in contrast to that for scenario 1. 

523
524 Fig. 17. COE reduction ratio as a function of increased electricity demand.

525
526 Fig. 18. COE reduction ratio as a function of increased heat demand.

527 3.4. Stochastic model results 
528 Many of the technical and economic assumptions used in the model are subject to 
529 uncertainty as well as variability. To assess the potential risk associated with decisions around a 
530 particular microgrid design, a stochastic model was developed employing Monte Carlo 
531 simulation for COE. Histograms from the Monte Carlo simulations are presented in Fig. 19. The 
532 BCHP scenario distributions (scenarios 2-4) are centered at lower COE even with a 5% 
533 possibility of the gasifier and/or engine failure than for the microgrid without BCHP (scenario 1). 
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534 The 200 kW BCHP case (scenario 4) shows the widest variation in COE with cost mostly 
535 ranging between 0.01 and 0.26 $/kWh, a width of $0.25/kWh while the scenario 2 and 3 span 
536 about $0.17/kWh. The no BCHP case (scenario 1) shows the narrowest variation in COE around 
537 the mean of $0.13/kWh. 

538
539 Fig. 19. COE probability distribution of scenario 1-4.

540 Table 8 shows statistics for these and other important results from the Monte Carlo 
541 simulations including descriptive statistics of the scenario distributions, the probabilities 
542 associated with any microgrid scenario reaching the optimal situation (deterministic COE), and 
543 the probability that any microgrid scenario will be preferred over the conventional utility grid 
544 supply (scenario 5). Note that scenario 4 has the highest probability, about 46%, of reaching the 
545 optimal COE. There is a better than 28 and 31% chance that the COE of scenarios 2 and 3 are 
546 less than or equal to the optimal value. For scenario 1, the probability of achieving the optimal 
547 COE is only about 20%., however, the distribution of COE is narrower around the mean. Even 
548 with uncertainty in the renewable generation, the microgrid options still yield odds of having 
549 lower COE than the utility supply only option (scenario 5) under the assumptions used. 

550

551
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552 Table 8 COE results from MCS. 

COE values from MCS ($/kWh)Scenario
Min Max Mean Range

P(≤ optimum COE) P(≤  COE of Scenario 5)

1 0.0911 0.2217 0.1653 0.1306 19.80% 96.00%
2 0.0482 0.2278 0.1402 0.1796 28.00% >99.9%
3 0.0570 0.2263 0.1391 0.1693 30.60% >99.9%
4 0.0123 0.2570 0.1427 0.2447 45.89% >99.9%

553

554  From the deterministic optimization analysis, scenario 2 has the lowest COE, 
555 nevertheless, if all the uncertainty factors are considered, scenario 3 provides the opportunity to 
556 achieve the lowest COE overall, albeit with reasonably low probability. With a 4-hour sliding 
557 time window, and the large BCHP capacity, any gasifier or engine failure in any but the first 
558 hour while the utility TOU electricity price is high, allows the BT and PGS storage to 
559 accommodate the lack of BCHP generation. For scenario 2, with the smaller 100 kW BCHP unit 
560 and no PGS, accommodation cannot be fully provided by the BT. Scenario 2 is also more 
561 dependent on solar energy than scenario 3 and 4, consequently, the uncertainty from solar 
562 radiation is reflected in the higher minimum cost for scenario 2. Scenario 4 also shows a much 
563 wider range of possible outcomes. To illustrate, the expected COE from scenario 2 is lower than 
564 scenario 4, but the odds of achieving that cost are lower. The microgrid design should consider 
565 the odds of obtaining performance below expectations and understand the tolerable risk. 

566 3.5. Sensitivity analysis of stochastic variables
567 Sensitivities of the results are presented for the three main power generation units, BCHP, 
568 WT and PV (Table 9). Changing the BCHP capital cost by 15% from the reference value results 
569 in average changes of 2.62, 2.00 and 9.87% in the mean COE for scenarios 2-4. When the BCHP 
570 O&M cost was changed by 15%, the average changes were 2.82, 4.89 and 6.96% in mean COE 
571 for these same scenarios 2-4. It is apparent that the BCHP investment and O&M cost uncertainty 
572 is more sensitive in the COE of scenario 4. With respect to the O&M cost, for each scenario, the 
573 COE varies by less than 5% indicating that COE is less sensitive to O&M cost category, 
574 although BCHP O&M cost is more sensitive than the WT and PV O&M costs.

