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Abstract

This paper presents the �exible containership loading problem for seaport container ter-
minals. The integrated management of loading operations, planning of the transport vehicles
to use and their scheduling is what we de�ne as the Flexible Ship Loading Problem (FSLP).
The �exibility comes from a cooperative agreement between the terminal operator and the liner
shipping company, specifying that the terminal has the right to decide which speci�c container
to load for each slot obeying the class-based stowage plan received from the liner. We formulate
a mathematical model for the problem. Then we present various modelling enhancements and
a mathematical model to obtain strong lower bounds. We also propose a heuristic algorithm
to solve the problem. It is shown that enhancements improve the performance of formulation
signi�cantly, and the heuristic e�ciently generates high-quality solutions. Results also point
out that substantial cost savings can be achieved by integrating the ship loading operations.

1 Introduction

Maritime freight transport constitutes an important part of the global logistics systems. Bene�ting
from rapid globalisation, the containerised freight transport has been steadily growing over the past
decade apart from the year 2009 with the global �nancial crisis. The leading 100 container terminals
handled 539.2 million Twenty Equivalent Units (TEUs) in 2015 (UNCTAD (2016)) with an increase
by 6.8% from 2014. Therefore, the increasing container handling volumes make operations planning
a more complex and signi�cant challenge for container terminals.

Liner shipping companies have adapted to the growth in the transport volumes by increasing
the capacity of their services. This is done by deploying mega vessels of over 20,000 TEUs and
planning more frequent visits to the container terminals. Capacity is, however, not enough. A
reliable shipping service ensures that the cargoes arrive on time, so container terminals are required
to supply reliable and agile operations for their customers. The increase in vessels size intensi�es
the pressure on the container terminals. Meanwhile, shipping companies also expect terminals to
minimise the vessel turnaround (handling) times.

Vessel turnaround times might be reduced by deploying more Quay Cranes (QCs) and Transfer
Vehicles (TVs) on each vessel, however, this does not guarantee an improvement in the service
quality. There is a limited number of equipment that can be assigned to a vessel. Also, ine�cient
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management of this equipment can bring more congestion and deterioration in the overall perfor-
mance. Considering that QCs and TVs are limited resources with high operating costs, terminals
should rather optimise the use of these resources.

We refer readers to the literature reviews on decision problems in seaside operations (Carlo
et al. (2013), Bierwirth and Meisel (2015)), transport operations (Steenken et al. (2004), Carlo
et al. (2014b)) and yard operations (Li and Vairaktarakis (2004), Carlo et al. (2014a)) in terminals.
Literature reviews such as Kim and Lee (2015) note that there is a need for �exibility in operations,
and possible collaboration with the liner shipping company can bring some �exibility in the ship
loading related operations.

The e�cient loading of containers to the vessel has become a more complicated problem due to
the increase in vessel size, vessel numbers and complex technicalities. The high degree of industrial
requirements (e.g. lashing patterns, vessel stress forces and sta� working hour regulations) along
with all other mentioned challenges, make e�cient ship loading an even more complicated problem.
It also often happens that some of the containers are ready to be loaded earlier but have to wait
since they would be out of the planned load sequence. Due to the mentioned complexities and
limited handling equipment, most attempts to improve the loading operations could bene�t from
optimisation methods.

Some liner shipping companies are aware of the challenges that container terminals face and
have actively started to adapt their stowage plans in such a way that gives the terminal operator
more freedom to optimise the usage of their equipment. A stowage plan describes the arrangement
of containers on the vessel. In recent years, there has been a shift in the stowage planning policy
which is based on increasing collaboration between the terminal and the liner shipper. The liner
provides the terminal with the stowage plan based on container classes (a container class is de�ned
by the port of discharge, physical container dimensions, weight, etc.) which we refer to as class-based
stowage plan. The terminal has the �exibility of determining the position of speci�c containers of
the same class obeying the class-based stowage plan, and this ensures the �exible loading operations
(Monaco et al. (2014)). In this study, we integrate the assignment and scheduling of transfer vehicles
and container load sequencing with the assignment of speci�c containers to the vessel positions. We
call the entire problem the Flexible Ship Loading Problem (FSLP). We aim at reducing service
times of the handling equipment and meeting the deadlines on the �nishing time of the loading.

The contribution of the study is multi-fold. First, we introduce a new integrated container
terminal problem to improve the e�ciency of the loading operations. The problem addresses many
realistic and important aspects of the loading operations. We formulate a mathematical model to
solve the problem and some enhancements to improve this formulation. Then we suggest a model to
obtain lower bounds for the problem. We also propose a heuristic method to solve it. Computational
results show that the enhancements on the model signi�cantly improve its performance, but still,
the mathematical model is intractable for large-scale instances. The results for the heuristic show
that it outperforms the mathematical model with respect to both solution quality and computation
time, and instances, with up to 1000 containers to be loaded, are solved very e�ciently. We also
show that there are signi�cant cost savings by integrating these problems rather than solving them
in a hierarchical manner.

The remainder of the paper is organised as follows. Section 2 brie�y presents relevant literature.
Section 3 includes the problem de�nition. Section 4 provides the mathematical model and enhance-
ments on this formulation, while Section 5 presents a new method to obtain lower bounds. The
heuristic is detailed in Section 6. The results are discussed in Section 7, and �nally, the conclusions
and future research perspectives are presented in the last section.
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2 Relevant literature

The problem studied in this paper is related to the ship loading operations, and it covers aspects
such as stowage planning, load sequencing, and handling equipment routing and scheduling. A
detailed literature review on all of these problems can be found in Iris and Pacino (2015).

The stowage planning problem has been addressed in two di�erent ways in the literature. Some
papers aim at minimising handling costs ensuring stability and seaworthiness of a ship in its route
containing multiple ports. These studies agree that the problem belongs to the liner shipping
company (see Pacino et al. (2011), Parreno et al. (2016)). In this paper, we review studies that
consider the stowage planning problem for a single container terminal. Imai et al. (2002) study the
stowage planning at a single terminal with the aim of minimising yard re-handles and the stability
measure GM (i.e. the distance between the centre of gravity and the metacentre). Imai et al.
(2002) call this problem the containership loading problem. In comparison to Imai et al. (2002),
our work ensures that the stowage plan satis�es a class-based stowage plan that comes from the
carrier. Later, Imai et al. (2006) include trim and heeling to the objective function, and they also
extend the problem by covering multiple rows in the yard. In Ambrosino and Sciomachen (2003),
a stowage planning problem is solved in the �rst stage, and then two yard-handling strategies are
evaluated with the suggested stowage plan. The vessel stability is addressed by balancing the front-
back and right-left side of the ship (the details of the stowage planning problem are in Ambrosino
et al. (2004)). Recently, Monaco et al. (2014) distinguish between the stowage planning problem
solved by the liner shipping company (resulting in a class-based stowage plan) and the speci�c
container assignment problem of the terminal (called operational stowage planning problem). They
solely study the operational stowage planning problem and solve it through a two-phase tabu search
method. None of the above studies integrates the planning of the yard transport equipment with
the stowage planning which is subject of investigation in our paper. For such integrated planning,
Steenken et al. (2001) is the pioneering work. In comparison to our work, Steenken et al. (2001)
approach the problem with a just-in-time method. They solve a model that assigns each container
to a speci�c position and a speci�c Straddle Carrier (SC) for only one QC. In the case when multiple
QCs serve the ship simultaneously, they do not solve the speci�c container allocation problem for
all positions simultaneously unlike this paper. Instead, they suggest a best-�t method for each QC.

The second component of the FSLP is the load sequencing problem in which the loading order of
containers is decided. Such a problem is directly attached to QC assignment and scheduling problem
for a single ship (See examples such as Kim and Park (2004), Legato et al. (2012)) where required
QCs are assigned to each set of bays, and the loading order of the bays and positions are determined
for each QC. The load sequencing problem, which also determines the retrieval order from the yard,
is also related to the locations of the containers in the yard (See papers that determine yard location,
e.g. Jiang and Jin (2017), Zhen et al. (2016b)). Ji et al. (2015) study the load sequencing problem
with multiple QCs and yard con�gurations. The authors suggest three di�erent container relocation
strategies which determine the relocation position of the blocking containers in the yard. They solve
the problem with a Genetic Algorithm (GA) based method. Bian et al. (2016) determine the loading
sequence considering the number of re-handles in the yard. Bian et al. (2016) assume that a detailed
stowage plan is given and that only one QC is available to load the ship. They suggest a two-phase
method where they �rst order containers which do not require any re-handling, and then use a
dynamic programming algorithm to sequence the remaining containers. Kim et al. (2004) integrate
the load sequencing and Yard Truck (YT) scheduling considering a given class-based stowage plan.
The vessel stability is ensured by imposing weight and height limit constraints on the stacks. The
load sequencing is optimised, but a column-wise loading policy is prioritised. A two-stage method
is suggested. In the �rst stage, yard-clusters are sequenced (as in Lee et al. (2005)), while speci�c
containers are sequenced in the second stage. Some studies address the integrated load sequencing
and QC planning problems including internal reshu�es within a bay of the vessel (e.g. Meisel and
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Wichmann (2010), Ding et al. (2017)).
Carlo et al. (2014b) point out that there are many papers about the assignment of the transport

equipment to QCs and/or containers (e.g. Bish et al. (2005)), and the scheduling and routing of the
equipment (e.g. Kim and Kim (1999), Zeng and Yang (2009)). In this paper, we solely review studies
that integrate the handling equipment planning with load sequencing and/or stowage planning.
Alvarez (2006) integrate reach-stackers scheduling with stowage planning. The paper assumes that
loading policy is either column-wise or layer-by-layer, and it is decided beforehand. The problem
aims at minimising the number of re-handling, the travelling distance and vessel instability. A Tabu
Search (TS) based solution method is suggested. In a later work (Alvarez (2008)), a Lagrangian
Relaxation (LR) based solution approach has been suggested for a similar problem. Jung and Kim
(2006) integrate the load scheduling with yard crane scheduling for a single ship. The authors
consider the interference between adjacent yard cranes and attempt to minimise makespan.

