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Fingerprint Entropy and Identification Capacity
Estimation Based on Pixel-level Generative

Modelling
Metodi P. Yankov, Member, IEEE, Martin A. Olsen, Mikkel B. Stegmann, Søren Sk. Christensen,

and Søren Forchhammer, Member, IEEE

Abstract—A family of texture-based generative models for
fingerprint images is proposed. The generative models are used
to estimate upper bounds on the image entropy for systems
with small sensor acquisition. The identification capacity of such
systems is then estimated using the mutual information between
different samples from the same finger. Similar to the generative
model for entropy estimation, pixel-level model families are
proposed for estimating similarity between fingerprint images
with a given global affine transformation. These models are
used for mutual information estimation, and are also adopted to
compensate for local deformations between samples. Finally, it is
shown that sensor sizes as small as 52x52 pixels are potentially
sufficient to discriminate populations as large as the entire world
population that ever lived, given that a complexity-unconstrained
recognition algorithm is available which operates on the lowest
possible pixel level.

Index Terms—Fingerprint recognition, biometric identification,
biometric capacity, biometric entropy, generative modelling

I. INTRODUCTION

F INGERPRINT recognition is one of the more popular
methods for biometric recognition due to its excellent

performance combined with high security levels. The low cost
of fingerprint sensors allows them to be integrated in ever
greater portion of devices that require and/or can be used for
recognition, such as mobile phones, personal computers and
smart cards. In order to keep the cost down and allow higher
integration, small sensors are attractive to vendors. However,
such sensors pose a challenge for standard fingerprint recog-
nition systems [1].

Fingerprints are historically and typically described by
ridge endings and bifurcations, also known as minutiae. For
full-print size sensors, minutiae-based fingerprint recognition
is now well-established. In such cases, the individuality of
fingerprints can be estimated from e.g. the probability of
occurrence (PoO) of a minutiae configuration in the world
[2], [3], extracted by statistical modelling. The number of
possible configurations on the other hand can be related to
the pattern rate in the pattern recognition field [4]. Since the
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pattern rate does not capture intra-class variability (such as
noise and skin warping and distortion during acquisition), the
probability of random correspondence (PRC) was introduced
to measure individuality [2], [5]. The PRC measures how
likely it is to classify two random samples to the same
finger, rather than the likelihood that a sample appears in
the world. A good overview of the attempts at estimating
fingerprint individuality is provided in [6], [5], most of which
rely on said minutiae configurations. However, most of these
methods cannot be tailored to small fingerprint samples due to
insufficient number of minutiae present in the sample [6]. The
individuality estimates with such methods is in small-sensor
cases grossly underestimated and does not reflect the identi-
fication capabilities of algorithms, which are not constrained
to minutiae matching. In some recent works, the security of
small-sensor minutiae-based fingerprint recognition systems is
even challenged based on similar arguments [7].

It is already known that a large amount of discriminatory
information is present in the level 3 features, such as pores and
ridge contours [6, Ch. 4]. Pore distributions can be exploited
for improved PRC estimates [8] and also improved small-
sensor performance [9]. To the best of our knowledge, the
individuality of fingerprint samples when estimated on the
lowest level of detail (the pixel level) is presently unknown.
Such estimates are of great interest to fingerprint sensor design
since they pose an ultimate limit on the sensor size for a given
biometric performance.

In this paper, mutual information (MI) and entropy esti-
mation for binarized fingerprint images is considered with
a focus on small sensor acquisition systems. The entropy
provides a lower bound on the length of a code, which can
be used to uniquely describe the space of fingerprint images,
acquired with that system. The entropy is thus one estimate
of fingerprint individuality. Entropy can also be used as a
quality metric for fingerprints [10]. Pixel-level entropy is thus
of general interest also to practical fingerprint systems. On
the other hand, MI is a more suited metric for identification
capacity estimation since it takes into account the intra-finger
image variation due to non-ideal acquisition conditions. The
notion of biometric information has been used in a similar
manner for face recognition when feature representation is
applied [11]. To our knowledge, there are no published studies
on the pixel-level MI for fingerprints.