575 The variation in wind speed and solar radiation yield greater than 5% change in the final 
576 cost for scenario 1, however, solar radiation does not show significant influence on the other 
577 scenarios. Therefore, in terms of total cost, the variation in market price is more important than 
578 the variations in wind speed and solar irradiance at the site if there is a BCHP on site.

579

580

581

582

583

584
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585 Table 9 Sensitivity analysis of the MCS results. 

Mean COE increase/decrease vs. baseline Case 
1 2 3 4

+15% BCHP Capital cost - 2.62% 2.00% 9.87%
+15% WT Capital cost 2.38% - - -
+15% PV Capital cost 2.28% 3.93% 2.34% 9.56%
+15% BCHP O&M cost - 2.82% 4.89% 6.96%
+15% WT O&M cost 0.00% - - -
+15% PV O&M cost 0.63% -1.93% -0.07% 0.92%
+15% Wind speed -6.36% - - -
+15% Solar irradiance -7.03% -3.44% -0.36% 3.06%

586

587 4. Summary and conclusions
588 A sliding time window optimization modeling approach was applied to the optimal 
589 design and dispatch scheduling of a renewable microgrid supplying both heat and electricity. A 
590 model microgrid was evaluated with biomass combined heat and power, wind and solar 
591 electricity generation, gas-fired boiler, and battery electric, producer gas, and thermal energy 
592 storage included.  

593 For the economic assumptions employed, BCHP can significantly improve the cost-
594 efficiency of such a microgrid when compared with utility-supplied grid electricity and natural 
595 gas to meet the electrical and heat demands. While for the example location used the mean wind 
596 speed was low and wind generation was not selected as optimal, other locations may show 
597 superior wind performance. In the optimal scheduling, the inclusion of batteries allows storing 
598 electrical energy when utility time of use rates are low and electricity purchase is acceptable, and 
599 satisfying demand from storage when the utility rates are high. 

600 Sensitivity analyses show how battery capacity can be optimized. Utility electricity and 
601 natural gas prices, as well as energy demand levels all have a significant impact on microgrid 
602 design decisions. Cost breakeven points exist for the microgrid against the more conventional 
603 utility supply scenario depend on utility pricing, demand, and supply capacities.  

604 The optimum dispatch was evaluated under uncertainty using the probability density 
605 functions anticipated for the primary parameters of concern. Monte Carlo simulation was then 
606 used to generate the probability distribution of COE as an indicator of risk. The lowest cost 
607 option may also have a higher risk of failing to reach the expected design performance. 
608 Sensitivity analysis indicated a greater sensitivity to capital cost than the O&M cost for the range 
609 of assumptions evaluated. The model provides a means to determine the major risk factors in the 
610 microgrid design and weigh the various advantages and disadvantages of each microgrid 
611 configuration. Further work will compare optimized scenarios based on both short-term and 
612 annual performance and include the uncertainties arising from demand-side management to alter 
613 both electricity and heat demand in a combined optimization. 



ACCEPTED MANUSCRIPT

28

614 Acknowledgments
615 Funding for this research was provided by the National Science Foundation through a 
616 Partnership for International Research and Education (PIRE) grant. We also gratefully 
617 acknowledge the financial support of the China Scholarship Council (CSC). 