3 The Flexible Ship Loading Problem

The FSLP is the integration of four planning problems in the terminal, namely operational stowage
planning, load sequencing, equipment assignment and equipment scheduling. This problem is con-
�gured to load a single ship, but it could be extended to multiple ships.

We now detail the FSLP by describing each of its components and their interactions. The
operational stowage planning problem (Monaco et al. (2014)) deals with assigning speci�c containers
in the yard to one slot (i.e. position) on the vessel with respect to the class-based stowage plan
supplied by liner shipping company. In Figure 1, a class-based stowage plan is illustrated for a
bay of a ship. In this �gure, there are four container classes to be loaded into the bay, namely A,
C, D, E, and the positions of containers in the yard area are shown. Two containers of the same
class have the same dimension and type, the same discharge port and a similar weight. The weight
di�erence is small enough so it does not have a huge impact on the stability of the vessel. The
liner shipping company is responsible for making the class-based stowage plan while ensuring the
vessel is seaworthy. The terminal then has the freedom to make a more detailed operational stowage
plan, where each position is assigned a speci�c container of the correct class. The number of vessel
positions for a class should exactly match to the number of containers of that class to be loaded.
While making the operational stowage plan, the terminal can take into account the planning of
in-house equipment, and thus optimise the operations. Figure 1 is a simpli�ed example of one bay
and yard, while the problem is solved for all bays that will be loaded.

The �exibility of selecting the speci�c container (among the same class containers) might bring
signi�cant savings on the travelling distance, and consequently the travelling time, of all containers.
Let us consider the example in Figure 2 with two containers of the same class (say two 40-foot
containers weighing between 20 and 22 tonnes having the same destination) are to be loaded. The
position of each container in the yard area is also shown, and an arrow represents the travelling
distance needed to bring the container to the vessel. In the �gure on the right side, the terminal
has made a better operational stowage plan that requires less travelling distance compared to the
operational stowage plan on the left side. Besides the minimisation of the travelling time, scheduling
vehicles also provide an overview of the tasks to be performed. Thus, if a container is far away from
the QC, terminal can account for this when doing the scheduling, and start to retrieve it considering
the travelling distance. Doing so, terminal can avoid waiting time for the QC.

The �exible assignment of containers in the same class helps to integrate the remaining problems
into the FSLP. The operational stowage plan is of no consequence for the liner so long as the
container classes are not changed.

The second component of the FSLP is the load sequencing problem which determines the loading
sequence of the containers in the yard. The sequence in which containers will be loaded is governed
by physical rules, and due to the speci�c layout of the vessel, some positions must be loaded before
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Figure 1: Class-based stowage plan to operational stowage plan
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Figure 2: Di�erent operational stowage plans: E�ect on travel distance.

others. The sequence is a�ected by the ready time (i.e. the time a container is in front of the
respective QCs) of each container, and this depends on various factors such as container locations
in the yard, the availability of TVs, the operational stowage plan, etc. The terminal might reduce
the total loading time by e�ciently sequencing containers (See Kim et al. (2004)).

The load sequencing problem is constrained by the QCs work-schedule. The QCs work-schedule
is a set of decisions that include the QCs assignment to bays of the vessel and the loading order
between the bays. The QC work-schedule is mostly determined in earlier stages with berth allocation
and QC assignment problem (See Iris et al. (2015), Turkogullari et al. (2016), Iris et al. (2017)).

The FSLP �nally covers the assignment and scheduling of transport equipment (i.e. transfer
vehicles). Integrating the TVs into the FSLP is vital because they are limited resources in the
terminal, and they might cause a bottleneck during loading operations. Moreover, generating a
feasible schedule of TVs will determine the ready time of each container in front of the respective
QC more accurately. These ready times in�uence the assignments of containers to each position
(operational stowage plan). In this study, time is discretised by minutes, and the time unit is one
minute. The FSLP studied in this paper covers the assignment of speci�c TVs to each QC and the
scheduling of all TVs to load all containers. In other words, the problem deals with determining
which speci�c container will be picked up by which TV at what point in the time. Each TV is
assigned to a speci�c QC for the entire planning horizon, but the TV does not necessarily have to
work from start to �nish. This means that, for example, a solution can hold 3 TVs working on a
QC for some time then it can be reduced to 2 TVs for the remaining loading time. We consider
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such a time-variant TV assignment in this study.
The problem de�nition is based on the following assumptions:

• Unloading operations are performed �rst, then loading operations start (i.e. the problem does
not include double cycling (Goodchild and Daganzo (2007))).

• QCs have been assigned to bays on the vessel beforehand, and each QC's loading order is
known. The load sequencing policy, "from-sea-to-land" (to ensure adequate visibility for QC
operator as noted in Steenken et al. (2001)) with "stack-wise" sequencing is applied by each
QC.

• Each container in the yard is ready to be retrieved when the transfer vehicle arrives at the
respective yard bay to pick up the container (e.g. a pre-marshalling problem has been solved
beforehand).

• The stability of the vessel is ensured with the class-based stowage-plan. Note that Pacino et al.
(2011) have shown that the stability errors in class-based stowage plans are mostly negligible.

• Each TV can only work for a single QC during the loading of the vessel. In other words, it is
not allowed to pool TVs for QCs, and all TVs are identical.

• TV operations are non-preemptive. When a TV is assigned to a QC, it does not stop until it
�nishes the given tasks on that QC, and each TV is in front of its respective QC in the initial
position.

• The congestion in the yard, the travel speed of a TV with/without a container are all re�ected
in the transportation times between yard positions (or Input/Output points depending on the
yard layout type) and QCs.

• There is no container bu�er area under the QC, and this means the TV and QC operations
are not decoupled.

In the FSLP we only optimise the loading operations. The main reason for this is that there is
less �exibility to exploit on the discharge operations since the unloading order and yard destination
of the unloaded containers are mostly determined beforehand.

A feasible solution to the FSLP holds the assignment of each container to a vessel position. A
solution also shows which TV will transfer each container to its position, the time of pickup from the
yard block and delivery time in front of the QC. The complete schedule of all TVs is also made. A
feasible solution ful�ls the requirements of the class-based stowage plan, QC work-schedules and the
load sequencing policy. We believe that our study is the �rst to integrate the above four problems.
It utilises the collaboration between liner shipping company and terminal operators.

4 Mathematical Model for the FSLP

4.1 FSLP Model

The list of notations, i.e. parameters, decision variables, is as follows:

Parameters and sets:

C Set of containers that will be loaded to vessel
Cp Set of containers belonging to a class suitable for slot position p
Q Set of quay cranes that are assigned to load the vessel
Qp Set of quay crane that loads position p (one element set)
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P Set of positions on the vessel to be loaded
P coni Set of positions on the vessel that match with the class type of container i
Pq Set of positions on the vessel that will be loaded by QC q
P cranep Set of positions on the vessel that are handled by the same crane as

position p
S Set of transfer vehicles available to serve the vessel
Sposp Set of transfer vehicles that are available to serve the vessel-position p
Sq Set of transfer vehicles that are available to serve QC q,

Sq ∈
{
s1
q , s

2
q , .., s

|Sq |
q

}

T Set of time periods, T ∈ {0, 1, ..,H − 1}, where H is the closing of
planning horizon

τip Time needed for a transfer vehicle to transport container i from its
yard-position to vessel-position p. The time needed is assumed to be
equal in both directions.

β The loading time for each QC, minimum time between two consecutive
container loading operations

EFT Expected �nishing time of operations for the vessel
α The cost of using one TV for one time-unit
γ The cost of exceeding the expected �nishing time (EFT) for one time-unit
M A large positive number

Decision variables:

tsp ∈ Z+ Time when container for position p has been dropped in front of QC by
TV s (container dropping time). If a position p is not served by TV s,
then tsp = 0.

Starts ∈ Z+ Time when operations of TV s start
Ends ∈ Z+ Time when operations of TV s end
z ∈ Z+ Makespan for the loading of entire ship (operations)
∆EFT ∈ Z+ The maximum tardiness of operations, i.e. the number of time units the

loading is �nished after the EFT. ∆EFT is 0 if the operations are
�nished at, or before the EFT.

xsip ∈ B 1; if the container i is loaded to position p, and it is picked up by TV s, 0
otherwise

As per the second assumption mentioned in Section 3, the load ordering of the positions on
the vessel is determined beforehand. We use the notation p̄ ≺≺ p to indicate that the position
p̄ is handled immediately before position p according to the ordering, while p′ ≺ p indicates that
position p′ is loaded before position p, by the same QC.

The binary decision variables xsip correspond to the operational stowage plan and TV assign-
ment to containers, while integer variables tsp, Starts, Ends handle the TV scheduling. Let us now
introduce the mathematical model:

minα
∑

s∈S
(Ends − Starts) + γ∆EFT (1)

subject to

∑

p∈P con
i

∑

s∈Spos
p

xsip = 1 ∀i ∈ C (2)

∑

i∈Cp

∑

s∈Spos
p

xsip = 1 ∀p ∈ P (3)

7



2τip −M(2− xsip −
∑

i′∈Cp′

xsi′p′) ≤ tsp − tsp′ ∀i ∈ C,∀s ∈ S, ∀p ∈ P coni , p′ ∈ P cranep | p′ ≺ p

(4)
∑

s∈S
tsp ≥

∑

s∈S
tsp̄ + β ∀p ∈ P,∀p̄ ∈ P cranep | p̄ ≺≺ p (5)

tsp ≤
∑

i∈Cp

Hxsip ∀p ∈ P,∀s ∈ Sposp (6)

tsp ≥ 2
∑

i∈C
τipx

s
ip ∀p ∈ P,∀s ∈ Sposp (7)

tsp − 2
∑

i∈C
τipx

s
ip +H(1−

∑

i∈C
xsip) ≥ Starts ∀s ∈ S,∀p ∈ P (8)

tsp ≤ Ends ∀s ∈ S,∀p ∈ P (9)

Starts ≤ Ends ∀s ∈ S (10)

z ≥ tsp + β ∀s ∈ S,∀p ∈ P (11)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sposp (12)