This paper is organized as follows. In Section II, the
basic foundations of entropy and MI estimation is given,
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together with the system model under consideration. The
entropy bounds rely on texture-based generative modelling,
which is introduced in Section III. Models are then proposed
in Section IV for MI and thereby fingerprint identification
system capacity estimation. In Section V, some bounds and
estimates of the entropy and MI are provided for different
fingerprint sensor configurations and databases. In Section VI,
the implications of the estimates are discussed, and Section VII
concludes the work.

II. SYSTEM MODEL AND INFORMATION THEORY

The system under investigation is depicted in Fig. 1. During
enrolment, the biometric source S (in this paper a fingerprint)
is captured by an acquisition system, digitized and further pro-
cessed (e.g. filtered, enhanced, binarized, etc.) into the image
X . The acquisition system can be represented by a probability
distribution pX|S , which includes noise, imperfections, and all
the above processing. Usually, feature extraction is performed
in order to reduce the dimensionality of the recognition task,
storage requirements and processing complexity of the system,
as well as to increase the robustness to noise and intra-finger
variations due to skin deformation. The features of interest
may be further processed and stored in memory. The stored
data related to one identity is that identity’s template. During
recognition, the biometric source is acquired by a potentially
different system (although for simplicity, in this paper the
acquisition system is assumed the same during enrolment and
verification) into the image Y , its features are extracted and
compared to the feature set in the memory. When running
in identification mode, the recognition system classifies the
probe to one of the templates in the memory, while in
verification mode, the system produces a binary decision of
type accept/reject.

Feature extraction is not a strict requirement. In fact, feature
extraction can be viewed as processing, which inevitably
reduces the information content [12, Ch. 2.8] of the template,
and thus degrades the theoretical recognition performance
bounds. In this paper, information content of fingerprint image
data is extracted.

A. Notation

Variables are denoted with capital letters, e.g. X . Realiza-
tions of variable with small letters, e.g. x for scalars and x for
vectors (matrices), xk being the k−th element in a sequence of
outcomes, and x(i, j) being the element on the i−th row and
j−th column of the matrix. The probability of the outcome x
is p(x). A set of elements (pixels) around the (i, j)-th pixel is
denoted as C, is also referred to as context, and the elements
of the matrix on those pixels with x(C). Other notations are
defined on occurrence. Acronyms are defined on occurrence
and are also given in the Appendinx, together with the main
variables.

B. Entropy Estimation

The entropy H(X) of a random variable X is defined as
the expectation of − log of its probability density function, or
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Fig. 1. Biometric recognition system model.

probability mass function (PMF) PX for discrete variables. In
the latter case

H(X) = −
∑

x∈supp(X)

p(x) log2 p(x), (1)

where p(x) = PX(X = x) for shorter notation and the entropy
is measured in bits when the base of the logarithm is two.
When X is the digitized biometric signal (as in Fig. 1), its
entropy describes the pattern rate [4] for that biometric modal-
ity. In identification mode, the achievable rate R with which
individuals can be discriminated with vanishing probability of
error [13] (or equivalently, the maximum supported number of
individuals 2R) will be upper-bounded by the entropy as

R ≤ C ≤ H(X), (2)

where C is the system capacity (defined below in (6)). The
second inequality stems from the fact that the acquisition
and processing systems are generally noisy. This difference
is qualitatively similar to the difference between individuality
estimated based on PRC and based on PoO of a fingerprint
configuration, as described in the introduction. The first in-
equality stems from the fact that operating at capacity entails
ideal recognition system. More details are given in the rest of
this section. In this paper, X is an mxn dimensional digitized
sample of the fingerprint S with a given resolution taking
values in a discrete alphabet Xm·n (X is the finite alphabet of
each pixel, which can be e.g. binary or 8-bit depending on the
quantization). When (1) cannot be solved in closed form, the
entropy can be estimated from a long sequence of samples as