618 Reference 
619 [1] Lasseter RH. Microgrids. Power Engineering Society Winter Meeting: IEEE; 2002, p. 305.
620 [2] Palensky P, Dietrich D. Demand side management: Demand response, intelligent energy systems, 
621 and smart loads. IEEE transactions on industrial informatics 2011;7:381.
622 [3] Hatziargyriou N, Asano H, Iravani R, Marnay C. Microgrids. IEEE Power and Energy 2007;5:78.
623 [4] Montuori L, Alcázar-Ortega M, Álvarez-Bel C, Domijan A. Integration of renewable energy in 
624 microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification 
625 plant by Homer Simulator. Applied Energy 2014;132:15.
626 [5] Acakpovi A, Hagan EB, Michael MB. Cost Benefit Analysis of Self-Optimized Hybrid Solar-
627 Wind-Hydro Electrical Energy Supply as compared to HOMER Optimization. International Journal of 
628 Computer Applications 2015;114.
629 [6] Mamaghani AH, Escandon SAA, Najafi B, Shirazi A, Rinaldi F. Techno-economic feasibility of 
630 photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. 
631 Renewable Energy 2016;97:293.
632 [7] Hafez O, Bhattacharya K. Optimal planning and design of a renewable energy based supply 
633 system for microgrids. Renewable Energy 2012;45:7.
634 [8] Castellanos JG, Walker M, Poggio D, Pourkashanian M, Nimmo W. Modelling an off-grid 
635 integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic 
636 digestion. Renewable Energy 2015;74:390.
637 [9] Marnay C, Venkataramanan G, Stadler M, Siddiqui AS, Firestone R, Chandran B. Optimal 
638 technology selection and operation of commercial-building microgrids. IEEE Transactions on Power 
639 Systems 2008;23:975.
640 [10] Siddiqui AS, Marnay C, Edwards JL, Firestone R, Ghosh S, Stadler M. Effects of carbon tax on 
641 microgrid combined heat and power adoption. Journal of Energy Engineering 2005;131:2.
642 [11] Stadler M, Siddiqui A, Marnay C, Aki H, Lai J. Control of greenhouse gas emissions by optimal 
643 DER technology investment and energy management in zero-net-energy buildings. European 
644 Transactions on Electrical Power 2011;21:1291.
645 [12] Sen R, Bhattacharyya SC. Off-grid electricity generation with renewable energy technologies in 
646 India: An application of HOMER. Renewable Energy 2014;62:388.
647 [13] Braslavsky JH, Wall JR, Reedman LJ. Optimal distributed energy resources and the cost of 
648 reduced greenhouse gas emissions in a large retail shopping centre. Applied Energy 2015;155:120.
649 [14] Hawkes A, Leach M. Modelling high level system design and unit commitment for a microgrid. 
650 Applied energy 2009;86:1253.
651 [15] Ren H, Gao W. A MILP model for integrated plan and evaluation of distributed energy systems. 
652 Applied Energy 2010;87:1001.
653 [16] Ren H, Zhou W, Nakagami Ki, Gao W, Wu Q. Multi-objective optimization for the operation of 
654 distributed energy systems considering economic and environmental aspects. Applied Energy 
655 2010;87:3642.
656 [17] Kellogg W, Nehrir M, Venkataramanan G, Gerez V. Generation unit sizing and cost analysis for 
657 stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Transactions on energy conversion 
658 1998;13:70.
659 [18] Zhang D, Shah N, Papageorgiou LG. Efficient energy consumption and operation management in 
660 a smart building with microgrid. Energy Conversion and Management 2013;74:209.
661 [19] Omu A, Choudhary R, Boies A. Distributed energy resource system optimisation using mixed 
662 integer linear programming. Energy Policy 2013;61:249.