∆EFT ≥ z − EFT (13)

tsp, Starts, Ends, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S,∀p ∈ P (14)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P (15)

The objective function (1) is a combination of the cost of service times of TVs and the maximum
tardiness (if the loading �nishes after the expected �nishing time). Constraint (2) ensures that
each container will be loaded into a position that matches with its container class. Constraint
(3) guarantees that all positions are loaded with a container that matches the container class of
that position. For a given container, TV and position, constraint (4) makes sure that the container
dropping time for that position is set correctly. This is done by considering two positions that will be
loaded by the same QC, and forcing the di�erence between their dropping times to be greater than
or equal to the time required to bring the container (2τip) in front of the QC. The term multiplied
by M on the left-hand side in constraint (4) makes sure that the constraint is only active when the
two positions are transported by the same TV. Constraint (5) ensures that all positions are loaded
in the correct order, and the containers that will arrive at the same QC should have at least β
time apart. Constraint (6) ensures that tsp = 0 if TV s does not serve position p. Constraint (7)
guarantees that the earliest dropping time for a position is the transportation time of the container
which is loaded to that position. Constraint (8) sets the starting time of each TV operation, while
constraint (9) sets the ending time of each TV operation. If a TV is not assigned to any position,
these variables take a value of zero. Constraint (10) is the link between the starting and ending
time for each TV operation. Constraint (11) obtains the makespan, while constraint (12) ensures
that a container for position p cannot be picked up by TV s if TV s is not assigned to serve the QC
for position p. Constraint (13) calculates the maximum tardiness. Constraints (14)-(15) determine
the domain of variables. Firstly, we formulate an upper bound on H simply by assuming that
only one QC and one TV are used. We can, thus, obtain an upper bound on the planning horizon

H = max
{∑

p∈P

{
2 max
c∈Cp

{τcp}+ max
{

0, (β − 2 min
c∈Cp

{τcp})
}}
, β|P |

}
.

4.2 Enhancements for the FSLP model

This section introduces enhancements for our formulation. The enhancements are based on formu-
lating lower bounds on variables and valid inequalities for the FSLP.
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4.2.1 Lower bounds on the variables

Let us �rst formulate the minimum total transportation time that is required to transport containers
that will be loaded by QC q. The minimum overall time needed to transport all containers of a
particular QC q (δqmin) is obtained by solving an assignment problem that minimizes the total
required transportation time. Let xcp be the assignment variable, i.e. xcp = 1 if container c ∈ C
is assigned position p ∈ P , and 0 otherwise. The value of δqmin can be calculated by solving the
model in (16). The objective function minimises the transportation time obeying the class-based
stowage plan, and the �rst constraint ensures that all positions that will be loaded by QC q must
get exactly one container, and the second constraint ensures that each container can be loaded to
at most one position.

δqmin = min




∑

c∈C

∑

p∈P con
c

2τcpxcp :
∑

c∈Cp

xcp = 1 ∀p ∈ Pq,
∑

p∈P con
c

xcp ≤ 1 ∀c ∈ C



 ∀q ∈ Q (16)

We now set a lower bound on the completion time (i.e. makespan) variable z in constraint (17).
The makespan must be greater than or equal to the �nishing time of every QC. A lower bound on
the �nishing time of each QC is obtained by taking the maximum between the total loading time
for QC q and the minimum transportation time needed to load all containers of QC q.

z ≥ max
q∈Q

{
max{β|Pq|,

⌈
δqmin
|Sq|

⌉
}
}

(17)

4.2.2 Valid inequalities for the FSLP model

We formulate a better link between tsp and xscp variables in constraint (18). For each position p,
the sum of dropping times (tsp) for all TVs is at least the maximum of the total loading time of all
positions before p and the minimum transportation time required to load all positions before p.

∑

s∈Spos
p

tsp ≥ max





∑

p′≺p
β,

∑

p′≺p

∑

c∈Cp′

∑

s∈Spos
p′

2τcp′x
s
cp′

|SQp |





∀p ∈ P (18)

In constraint (18), the total loading time for all positions loaded by same QC before p is
∑

p′≺p β.
To calculate the minimum time to transport all containers before p, we �rst sum all transportation
times for positions before p (

∑
p′≺p

∑
c∈Cp′

∑
s∈Spos

p′
2τcp′x

s
cp′), we then divide this by total number

of TVs assigned to that QC. This results in minimum transportation time for all positions before
p. The two parts in constraint (18) are split up into two sets of constraints, to ensure the linearity
of the model.

The next set of valid inequalities focuses on the container classes rather than speci�c containers.
Let us name the set of container classes as U and the set of container classes for each QC q as Uq.
These sets can be easily obtained as we know the QC work-schedules and the class-based stowage
plan. We, also, can obtain the set of containers which is in the class of u (Cu), and the set of
positions which requires a container of class u and which will be loaded by QC q (Pqu). Valid
inequality (19) ensures that for each QC q and container class u belonging to set Uq, the total
number of containers of class u to be loaded by QC q equals to |Pqu|.

∑

s∈Sq

∑

i∈Cu

∑

p∈Pqu

xsip = |Pqu| ∀q ∈ Q,∀u ∈ Uq (19)

We also formulate inequalities to break some symmetries. In this paper, it is assumed that all
TVs available for a QC are identical. Hence a generated pickup order for a TV is feasible for all
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TVs. This property generates many symmetrical solutions where there are a lot of exactly indi�erent
alternative TV assignments. For each QC, constraint (20) ensures that for two TVs serving same
QC, the one with the higher index cannot work for a longer time compared to the one with the
lower index.

Ends − Starts ≥ Ends+1 − Starts+1 ∀q ∈ Q,∀s ∈ Sq \ {s
|Sq |
q } (20)

Finally, we formulate a valid inequality that better links the assignment (xscp) and scheduling
variables (Ends, Starts). Constraint (21) ensures that the service time of TV s (Ends − Starts)
is greater than or equal to the total transportation time for the containers that are going to be
handled by that TV s.

Ends − Starts ≥ 2
∑

i∈Cp

∑

p∈P con
i

τipx
s
ip ∀s ∈ S (21)

We call the enhanced version of the FSLP model as FSLP+.

5 New lower bounds for the FSLP

To obtain new lower bounds for the FSLP, we focus on the components of the objective function,
which are the cost of TV service times and the cost of ending later than expected �nishing time.
We formulate a new mathematical model that omits decision variables related to TV scheduling
(tsp, Starts, Ends), and this model obtains a lower bound for the FSLP. Let us �rst show that we
can obtain lower bounds on each objective component by solely using xsip variables.

Proposition 1:
∑

i∈C

∑

p∈P con
i

∑

s∈Spos
p

2τipx
s
ip is a lower bound on

∑

s∈S
(Ends − Starts).

Proof:
∑

i∈C

∑

p∈P con
i

∑

s∈Spos
p

2τipx
s
ip constitutes the total transportation time of all TVs, while

∑

s∈S
(Ends−

Starts) is the service time, and it includes the total transportation time and the TV waiting times.

Then,
∑

i∈C

∑

p∈P con
i

∑

s∈Spos
p

2τipx
s
ip ≤

∑

s∈S
(Ends − Starts) as the waiting time is always non-negative. �

Proposition 2: β + max
s∈S

{∑

i∈C

∑

p∈P con
i

2τipx
s
ip

}
is a lower bound on z.

Proof: Makespan (z) is bounded by the maximum of the �nishing times of all TVs plus the load-

ing time (β) of the last container. Then, we have to show that
∑

i∈C

∑

p∈P con
i

2τipx
s
ip is a lower bound

on the maximum �nishing time of each TV. The �nishing time of TV s is at least the summation
of all transport times for containers that it will load by that TV. �

Proposition 3: max
q∈Q

{
β|Pq|

}
is a lower bound on z.

Proof: Makespan (z) is bounded by the maximum of the �nishing times of all QCs that work
on the vessel. The �nishing time of one QC is at least loading time of all positions that the QC is
assigned to (β|Pq|). So that, the maximum of total loading times is a lower bound on z.�

We now suggest a mathematical model to obtain the lower bound on the FSLP using above
propositions. The model uses the same notation and variables of the FSLP model. We introduce a
new integer variable, TTSs, which presents the lower bound on the �nishing time of operations for
TV s. Now, let us introduce the new model which is called lower bound model, and it is abbreviated
as LB-FSLP:
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minα
∑

i∈C

∑

p∈P con
i

∑

s∈Spos
p

2τipx
s
ip + γ∆EFT (22)

subject to

∑

p∈P con
i

∑

s∈Spos
p

xsip = 1 ∀i ∈ C (23)

∑

i∈Cp

∑

s∈Spos
p

xsip = 1 ∀p ∈ P (24)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sposp (25)

TTSs = β +
∑

i∈C

∑

p∈P con
i

2τipx
s
ip ∀s ∈ S (26)

z ≥ TTSs ∀s ∈ S (27)

z ≥ β|Pq| ∀q ∈ Q (28)

z ≥
⌈
δqmin
|Sq|

⌉
∀q ∈ Q (29)

∆EFT ≥ z − EFT (30)

TTSs, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S (31)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P (32)

The optimal solution to (22)-(32) is a lower bound on the FSLP. The objective function (22) is
a combination of the cost of TV transportation times and the tardiness cost. Constraints (23)-(25)
are interpreted in a similar way as with constraints (2), (3) and (12) of the FSLP model. Constraint
(26) sets the lower bound on the �nishing time for each TV, constraint (27) uses these variables to
obtain a lower bound on the makespan. Constraint (28) sets the lower bound on �nishing time for
each QC, where |Pq| refers to the number of positions that will be loaded by QC q. Constraint (29)
uses the minimum transportation time to obtain the lower bound on the makespan for the vessel.
Constraints (31)-(32) de�ne the domains of variables.

6 Heuristic approach

Broadly speaking there are two main decisions to be taken in the FSLP. 1) The service times for
the TVs where Ends−Starts is service time for TV s and 2) the container-assignment for each TV
(xsip).

The objective function heavily depends on the service times of the TVs, which on the other
hand depend on the container-assignment. We propose a Greedy Randomised Adaptive Search
Procedure (GRASP) which initially imposes a speci�c service time to each TV. The scheduling and
container-assignment are then created attempting to respect the assigned service times. Within
each GRASP iteration, the generated solution is evaluated. Should a solution be promising enough,
it is improved using a local search method.

6.1 Construction heuristic

Following the idea of the two main decisions, the heuristic starts by assigning service times for the
TVs, and hereafter calculates a container-assignment while trying to adhere to the assigned service
times. Given an arbitrary assigned service time for each of the TV s ∈ Sq of QC q ∈ Q (de�ned by
Starts and Ends), a solution can be constructed with the following four steps:
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Step 0: Select QC

The construction heuristic builds the solution by considering the QCs in sequential order. The
�rst step is thus to select the next QC q to build the solution for.

Step 1: Assign containers to positions

Let 〈c, p〉 be the assignment of container c ∈ Cp to position p ∈ Pq, and Υ(q) be the set of all
container-assignments for the positions serviced by QC q ∈ Q. Starting from the �rst position
to be loaded until the last, the assignment of a container is done greedily by selecting the
closest available container. Thus, for an arbitrary position p we select container

c = arg min
c′∈Cp(x)

(
2τc′p

)
, (33)

where Cp(x) is the set of compatible containers for position p that have not yet been assigned
in solution x.

Step 2: Assigning TVs to positions

Let 〈c∗, p∗〉 ∈ Υ(q) describe the next container-assignment to which a TV needs to be dis-
patched (initially de�ned as the container-assignment for the �rst position in the loading order
of QC q).

For the position p∗ let Υ(q, p∗) be the set of the next ι container-assignments including 〈c∗, p∗〉.
Here ι is a parameter controlling the size of the set Υ(q, p∗). Also, let SA be the set of
active TVs s ∈ Sq. A TV is said to be active if it can service the container-assignment
〈c∗, p∗〉 without exceeding the assigned end time (Ends). More formally a TV is active if
max(as + 2τc∗p∗ , dp−1 + β) ≤ Ends, where as is the time TV s is available (i.e. the time at
which it �nished its last container delivery, or if no deliveries have been assigned Starts), and
where dp−1 is the time at which the QC began to service the previous position. If the QC has
not served any position then dp−1 = −β. Should SA = ∅ then we will consider SA = Sq.

We now select, through complete enumeration, the sequence of active TVs to service each
container-assignment in Υ(q, p∗) which results in the minimum completion time. In this con-
text, the completion time is the time in which QC q has �nished loading the last container-
assignment of Υ(q, p∗). For few TVs and small ι partitions, the exponential growth of the
number of sequence combinations is not an issue for the complete enumeration. We only
consider the active TVs to prioritise the scheduling of TVs that do not exceed the EFT. This
is due to the way TV service times are generated (more details are provided in Section 6.2.2).

Step 3: Assign TV and update times

Given the TV sequence found in Step 2, we only commit to the solution the TV scheduled
for container assignment 〈c∗, p∗〉. Practically we are only assigning the TV to the very next
position to load (p∗). Hereafter, the selected TV available time and the QC time are updated
(as and dp). The container-assignment 〈c∗, p∗〉 is then removed from Υ(q). Should Υ(q) = ∅,
go to Step 0 and process the next QC, otherwise go to Step 2.

6.2 GRASP

GRASP (Feo and Resende, 1989, 1995), is a multi-start iterative metaheuristic that combines a
constructive phase with an improvement phase. In each iteration, a solution is built from scratch
using a randomised construction heuristic, where a random strategy is used to provide diversity.
The improvement phase consists of a local search method used to improve the solution found in
the constructive phase. The GRASP method has successfully been applied to many optimisation
problems, such as the container stowage slot planning problem (Parreno et al., 2016), Vehicle rout-
ing problems (Kontoravdis and Bard, 1995) and the quadratic assignment problem (Pardalos and
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Resende, 1994), among others. A general outline of the GRASP algorithm for the FSLP is presented
in Algorithm 1.

Algorithm 1 GRASP

1: xb ← ∅
2: while not Terminate() do
3: x← RandomisedConstructionHeuristic()
4: x← VehicleReassignment(x)
5: if f(x) < f(xb)(1 + κ) then
6: x← ContainerSwap(x)
7: end if

8: UpdateBest(xb, x)
9: end while

10: return xb

The algorithm begins by generating a solution using a randomised version of the construction
heuristic described earlier (line 3). The randomised construction heuristic is described in Sec-
tion 6.2.1.

After a feasible solution has been found, it is then passed to the improvement phase. Two
improvement heuristics have been implemented, each focusing on di�erent aspects of the solution
and thus complementing each other. The �rst method is aimed at improving the TVs' schedule,
and it is used at every iteration (line 4). The second focuses on the container assignment. However,
due to its computational complexity, it is only used when the cost of the candidate solution (f(x))
is within κ percentage of the best-found solution cost (f(xb)). The improvement methods are
described in details in Section 6.2.3 and Section 6.2.4 respectively.

In each iteration, a new solution is made from scratch, and if the newly generated solution is
better than the previous best, it is kept (line 8). Once the termination criterion is reached, the
algorithm returns the best-found solution. In our approach, we use the number of iterations as
the termination criterion. Following we describe the implementation of each GRASP component in
detail.

6.2.1 Randomised construction heuristic

Randomization is included into the construction heuristic (Section 6.1) in three places: the order
in which QCs are processed, the container to position assignment (Step 1), and the generation of
the service times, which the heuristic is based on.

Randomizing the order in which the QCs are processed (Step 0), results in variations on the
assignment of containers to position. For the actual container to position assignment, let ρc be a
random number in the interval [0.5; 1.5]. At each iteration, a random number ρc is sampled for
every container c. The container c that minimises the driving distance times ρc is assigned to the
position p, thus e�ectively changing eq. (33) to (34).

c = arg min
c′∈Cp(x)

(
ρc′2τc′p

)
∀p ∈ Pq (34)

The last source of randomisation, the generation of service times, also takes care of the adaptive
part of the procedure (as explained in Section 6.2.2). Service times are generated on a per QC
basis using the following concept. Consider a QC q ∈ Q. We de�ne the total service time to be

νq =
∑

s∈Sq

Ends−Starts. Since the TVs are operating in parallel, the largest total service time that

a QC can have, without any delays, is |Sq|EFT . This corresponds to all TVs starting at time 0 and
ending at time EFT . The value of νq can be used to guide the generation of the service time of
each TV. We do so by imposing Starts = 0 for all TVs s ∈ Sq. We then assign Ends = EFT for as
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many TVs as possible. Hence exactly
⌊ νq
EFT

⌋
TVs will have this assignment for QC q. Any residual

value νq −
⌊ νq
EFT

⌋
will be assigned to one TV, while all remaining TVs are assigned Ends = 0.

The service times assignment is the base of the construction heuristic. Consider now Step 2 of the
heuristic. The procedure starts by scheduling only the active TVs, i.e. the TVs s ∈ Sq that can
�nish the next scheduled container-assignment (〈c∗, p∗〉) within Ends. By doing so, we make sure
that no TV is scheduled after the Ends unnecessarily, which also conforms to the way the service
times are generated. Notice, however, that should this not be possible the heuristic will reset the
set of active TVs to be equal to the complete set of TVs (Sq) thus allowing scheduling beyond Ends.

The randomisation of the service time generation is rooted in the selection of the total service
time of each QC (νq). At each iteration, the value of νq is selected at random within the range
[EFT ; |Sq|EFT ]. To better guide the selection of νq we partition the range into intervals of size ε,
e�ectively generating the following set of intervals, Iq:

{[EFT ;EFT + ε], [EFT + ε;EFT + 2ε], . . . , [|Sq|EFT − ε; |Sq|EFT ]} ∪
{[EFT ;EFT ], [|Sq|EFT ; |Sq|EFT ]}

The values of νq are then selected at random within one of these range intervals. When the expected
�nishing time is low, it would most likely be best to assign all available TVs. On the other hand,
when EFT is high, one TV operating is likely to be cost optimal. For these reasons, we have also
included the ranges [EFT ;EFT ] and [|Sq|EFT ; |Sq|EFT ] in the set. We call these range intervals
Service Time Intervals (STIs).

6.2.2 Adaptivity

When selecting the value νq, a STI (i) is �rst chosen, and νq is selected at uniform within the range
interval described by i. The adaptivity of the GRASP method comes from how the probability of
choosing a STI adaptively changes throughout the execution of the algorithm. For each STI, let Piq
be the probability of choosing STI i for QC q, calculated using the roulette wheel selection principle

Piq =
wi∑

j∈Iq

wj
∀q ∈ Q, i ∈ Iq (35)

where wi are the weights. This probability is adaptively adjusted similarly to the ALNS method
described in Ropke and Pisinger (2006).

Throughout the algorithm, we keep track of the best-found solution and its value ẑ. The
positions to be loaded by QC q are pre-determined, thus we also keep track of the best partial
solution scheduling container-assignments for QC q. The cost of a partial QC solution is calculated
as

ẑq = α
∑

s∈Sq

(Ends − Starts) + γmax

((
max
s∈Sq

Ends

)
+ β − EFT, 0

)
(36)

where max
((

maxs∈Sq Ends
)

+ β − EFT, 0
)
is the tardiness of the operation for QC q.

The execution of the algorithm is divided into a number of segments i.e. a number of η consec-
utive iterations. The score obtained by STI i in segment j (denoted πij) is updated according to
the following three parameters; σ1, σ2 and σ3. If a new best solution is found, σ1 is added to the
score for all the chosen STIs that contributed to �nding this solution. If the cost for QC q (zq) is
better than the previously best solution for that QC, ẑq, σ2 is added to the score for the STI chosen
for QC q. Last, if for a QC q the cost (zq) is within δ percentage of the best for QC q (ẑq) then σ3

is added to the score for the chosen STI for QC q.
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After η iterations are executed the weights are updated as follows.

wij+1 = wij(1− r) + r
πij
θij

∀q ∈ Q, i ∈ Iq (37)

Here wij is the weight for STI i in segment j, θij is the number of times STI i was chosen in segment
j and r is the reaction factor. The reaction factor controls how quickly the weight adjustment reacts
to changes in the e�ectiveness of each STI.