ACCEPTED MANUSCRIPT

29

663 [20] Marzband M, Ghadimi M, Sumper A, Domínguez-García JL. Experimental validation of a real-
664 time energy management system using multi-period gravitational search algorithm for microgrids in 
665 islanded mode. Applied Energy 2014;128:164.
666 [21] Nwulu NI, Xia X. Optimal dispatch for a microgrid incorporating renewables and demand 
667 response. Renewable Energy 2017;101:16.
668 [22] Zhang D, Evangelisti S, Lettieri P, Papageorgiou LG. Optimal design of CHP-based microgrids: 
669 Multiobjective optimisation and life cycle assessment. Energy 2015;85:181.
670 [23] Wang H, Yin W, Abdollahi E, Lahdelma R, Jiao W. Modelling and optimization of CHP based 
671 district heating system with renewable energy production and energy storage. Applied Energy 
672 2015;159:401.
673 [24] Motevasel M, Seifi AR, Niknam T. Multi-objective energy management of CHP (combined heat 
674 and power)-based micro-grid. Energy 2013;51:123.
675 [25] Moradi MH, Hajinazari M, Jamasb S, Paripour M. An energy management system (EMS) 
676 strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing 
677 fuzzy programming. Energy 2013;49:86.
678 [26] Brandoni C, Renzi M. Optimal sizing of hybrid solar micro-CHP systems for the household 
679 sector. Applied Thermal Engineering 2015;75:896.
680 [27] Basu AK, Bhattacharya A, Chowdhury S, Chowdhury S. Planned scheduling for economic power 
681 sharing in a CHP-based micro-grid. IEEE Transactions on power systems 2012;27:30.
682 [28] Basu A, Chowdhury S, Chowdhury S. Operational management of CHP-based microgrid. Power 
683 System Technology (POWERCON), 2010 International Conference on: IEEE; 2010, p. 1.
684 [29] Xu X, Jia H, Wang D, David CY, Chiang H-D. Hierarchical energy management system for 
685 multi-source multi-product microgrids. Renewable Energy 2015;78:621.
686 [30] Moradi MH, Eskandari M. A hybrid method for simultaneous optimization of DG capacity and 
687 operational strategy in microgrids considering uncertainty in electricity price forecasting. Renewable 
688 Energy 2014;68:697.
689 [31] Coelho VN, Coelho IM, Coelho BN, Cohen MW, Reis AJ, Silva SM, et al. Multi-objective 
690 energy storage power dispatching using plug-in vehicles in a smart-microgrid. Renewable Energy 
691 2016;89:730.
692 [32] Haddadian H, Noroozian R. Optimal operation of active distribution systems based on microgrid 
693 structure. Renewable Energy 2017;104:197.
694 [33] Baziar A, Kavousi-Fard A. Considering uncertainty in the optimal energy management of 
695 renewable micro-grids including storage devices. Renewable Energy 2013;59:158.
696 [34] Abdullah MA, Muttaqi KM, Agalgaonkar AP. Sustainable energy system design with distributed 
697 renewable resources considering economic, environmental and uncertainty aspects. Renewable Energy 
698 2015;78:165.
699 [35] Neves D, Brito MC, Silva CA. Impact of solar and wind forecast uncertainties on demand 
700 response of isolated microgrids. Renewable Energy 2016;87:1003.
701 [36] Yan X, Abbes D, Francois B. Uncertainty analysis for day ahead power reserve quantification in 
702 an urban microgrid including PV generators. Renewable Energy 2017;106:288.
703 [37] Samimi A, Nikzad M, Siano P. Scenario-based stochastic framework for coupled active and 
704 reactive power market in smart distribution systems with demand response programs. Renewable Energy 
705 2017;109:22.
706 [38] Narayan A, Ponnambalam K. Risk-averse stochastic programming approach for microgrid 
707 planning under uncertainty. Renewable Energy 2017;101:399.
708 [39] Mandelli S, Merlo M, Colombo E. Novel procedure to formulate load profiles for off-grid rural 
709 areas. Energy for Sustainable Development 2016;31:130.
710 [40] Chaudry M, Wu J, Jenkins N. A sequential Monte Carlo model of the combined GB gas and 
711 electricity network. Energy Policy 2013;62:473.