The adaptivity as described will make the STIs which contributes to �nding good solutions more
probable. Furthermore, it makes the overall heuristic robust towards di�erent characteristics in the
problem that have an impact on the time needed to load the containers for a QC.

6.2.3 Vehicle reassignment

The �rst improvement method looks at the TV scheduling for a QC q. The TV scheduling described
in Section 6.1 Step 3 is myopic at best, and only aims at minimising tardiness. It does not consider
TV waiting time and the minimisation of the total service time.

The TV reassignment procedure is aimed at reducing the service times of each TV. Since the
service time for TV s is dictated by its �rst and last container-assignment, we will only consider
the possibility of re-assigning these container-assignments to another TV. For a given QC q we
generate all the possible re-assignments of containers to TVs (which is at most 2|Sq| − 1 since we
only consider two containers per TV). The re-assignment that best improves the objective is then
applied. The procedure restarts every time a new improving re-assignment is found until no new
re-assignment is available and all the QCs are processed.

6.2.4 Container swapping

The second improvement method is a local search based on a swap neighbourhood operator. The
local search aims at �nding improvements in the container assignments. The neighbourhood is
de�ned by all the possible container swaps within the same container class. Here a swap means that
two positions exchange containers, and consequently the two TVs scheduled to the positions will
change the container they pickup. The neighbourhood operator, however, only evaluates a limited
number of swaps to reduce the number of evaluations. The most improving swap is then applied to
the solution. The container swapping procedure is further described in Algorithm 2.

Given an input solution x, Algorithm 2 starts by initializing z∗ and Move which will hold the
best evaluation and swapping move respectively (lines 3-4). The algorithm then proceeds to evaluate
the possible swaps. For each class u, in the set of container classes U , we select |Cu| random swaps,
where Cu is the set of all containers of class u (lines 5-8). Each swap is evaluated (line 9) and, if
it is improving, its value and move are stored in z∗ and Move (lines 10-13). The best improving
swap is then selected and applied to the solution (lines 17-18). Should we not be able to �nd such
a swap, the procedure terminates and returns the locally improved solution, (lines 2, 19-23)

Calculating a swap improvement in EvaluateSwapImprovement(x, c1, c2) is the most computa-
tionally expensive part of this method. In Appendix A, we provide details of how caching techniques
can be used to implement this operation e�ciently.

7 Computational analysis

We now analyse the performance of each formulation, valid inequalities and the GRASP heuristic.
All methods are executed using a 2.30 GHz Intel Xeon E5 Processor and 128GB available memory.
Computational times are reported in seconds (s). All models are solved using CPLEX 12.7.0. A
time limit of 3 hours is imposed to solve the models with the options of emphasising optimality. In
default conditions, models are run with four threads.
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Algorithm 2 ContainerSwap

Input: x
1: Terminate ← false

2: while not Terminate do
3: z∗ ← 0
4: Move ← ∅
5: for all u ∈ U do

6: for i = 1 to |Cu| do
7: c1 ← Random container c ∈ Cu

8: c2 ← Random container c ∈ Cu \ {c1}
9: z ← EvaluateSwapImprovement(x, c1, c2)

10: if z > z∗ then
11: z∗ ← z
12: Move ← {c1, c2}
13: end if

14: i← i+ 1
15: end for

16: end for

17: if z∗ > 0 then

18: x← PerformMove(x, Move)
19: else

20: Terminate ← true

21: end if

22: end while

23: return x

The GRASP heuristic has been implemented in Java 1.8 and has been tuned using the Gender-
Based Genetic Algorithm for the Automatic Con�guration of Algorithms (gga) described in An-
sótegui et al. (2009). Table 2 describes how we tuned the algorithm. The �rst two columns describe
the parameters, �rst brief in text then the symbol used. The next two column contains information
for the tuning, �rst which values we tested, then the start value we used. For some of the parameters
we tested a discrete set of values, and for others, we tested all integers in a range (symbolised by
[min;max]). For the tuner, additional instances have been generated, and the heuristic terminates
with the best-found solution after 30 seconds. The value in the last column is the value that the
tuner �nds perform best.1

Table 2: Description of the parameter tuning

Description Symbol Test Start Tuned

STI length ε {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2}EFT 0.1EFT 0.15EFT
Vehicle assignment lookahead ι {1, 2, 3, 4, 5} 4 2
Container swapping use percentage κ {0, 0.05, 0.1, 0.15, 0.2,∞} 0.1 0.2
Reaction factor r {0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2} 0.1 0.1
Segment size η {25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 500} 200 25
STI score update: New best σ1 [30; 75] 50 45
STI score update: New crane best σ2 [20; 50] 33 36
STI score update: New crane solution

σ3 [10; 45] 19 17
within δ of crane best

The δ parameter associated with σ3 δ {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2} 0.05 0.2

7.1 Data description

To test the formulations and the heuristic a benchmark set has been generated. The number of
containers to be loaded in the instances are either 60, 240, 500 or 1000, corresponding to small,

1The value ∞ for κ means that the container swapping method is used in every iteration
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medium and large vessels. To describe di�erent yard structures, we test three di�erent densities.
The density will a�ect the travel time to the containers in the yard. The di�erent densities are
Uniform, Scattered and Less Dense. For the Uniform case, all containers are stored closely together
in the yard, minimising the variance in the travel times. In the scattered case the containers are
stored over a larger area, and it implies a higher variance in the travel times. The Less Dense is a
mix between these two densities.

In total 30 instances have been generated. The number of container types ranges from 10 to
100. In the benchmark, there are 3 TVs assigned to a QC, and either 2 or 4 QCs are available
depending on the size of the vessel. The QC loading time β is 1 minute in all of the instances. See
Tables 3 and 4 for an overview of the instance characteristics.

The expected �nishing time (EFT) corresponds to the schedule of the vessel. Vessels with the
same number of containers to be loaded will, therefore, have the same EFT, independent of the
yard density, and the number of container types.

7.2 Results for the mathematical model and enhancements

In this section, we report the computational results of the FSLP model and analyse the improve-
ments achieved with the enhancements for this formulation. The results cover the lower bounds
obtained in the root node of the branch-and-bound tree (xRoot), the best lower bound (xLP ), and the
value of the obtained solution (xUB). The Gap(xUB) columns report the relative di�erence between
the solution value and the best lower bound from the model, and lastly t(s) is the computation
time in seconds. The �rst columns in Tables 3 and 4 describe the instance characteristics, with the
number of containers (|C|), the number of container types (|CT |), the number of QCs (|Q|) and
the density (D). The densities are Less Dense (LD), Scattered (S ) and Uniform (U ) as described
in Section 7.1.

To evaluate the bene�t of each of the enhancements, Tables 3 and 4 present the results for
di�erent versions of the model. The �rst one is the version with all of the enhancements added
(FSLP+), after which results for the standard model with no enhancements (FSLP) are shown. For
the rest of the models, enhancements are removed from the FSLP+ model, e.g. FSLP+ - (19) is
the FSLP+ model with constraint (19) removed. Note that enhancements are removed one at a
time. This is to show how badly the results are a�ected when an enhancement is not used in the
formulation, and by that see if it is bene�cial to add it.

There are many instances for which CPLEX cannot �nd any feasible solutions within the time
limit (10800 s), this is indicated with '-'. Additionally '†' is used to symbolise that the execution
was terminated due to lack of memory. In most of these cases no bound or solution could be
computed before termination, but in four cases (FSLP+/60/25/2/S, FSLP+/60/10/2/U , FSLP+
- (21)/60/25/2/LD and FSLP+ - (21)/60/25/2/U) a solution had been found, in which case the
time reported is the time at which the execution was terminated. To symbolise the best bound, or
best solution found for the given instance among the alternative models, the corresponding value is
written in bold.

Tables 3 and 4 report the model results and the bene�ts gained by the enhancements of the
model, and results clearly show that FSLP+ model outperforms the FSLP model. The FSLP+
model �nds stronger bounds, and also better feasible solutions. Looking at the results for all models
it can be seen that constraint (21) is the main contributor to the improvement of the bounds, but
(17) & (18) also help to improve the bound. The performance of the three models FSLP+, FSLP+
- (19) and FSLP+ - (20) are all comparable to each other. The bounds all coincide with the best
found, and they are all found in the root node and not improved hereafter. The value of the solutions
are di�erent, but for a given instance the solution values are close to each other for the three models.
FSLP+ - (20) seems to �nd the best solution most often.

For the 500 and 1000 instances, the model becomes intractable to solve; only a few number of
feasible solutions are found within 3 hours.
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Table 3: Performance of enhancements of the mathematical model. '−' symbolises that no feasible solution was found
within the time limit, and '†' is used for the instances where the execution was terminated due to insu�cient memory.

FSLP+ FSLP FSLP+ - (17)&(18)

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1500 1500 1775 15.5% 10800 10 194 1735 88.8% 10800 1440 1440 1710 15.8% 10800
60 10 2 S 1020 1020 1030 1.0% 10800 30 93 1030 90.9% 10800 1020 1020 1020 0.0% 8246
60 10 2 U 1640 1640 1920 14.6% 9004† 41 139 2250 93.8% 10800 1640 1640 1875 12.5% 10800
60 25 2 LD 2030 2030 2345 13.4% 10800 0 336 2480 86.5% 10800 1790 1790 2285 21.7% 10800
60 25 2 S 1360 1360 1470 7.5% 6215† 0 257 1905 86.5% 10800 1360 1360 1405 3.2% 10800
60 25 2 U 1490 1490 1520 2.0% 10800 0 267 2225 88.0% 10800 1490 1490 1510 1.3% 10800

Average 9.0% 9737 89.1% 10800 9.1% 10374

240 20 2 LD 7850 7850 14795 46.9% 10800 0 100 20170 99.5% 10800 6530 6530 - - 10800
240 20 2 S 4440 4440 8225 46.0% 10800 0 50 109905 100.0% 10800 4440 4440 9040 50.9% 10800
240 20 2 U 6720 6720 11765 42.9% 10800 0 60 19765 99.7% 10800 6720 6720 11435 41.2% 10800
240 60 2 LD 8230 8230 11035 25.4% 10800 0 142 16565 99.1% 10800 6850 6850 10650 35.7% 10800
240 60 2 S 5280 5280 6555 19.5% 10800 0 79 11095 99.3% 10800 5280 5280 7310 27.8% 10800
240 60 2 U 7250 7250 10845 33.1% 10800 0 179 14005 98.7% 10800 7250 7250 10630 31.8% 10800

Average 35.6% 10800 99.4% 10800 37.5% 10800

500 20 4 LD 14390 14390 - - 10800 0 0 - - 10800 12110 12110 - - 10800
500 20 4 S 8250 8250 - - 10800 0 0 - - 10800 8250 8250 - - 10800
500 20 4 U 14350 14350 - - 10800 0 0 - - 10800 13090 13090 - - 10800
500 60 4 LD 14460 14460 - - 10800 0 200 - - 10800 12930 12930 - - 10800
500 60 4 S 11840 11840 - - 10800 0 60 - - 10800 11840 11840 - - 10800
500 60 4 U 15500 15500 264170 94.1% 10800 0 233 30690 99.2% 10800 14240 14240 - - 10800
500 100 4 LD 15390 15390 - - 10800 0 288 40225 99.3% 10800 13860 13860 138790 90.0% 10800
500 100 4 S 9490 9490 - - 10800 0 140 24140 99.4% 10800 9490 9490 16895 43.8% 10800
500 100 4 U 16230 16230 22625 28.3% 10800 0 240 36700 99.3% 10800 14880 14880 - - 10800

Average 61.2% 10800 99.3% 10800 66.9% 10800

1000 20 4 LD † † † † † † † † † † † † † † †
1000 20 4 S † † † † † † † † † † † † † † †
1000 20 4 U † † † † † † † † † † † † † † †
1000 60 4 LD 27070 27070 - - 10800 0 0 - - 10800 24460 24460 - - 10800
1000 60 4 S 17950 17950 - - 10800 0 0 - - 10800 17950 17950 - - 10800
1000 60 4 U 40230 40230 - - 10800 0 0 - - 10800 34320 34320 - - 10800
1000 100 4 LD 28740 28740 - - 10800 0 0 - - 10800 25830 25830 - - 10800
1000 100 4 S 17840 17840 - - 10800 0 0 - - 10800 17840 17840 - - 10800
1000 100 4 U 32180 32180 - - 10800 50 50 - - 10800 29090 29090 - - 10800

Average 10800 10800 10800

Average 27.9% 10564 95.5% 10800 28.9% 10705
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Table 4: Performance of enhancements of the mathematical model. '−' symbolises that no feasible solution was found
within the time limit, and '†' is used for the instances where the execution was terminated due to insu�cient memory.

FSLP+ - (19) FSLP+ - (20) FSLP+ - (21)

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1500 1500 1800 16.7% 10800 1500 1500 1720 12.8% 10800 101 222 1750 87.3% 10800
60 10 2 S 1020 1020 1025 0.5% 10800 1020 1020 1020 0.0% 5612 0 105 1030 89.8% 10800
60 10 2 U 1640 1640 1790 8.4% 10800 1640 1640 1820 9.9% 10800 0 121 1955 93.8% 10800
60 25 2 LD 2030 2030 2350 13.6% 10800 2030 2030 2275 10.8% 10800 241 632 2535 75.1% 7615†
60 25 2 S 1360 1360 1440 5.6% 10800 1360 1360 1580 13.9% 10800 0 307 1760 82.6% 10800
60 25 2 U 1490 1490 1530 2.6% 10800 1490 1490 1515 1.7% 10800 0 401 1740 76.9% 6568†

Average 7.9% 10800 8.2% 9935 84.3% 9564

240 20 2 LD 7850 7850 14795 46.9% 10800 7850 7850 12700 38.2% 10800 1320 1403 19600 92.8% 10800
240 20 2 S 4440 4440 8225 46.0% 10800 4440 4440 6400 30.6% 10800 0 30 10045 99.7% 10800
240 20 2 U 6720 6720 - - 10800 6720 6720 11355 40.8% 10800 0 30 17710 99.8% 10800
240 60 2 LD 8230 8230 10730 23.3% 10800 8230 8230 11705 29.7% 10800 1380 1500 15675 90.4% 10800
240 60 2 S 5280 5280 6680 21.0% 10800 5280 5280 6630 20.4% 10800 11 73 8265 99.1% 10800
240 60 2 U 7250 7250 10185 28.8% 10800 7250 7250 13330 45.6% 10800 0 170 16735 99.0% 10800

Average 33.2% 10800 34.2% 10800 96.8% 10800

500 20 4 LD 14390 14390 - - 10800 14390 14390 - - 10800 2280 2280 - - 10800
500 20 4 S 8250 8250 - - 10800 8250 8250 - - 10800 0 0 - - 10800
500 20 4 U 14350 14350 - - 10800 14350 14350 - - 10800 1260 1260 - - 10800
500 60 4 LD 14460 14460 - - 10800 14460 14460 - - 10800 1530 1750 - - 10800
500 60 4 S 11840 11840 - - 10800 11840 11840 340870 96.5% 10800 0 50 - - 10800
500 60 4 U 15500 15500 - - 10800 15500 15500 - - 10800 1260 1501 - - 10800
500 100 4 LD 15390 15390 21730 29.2% 10800 15390 15390 22695 32.2% 10800 1530 1753 37720 95.4% 10800
500 100 4 S 9490 9490 16220 41.5% 10800 9490 9490 - - 10800 0 140 233945 99.9% 10800
500 100 4 U 16230 16230 - - 10800 16230 16230 - - 10800 1350 1629 41490 96.1% 10800

Average 35.3% 10800 64.4% 10800 97.1% 10800

1000 20 4 LD † † † † † † † † † † † † † † †
1000 20 4 S † † † † † † † † † † † † † † †
1000 20 4 U † † † † † † † † † † † † † † †
1000 60 4 LD - - - - 10800 27070 27070 - - 10800 2610 2610 - - 10800
1000 60 4 S 17950 17950 - - 10800 17950 17950 - - 10800 0 0 - - 10800
1000 60 4 U 40230 40230 - - 10800 40230 40230 - - 10800 5910 5910 - - 10800
1000 100 4 LD 28740 28740 - - 10800 28740 28740 - - 10800 2910 2910 - - 10800
1000 100 4 S 17840 17840 - - 10800 17840 17840 - - 10800 0 0 - - 10800
1000 100 4 U 32180 32180 - - 10800 32180 32180 - - 10800 3090 3090 - - 10800

Average 10800 10800 10800

Average 21.8% 10800 27.4% 10608 91.9% 10525
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7.3 Heuristic results

We evaluate the performance of GRASP heuristic and compare it with the results from the for-
mulation FSLP+ and the lower bound model (LB-FSLP) presented in Section 5. Table 5 reports
the results of the FSLP+ formulation, the lower bounds from LB-FSLP and the GRASP results on
the instances from the benchmark. In Table 5, xR is the lower bound from the LB-FSLP model
and t(s) reports the computational time to obtain these lower bounds. For the FSLP+ model, xLB

and xUB is the lower bound, and upper bound obtained. Gap(xUB) is the gap, comparing the best
feasible solution with the best found lower bound. For the heuristic, each instance is solved ten
times, to account for the randomness. The best solution and average solution for the ten runs are
reported. For the GRASP heuristic, the following are reported in Table 5; the best solution (xb),
average solution (x̄), best and average gap with respect to LB-FSLP (Gap(xb), Gap(x̄)) and the
run time in seconds (t̄). For the instances where the average solution (x̄) is better than the FSLP+
formulation upper bound (xUB), the average solution is written in bold.

We �rst evaluate the lower bounds obtained with LB-FSLP model. Table 5 points out that the
lower bounds obtained with the LB-FSLP model are no worse than the xLB values from the FSLP+
model, in some cases the LB-FSLP model even �nds a better lower bound. Moreover, the bounds
are computed in just 3 seconds on average. This indicates that the lower bounds obtained with
LB-FSLP can be used to evaluate the performance of the GRASP heuristic.

The results in Table 5 show the GRASP heuristic �nds feasible solutions for all of the instances,
with an average gap of 10.9% in approx. 10 minutes on average. The gap calculates the relative
di�erence to the lower bound, as seen in Section 7.2 only one instance has been solved to optimality,
for the rest of the instances we have no indication of the quality of this lower bound, and how far
it is from being optimal. The quality of the solutions found by the GRASP heuristic is stable with
respect to the number of containers.

Looking at the 500 and 1000 container instances, we see a clear tendency; the Less Dense

instances require considerably more e�ort to solve, compared with the Scattered instances. The
e�ort needed for the Uniform instances lies in between the two others. By looking at the underlying
data, the explanation can be found in the time spent on the Improvement Phase. Excluding that
time, there are only small deviations in the total time used.

Figure 3 shows how much the two improvement methods contribute to the quality of the �nal
solution. The plots show how the average gap converges over time when using both improvement
methods, only the container swapping method, only the vehicle reassignment method and no im-
provement methods. For each setting, the data is grounded on ten runs of each instance. The plots
show that of the two, the container swapping method improves the solution the most, but is also
the most time consuming one. From the plot, it is also clear that both of the improvement methods
improves the solution noticeably.

To visualise the impact of the STIs, Figure 4 shows the probabilities for QC 2 during a single
execution of the algorithm on the instance 60/25/2/LD. The �gure shows the probability of selecting
a speci�c STI for the QC in an iteration. The probabilities are shown for 3 of the STIs, for the
remaining STIs only a few improvements are found, and thus they become less and less probable.
The probabilities for the STIs not shown in Figure 4 are below 0.1% from iteration 5000 until the end.
The legends describe the range of the STI, i.e. the interval in which νq is randomly sampled when
the STI is selected. Figure 4 shows that the most probable STIs (for this QC/instance combination)
are towards the end of the full range for νq. The interval range for the high probability STIs is close
to each other. This is as expected; if one STI provides good results, the following, or preceding is
likely to perform semi-good as well.