ACCEPTED MANUSCRIPT

30

712 [41] Palma-Behnke R, Benavides C, Lanas F, Severino B, Reyes L, Llanos J, et al. A microgrid 
713 energy management system based on the rolling horizon strategy. IEEE Transactions on Smart Grid 
714 2013;4:996.
715 [42] Marietta MP, Graells M, Guerrero JM. A rolling horizon rescheduling strategy for flexible energy 
716 in a microgrid. IEEE Energycon: IEEE; 2014, p. 1297.
717 [43] Fang T, Lahdelma R. Optimization of combined heat and power production with heat storage 
718 based on sliding time window method. Applied Energy 2016;162:723.
719 [44] Wang X, Palazoglu A, El-Farra NH. Operational optimization and demand response of hybrid 
720 renewable energy systems. Applied Energy 2015;143:324.
721 [45] Siqi C, JunYong L, Jiaqi Y, Yaqi N, Yue X, Xin Z, et al. Optimal coordinated operation for 
722 microgrid with hybrid energy storage and diesel generator. Power System Technology (POWERCON), 
723 2014 International Conference on: IEEE; 2014, p. 3207.
724 [46] Pereira M, de la Peña DM, Limon D. Robust economic model predictive control of a community 
725 micro-grid. Renewable Energy 2017;100:3.
726 [47] Wang C, Liu Y, Li X, Guo L, Qiao L, Lu H. Energy management system for stand-alone diesel-
727 wind-biomass microgrid with energy storage system. Energy 2016;97:90.
728 [48] Jiang B, Fei Y. Smart home in smart microgrid: A cost-effective energy ecosystem with 
729 intelligent hierarchical agents. IEEE Transactions on Smart Grid 2015;6:3.
730 [49] Xie L, Ilic MD. Model predictive economic/environmental dispatch of power systems with 
731 intermittent resources. Power & Energy Society General Meeting, 2009 PES'09 IEEE: IEEE; 2009, p. 1.
732 [50] Silvente J, Kopanos GM, Pistikopoulos EN, Espuña A. A rolling horizon optimization framework 
733 for the simultaneous energy supply and demand planning in microgrids. Applied Energy 2015;155:485.
734 [51] Berg BA, Billoire A. Markov chain monte carlo simulations: Wiley Online Library; 2008.
735 [52] Bashir M, Sadeh J. Optimal sizing of hybrid wind/photovoltaic/battery considering the 
736 uncertainty of wind and photovoltaic power using Monte Carlo. Environment and Electrical Engineering 
737 (EEEIC), 2012 11th International Conference on: IEEE; 2012, p. 1081.
738 [53] Reddy SS. Optimal scheduling of thermal-wind-solar power system with storage. Renewable 
739 Energy 2017;101:1357.
740 [54] Dufo-López R, Cristóbal-Monreal IR, Yusta JM. Stochastic-heuristic methodology for the 
741 optimisation of components and control variables of PV-wind-diesel-battery stand-alone systems. 
742 Renewable Energy 2016;99:919.
743 [55] Jahangir H, Ahmadian A, Golkar MA. Optimal design of stand-alone microgrid resources based 
744 on proposed Monte-Carlo simulation. Innovative Smart Grid Technologies-Asia: IEEE; 2015, p. 1.
745 [56] Jenkins BM, Baxter LL, Koppejan J. Biomass combustion. Thermochemical processing of 
746 biomass: conversion into fuels, chemicals and power; 2011, p. 13.
747 [57] Jenkins B, Baxter L, Miles T. Combustion properties of biomass. Fuel processing technology 
748 1998;54:17.
749 [58] Nguyen DT, Le LB. Optimal energy management for cooperative microgrids with renewable 
750 energy resources. Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference 
751 on: IEEE; 2013, p. 678.
752 [59] Talari S, Yazdaninejad M, Haghifam M-R. Stochastic-based scheduling of the microgrid 
753 operation including wind turbines, photovoltaic cells, energy storages and responsive loads. IET 
754 Generation, Transmission & Distribution 2015;9:1498.
755 [60] Brum M, Erickson P, Jenkins B, Kornbluth K. A comparative study of district and individual 
756 energy systems providing electrical-based heating, cooling, and domestic hot water to a low-energy use 
757 residential community. Energy and Buildings 2015;92:306.
758 [61] Jenkins BM. A comment on the optimal sizing of a biomass utilization facility under constant and 
759 variable cost scaling. Biomass and Bioenergy 1997;13:1.
760 [62] Silvente J, Aguirre A, Crexells G, Zamarripa M, Méndez C, Graells M, et al. Hybrid time 
761 representation for the scheduling of energy supply and demand in smart grids. Comput Aided Chem Eng 
762 2013;32:553.



ACCEPTED MANUSCRIPT

31

763 [63] Wickwire S. Biomass Combined Heat and Power catalog of technologies. Washington, DC 
764 2007;1:10.
765 [64] DiOrio N, Dobos A, Janzou S. Economic Analysis Case Studies of Battery Energy Storage with 
766 SAM. National Renewable Energy Lab.(NREL), Golden, CO; 2015.
767 [65] Tidball R, Bluestein J, Rodriguez N, Knoke S. Cost and performance assumptions for modeling 
768 electricity generation technologies. ICF International, Fairfax, VA; 2010, p. 275.
769 [66]  Energy Metering (NEM)  Available: http://www.cpuc.ca.gov/General.aspx?id=3800Net 
770 [Accessed: October 2016].

771

http://www.cpuc.ca.gov/General.aspx?id=3800Net


ACCEPTED MANUSCRIPT

 A model was developed to optimize the design of a biomass-integrated renewable energy 
microgrid employing combined heat and power with energy storage. 

 A receding horizon optimization with Monte Carlo simulation was proposed to evaluate 
optimal microgrid design and dispatch under uncertainty.

 The model application provides a means to determine major risk factors associated with 
alternative design integration and operating strategies.