There are 2 parts to the objective function (1), �rst a cost of TVs services (α
∑

s∈S(Ends −
Starts)) and a tardiness cost (γ∆EFT ). Figure 5 shows the impact on the cost structure when
changing the QC loading time, β and the EFT. Figure 5a analyses the impact of changing β
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Table 5: Results overview: Comparison between the formulations and the
GRASP heuristic. '−' is used when no feasible solution was found within
the timelimit

LB-FSLP FSLP+ GRASP

|C| |CT | |Q| D xR t(s) xLB xUB Gap(xUB) xb x̄ Gap(xb) Gap(x̄) t̄ (s)

60 10 2 LD 1530 0.1 1500 1775 15.49% 1805 1814.5 15.24% 15.68% 9.9
60 10 2 S 1020 0.0 1020 1030 0.97% 1060 1067 3.77% 4.40% 7.5
60 10 2 U 1670 0.1 1640 1920 14.58% 1895 1902.5 11.87% 12.22% 8.8
60 25 2 LD 2060 0.0 2030 2345 13.43% 2435 2435 15.40% 15.40% 10.4
60 25 2 S 1360 0.0 1360 1470 7.48% 1425 1436.5 4.56% 5.32% 10.1
60 25 2 U 1490 0.0 1490 1520 1.97% 1545 1552.5 3.56% 4.02% 8.5

Average 0.1 9.07% 9.51% 9.2

240 20 2 LD 7880 0.3 7850 14795 46.94% 9430 9448 16.44% 16.60% 80.5
240 20 2 S 4440 0.1 4440 8225 46.02% 4790 4807.5 7.31% 7.64% 36.2
240 20 2 U 6720 0.7 6720 11765 42.88% 8140 8333.5 17.44% 19.35% 36.8
240 60 2 LD 8260 0.1 8230 11035 25.42% 10105 10123 18.26% 18.40% 131.1
240 60 2 S 5280 0.1 5280 6555 19.45% 5660 5706.5 6.71% 7.47% 53.4
240 60 2 U 7580 0.2 7250 10845 33.15% 9065 9140.5 16.38% 17.07% 52.8

Average 0.2 13.76% 14.42% 65.1

500 20 4 LD 14420 1.4 14390 - - 15585 15639 7.48% 7.79% 538.7
500 20 4 S 8250 1.3 8250 - - 9020 9129.5 8.54% 9.63% 75.0
500 20 4 U 14380 2.0 14350 - - 15585 15594.5 7.73% 7.79% 381.9
500 60 4 LD 14520 4.2 14460 - - 16130 16225.5 9.98% 10.51% 648.3
500 60 4 S 11840 0.2 11840 - - 13005 13080 8.96% 9.48% 72.2
500 60 4 U 15530 0.2 15500 264170 94.13% 17125 17173 9.31% 9.57% 287.1
500 100 4 LD 15450 0.5 15390 - - 17475 17562 11.59% 12.03% 627.7
500 100 4 S 9490 0.1 9490 - - 10425 10547.5 8.97% 10.02% 73.6
500 100 4 U 16290 0.6 16230 22625 28.27% 18495 18544 11.92% 12.15% 282.8

Average 1.2 9.39% 9.89% 331.9

1000 20 4 LD 21990 9.4 - - - 24225 24277 9.23% 9.42% 1984.0
1000 20 4 S 14570 1.7 - - - 16230 16414 10.23% 11.23% 292.2
1000 20 4 U 25980 49.9 - - - 28295 28354.5 8.18% 8.37% 1730.9
1000 60 4 LD 27100 3.2 27070 - - 30000 30074 9.67% 9.89% 2821.9
1000 60 4 S 17950 0.7 17950 - - 20305 20599 11.60% 12.85% 174.8
1000 60 4 U 40260 2.1 40230 - - 44055 44095.5 8.61% 8.70% 1209.3
1000 100 4 LD 28770 1.7 28740 - - 32330 32372 11.01% 11.13% 3129.7
1000 100 4 S 17840 0.5 17840 - - 20150 20347 11.46% 12.32% 177.2
1000 100 4 U 32210 1.4 32180 - - 36160 36228 10.92% 11.09% 2194.8

Average 7.8 10.10% 10.56% 1523.9

Average 2.8 10.41% 10.92% 571.6
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Figure 3: The impact of the improvement methods on time, and solution quality
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Figure 4: The STI probability during a single execution of the algorithm on the instance 60/25/2/LD for
QC 2

and Figure 5b of changing the EFT. The data is an average of 10 runs of the heuristic on every
instance. Figure 5a shows what we would expect, increasing β increases both the TV service cost
and the tardiness cost. This is important for the terminal as crane operators will load the containers
faster/slower depending on their skill level. Figure 5b shows the impact of changing the EFT. Here

the EFT is recalculated as ÊFT = m̂EFT , where m̂ is a multiplier and EFT is the original EFT .
Intuitively you would expect that a lower EFT means a higher tardiness cost, which Figure 5b
con�rms. Increasing the EFT mostly has an impact on the TV service cost for an instance when
the tardiness cost is 0 for that instance. This makes sense as fewer TVs can be used, and the loading
be completed as expected. Using fewer TVs means less unproductive waiting time incurred by the
loading order and β.

7.4 Hierarchical vs integrated planning: value of integration

We also investigate the cost savings with the integration of the operational stowage planning and TV
assignment/scheduling. We compare results of the integrated FSLP with the hierarchical planning
method. The hierarchical planning is simulated in two stages. In the �rst stage, we solve the
lower bound model (LB-FSLP in Section 5) where the assignment decisions are solely made without
considering the feasible TV scheduling.
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Figure 5: Impact of β and the EFT on the cost structure.

The assignment decisions made in (22)-(32) will always generate feasible solutions for the in-
tegrated FSLP. This is because the remainder problem is a TV scheduling problem with prede-
termined assignments (xsip). In the second stage, we �x the assignment variables obtained in the
�rst stage and solve the TV scheduling problem. With the assignment �xed, the TV scheduling
problem can be solved as a Linear Program. De�ne tp ∈ R+ as the time the container for position
p is dropped in front of the QC. Let cp be the container to be loaded into position p ∈ P (which
is known). Let fs and ls be the �rst and last position served by TV s ∈ S and let A(s) describe
the full container/position assignment for that TV. With this, the TV scheduling problem can be
modelled as follows:

Min Z = α
∑

s∈S
tls − (tfs − 2τcfs ,fs) + γ∆EFT (38)

subject to

tp ≥ tp̄ + β ∀q ∈ Q, p ∈ Pq \ {1}, p̄ ≺≺ p (39)

tp ≥ 2τc(p),p ∀s ∈ S, p = fs (40)

tp ≥ tPrev(s,p) + 2τcp,p ∀s ∈ S, p ∈ A(s) \ {fs} (41)

z ≥ tp + β ∀q ∈ Q, p = |Pq| (42)

∆EFT ≥ z − EFT (43)

The objective function (38) can be read in the same way as for the FSLP model. Here tls is
equivalent to Ends, and (tfs − 2τcfs ,fs) is equivalent to Starts. In constraint (39), p̄ is the position
loaded just before position p, and the constraint thus ensures that the loading time is respected.
Constraints (40) and (41) ensure the transportation times are respected. For all vehicles, constraint
(40) makes sure that the transportation time to the �rst assignment is respected. For all other
assignments, constraint (41) applies. Constraint (41) ensures that the earliest a TV can drop a
container in front of the QC is the time it dropped its last container (tPrev(s,p)) plus the time it
takes to get the current container. Constraints (42)-(43) are equivalent to constraints (11) and (13)
of the FSLP model.

23



Table 6: Impact analysis of integrated planning for the FSLP

Hierarchical Integrated Value of Integration

|C| |CT | |Q| D xUB t1(s) t2(s) t(s) xUB t̄(s) ∆ %

60 10 2 LD 3585 0.1 0.0 0.1 1814.5 9.9 1770.5 49.39%
60 10 2 S 2010 0.0 0.0 0.0 1067.0 7.5 943.0 46.92%
60 10 2 U 4105 0.1 0.0 0.1 1902.5 8.8 2202.5 53.65%
60 25 2 LD 3895 0.0 0.0 0.0 2435.0 10.4 1460.0 37.48%
60 25 2 S 3530 0.0 0.0 0.0 1436.5 10.1 2093.5 59.31%
60 25 2 U 3760 0.0 0.0 0.0 1552.5 8.5 2207.5 58.71%

Average 50.91%

240 20 2 LD 20880 0.3 0.0 0.3 9448.0 80.5 11432.0 54.75%
240 20 2 S 10975 0.1 0.0 0.1 4807.5 36.2 6167.5 56.20%
240 20 2 U 17455 0.7 0.0 0.7 8333.5 36.8 9121.5 52.26%
240 60 2 LD 19530 0.1 0.0 0.1 10123.0 131.1 9407.0 48.17%
240 60 2 S 15245 0.1 0.0 0.1 5706.5 53.4 9538.5 62.57%
240 60 2 U 20215 0.2 0.0 0.2 9140.5 52.8 11074.5 54.78%

Average 54.79%

500 20 4 LD 33755 1.4 0.0 1.4 15639.0 538.7 18116.0 53.67%
500 20 4 S 19320 1.3 0.0 1.3 9129.5 75.0 10190.5 52.75%
500 20 4 U 32180 2.0 0.0 2.0 15594.5 381.9 16585.5 51.54%
500 60 4 LD 30235 4.2 0.0 4.2 16225.5 648.3 14009.5 46.34%
500 60 4 S 26185 0.2 0.0 0.2 13080.0 72.2 13105.0 50.05%
500 60 4 U 32395 0.2 0.0 0.2 17173.0 287.1 15222.0 46.99%
500 100 4 LD 32590 0.5 0.0 0.5 17562.0 627.7 15028.0 46.11%
500 100 4 S 21270 0.1 0.0 0.1 10547.5 73.6 10722.5 50.41%
500 100 4 U 36815 0.6 0.0 0.6 18544.0 282.8 18271.0 49.63%

Average 49.72%

1000 20 4 LD 55815 9.4 0.0 9.4 24277.0 1984.0 31538.0 56.50%
1000 20 4 S 33375 1.7 0.0 1.7 16414.0 292.2 16961.0 50.82%
1000 20 4 U 58910 49.9 0.0 49.9 28354.5 1730.9 30555.5 51.87%
1000 60 4 LD 63880 3.2 0.0 3.2 30074.0 2821.9 33806.0 52.92%
1000 60 4 S 44300 0.7 0.0 0.7 20599.0 174.8 23701.0 53.50%
1000 60 4 U 82770 2.1 0.0 2.1 44095.5 1209.3 38674.5 46.73%
1000 100 4 LD 64735 1.7 0.0 1.7 32372.0 3129.7 32363.0 49.99%
1000 100 4 S 43030 0.5 0.0 0.5 20347.0 177.2 22683.0 52.71%
1000 100 4 U 69275 1.4 0.0 1.4 36228.0 2194.8 33047.0 47.70%

Average 51.42%

Average 51.48%

In Table 6, instance properties are reported in the �rst four columns. The table is divided into
sections presenting hierarchical, integrated and value of integration results. Column xUB presents
objective function values, while t variants present the time to obtain the xUB values. In hierarchical
planning, t(s) is the sum of two values, t1(s) and t2(s). The �rst value (t1(s)) is the time to
run �rst stage model (i.e. LB-FSLP), while the second value (t2(s)) is the running time of the
second stage model ((38) - (43)). Column ∆ points out the cost reduction achieved (cost savings)
by solving the integrated problem, while % is the percentage of decrease in the cost value (i.e.
(Hierarchical-Integrated)/Hierarchical).

Results show that the average cost savings through integration are 51.48%. This suggests that
there is a signi�cant potential for savings for the terminal operators with such an integrated prob-
lem. Instances with 1000 containers obtain 51.42% savings, while instances with 500, 240 and 60
containers result in 49.72%, 54.79% and 50.91% savings, respectively.
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8 Conclusion and future research direction

In this paper, a novel integrated container terminal problem is proposed. This problem focuses on
the ship loading operations and aims at integrating the aspects of operational stowage planning
with assignment and scheduling of transport vehicles. The problem has been formulated as a math-
ematical model. To improve the model, novel enhancements are described, and the computational
results show that they improve the performance of the mathematical model. However, the exact
method becomes computationally intractable for real-life instances. To deal with this, a GRASP
heuristic has been implemented. The GRASP heuristic is shown to be scalable and can be used to
�nd quality solutions in reasonable time.

The bene�t of solving the integrated problem rather than in a hierarchical fashion has also been
investigated. Results show that signi�cant cost savings can be achieved with an e�cient solution
to the integrated problem.

There are many strong future research directions for both the problem de�nition and the solution
method. With respect to the problem, it would be interesting to relax some of the assumptions in the
current model. One promising research path is to integrate the optimisation of the load sequencing
within the FSLP. This extension will make the problem more complicated, and the stability of the
vessel should be carefully ensured during loading operations. However, the careful implementation
of novel solution methods might obtain further cost savings. Another very promising research
direction is to allow vehicle pooling and not restrict a given vehicle to only work for a single QC.
Such an extension will allow for better utilisation of the TVs. Researchers could consider loading
and unloading operations simultaneously with TV pooling where some QCs do loading while others
do unloading and share TVs, or double cycling can be allowed to increase the utilisation of the QCs.
The FSLP is strongly related to the yard planning problems. An interesting research direction is
to integrate ship loading operations with yard allocation decisions considering yard congestion (e.g.
Zhen (2016), Zhen et al. (2016b)). A terminal allocation problem with inter-terminal transhipment
�ows/movements, e.g. Zhen et al. (2016a), can also be attached to these problems. Although a
terminal with transfer vehicles is considered in the paper, the problem can be adapted to terminals
with di�erent yard transport equipment (e.g. Automated Guided Vehicles (AGVs), Automated
Lifting Vehicles (ALVs), etc.) where the operational planning and energy consumption of di�erent
yard equipment can be considered.

In reality, terminal optimisation problems are stochastic. In the FSLP we consider the following
parameters as being deterministic, even though they realistically are stochastic: the crane produc-
tivity, travelling times (depending on the yard congestion as analysed in Zhen (2016)), and the
number of containers to handle (depending on when the plan is devised). Before trying to solve a
stochastic variant, we believe it is vital to gain as much knowledge as possible from the deterministic
version, but the stochastic problem would certainly be a very interesting research direction.

Regarding the solution method, we see three research perspectives. The �rst is to improve the
exact solution method, either by decomposing the problem or reformulating the compact model.
One promising idea is to solve the problem using delayed column generation. For this, there are
two possible decomposition methods, one based on TV-plans and another one based on QC-plans.
More work is needed to properly evaluate which version would perform better with regards to
the strength of the Linear Programming (LP) relaxation and the di�culty of solving the pricing
problem. Secondly, it may be possible to improve the heuristic procedure, and lastly, new methods
for calculating lower bounds could be examined.
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A Container swapping: Speed up

As mentioned in Section 6.2.4, calculating the improvement from performing a swap is the most
computationally expensive part of the container swapping improvement method. This appendix
describes how costs calculated previously can be reused, thus speeding up the overall method.
Algorithm 3 describes how the improvement of swapping two containers (in terms of objective
value) is calculated.
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Algorithm 3 EvaluateSwapImprovement

Input: x, c1, c2
1: if τc1,p(c1) = τc2,p(c1) and τc2,p(c2) = τc1,p(c2) then
2: if q(c1) = q(c2) then
3: swapAndUpdateTimes(x, c1, c2)
4: workSaved ← calculateWorkSaved(x, c1, c2)

5: newFinishTime ← max

(
calculateFinishTime(x, c1, c2), max

q∈Q\{q(c1)}
(craneFinishTime(x, q))

)
6: lateSaved ← calculateLateSaved(x,newFinishTime)
7: return α·workSaved+γ·lateSaved
8: else

9: workSaved1, newFinishTime1 ← saveSwapProfit(x, p(c1), τc2,p(c1), c1, c2)
10: workSaved2, newFinishTime2 ← saveSwapProfit(x, p(c2), τc1,p(c2), c2, c1)
11: workSaved ← workSaved1 + workSaved2

12: newFinishTime ← max

(
newFinishTime1,newFinishTime2, max

q∈Q\{q(c1),q(c2)}
(craneFinishTime(x, q))

)
13: lateSaved ← calculateLateSaved(x,newFinishTime)
14: return α·workSaved+γ·lateSaved
15: end if

16: else

17: return 0
18: end if

Consider two containers c1 and c2 their respective position in the current solution p(c1), p(c2),
and their QCs q(c1) and q(c2). First observe that if the swap implies no change in the driving times,
then the objective will not change due to the swap (lines 1, 16-17). If the driving times are di�erent,
the algorithm considers two cases; q(c1) and q(c2) are the same, or they are di�erent (lines 2 and
8).

In the case when the two considered QCs are identical, the improvement is calculated by swap-
ping the containers and iteratively updating the delivery times for the container-assignments (line
3). With the times updated the work saved and the reduction in the tardiness is easily computed
by comparing with the solution x (lines 4-6).

In the case when the two considered QCs are di�erent, the cost calculation is done container for
container (lines 9-10). The procedure saveSwapImprovement(x, p, τ, c1, c2) takes two containers as
input and returns the work saved and the new �nishing time for QC q(c1) when swapping containers
c1 and c2. Hereafter the cost improvement is calculated similarly to the previous case (lines 11-13).

The fundamental idea behind saveSwapImprovement(x, p, τ, c1, c2) is that you can compute the
costs when needed, and reuse these costs when appropriate instead of calculating it again. Keep
in mind that this swapping method does not put a position on a new TV, but simple changes the
container to be loaded on a position to another compatible container. The important thing here is
the driving time to the new container. Consider the following situation; you have two candidates
swaps {c1, c2} and {c1, c3} where q(c1) 6= q(c2) and q(c1) 6= q(c3). The changes in the cost for QC
q(c1) only depends on the driving time to the new container. If the driving time from position p(c1)
to container c2 is the same as the driving time to c3, then you know the cost for QC q(c1) will be
the same for these two swaps. Therefore you really only need to calculate the cost once, store it and
reuse it for the second case. This is exactly what is done in saveSwapImprovement(x, p, τ, c1, c2) as
seen in Algorithm 4.

The costs, as well as the �nishing time for QC q(c1), are stored in W(c1, τ) and F(c1, τ). If we
have not calculated the cost yet we calculate the cost and store it (lines 3-8), otherwise, we reuse
what we have calculated (lines 1-2). W and F are stored globally and can be reused between moves
within the improvement method. Only when making changes to a QC q do we have to reset the
costs for all containers using QC q, as these costs are no longer ensured to be valid. When doing so
the cost for picking up a container with the same driving time as the current one is set to 0, and
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Algorithm 4 saveSwapImprovement

Input: x, p, τ, c1, c2
1: workSaved ←W(c1, τ)
2: newFinishTime ← F(c1, τ)
3: if workSaved = ∅ then
4: swapAndUpdateTimes(x, c1, c2)
5: workSaved ← calculateWorkSaved(x, c1, c2)
6: newFinishTime ← calculateFinishTime(x, c1, c2)
7: W(c1, τ̂) ← workSaved
8: F(c1, τ̂) ← newFinishTime
9: end if

10: return workSaved, newFinishTime

the �nish time is set to the �nishing time for QC q

W(c, τc,p(c)) = 0 ∀c ∈ {c′ ∈ C | q(c′) = q}
F(c, τc,p(c)) = craneFinishTime(x, q) ∀c ∈ {c′ ∈ C | q(c′) = q}
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