H(X) = lim
K→∞

− 1

K

K∑
k=1

log2 p(xk), (3)

where xk is the k−th image in the set of K images, and
the convergence to the true entropy is with probability 1 (cf.
[14, Example 3] for application of (3) to telecommunications
and references therein for applications to entropy in general).
Furthermore, when the PMF is not available in closed form,
the entropy can be upper-bounded by calculating (3) from
the true samples xK

1 , but replacing PX(X) with an auxiliary
distribution QX(X) [14]

H(X) ≤ H̄(X) = lim
K→∞

− 1

K

K∑
k=1

log2 q(xk), (4)

where the closer QX is to PX , the tighter the bound, with
equality iff QX(X = x) = q(x) = p(x) for all x ∈
supp(X). The auxiliary distribution QX can also be referred
to as a generative model.
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Examples of closed-form generative models for e.g. minu-
tiae and pores are the above-mentioned [2] and [8], respec-
tively, or the minutia model obtained with histograms [3]. A
generative model for the ridge-flow can also be found in [15].
In this paper, the focus is on pixel-level modelling, which as
argued below, improves the system capacity. Another example
of generative models for biometrics can be found in [16] for
the IrisCode, where a 1-st order Markov chain is used as an
auxiliary generative model and for estimation of the IrisCode
entropy. When the auxiliary model is simple, its entropy can
be estimated in closed form from (1) (as also done in [16]
and [3]). When the model is more sophisticated (as in the rest
of the paper), sequence based entropy estimation should be
performed (e.g. from (3)).

When the limit in (3) is approached with samples from the
same finger, the entropy describes the entropy of that finger
and is estimated based on the average PoO of its samples. Such
representation is useful in terms of estimating uniqueness of a
given finger. On the other hand, when the limit is approached
with samples from infinitely many fingers S, the entropy
represents the average entropy for that biometric modality.
The entropy can also be estimated based on a single image,
in which case it is just equivalent to the PoO of that sample.

C. Entropy of images

A particularly popular generative model for images is the
causal pixel predictive model (PPM) [17], which attempts
simplifying the joint distribution q(x) into

q(x) =
∏

(i,j)∈{1:m,1:n}

q(x(i, j)|x(C))

=∆
∏

(i,j)∈{1:m,1:n}

q(x(i, j)|x(Ĉ(i, j))), (5)

where x(i, j) is the pixel at the i−th row and j−th column,
C is the set of previously traversed pixels (also referred to
as past), Ĉ(i, j) is a small subset around the pixel of interest
(PoI) (i, j), also known as context, and x(Ĉ(i, j)) is the set
of pixel values in the context. The first equality is simply
the product rule for probabilities, followed by dimensionality
truncation. In the case of Ĉ ≡ C, q(x) = p(x). The PPM
we apply in this paper is exemplified in Fig. 2 for a 4D
context and a 12D context, for which (i, j) are traversed in
a row-wise fashion, with the context only containing pixels
in the past. Notice that other configurations of the context
are possible, and this particular is chosen for consistency and
easier implementation of context with variable radius. Since
q(x) is a valid distribution, the inequality in (4) still holds.

The entropy of images also describes their lossless com-
pressability in that it lower-bounds the length of the code,
which can be used to compress an image (or source in general)
[12, Ch. 5.4].

D. Mutual Information Estimation

In [13], the system identification capacity from (2) is shown
to be

C = I(X;Y ) = H(X)−H(X|Y ), (6)

12D

10 9 8 7 6

11 3 2 1 5

12 4

Future

Past

4D

3 2 1

4

Future

Past

Fig. 2. PPM and image traversing illustration.

where H(X|Y ) is the conditional entropy of X once Y is
observed, and I(X;Y ) is the MI between X and Y . In this
context, the MI describes how much of the information in X
is also present in Y . The conditional entropy H(X|Y ) can be
viewed as a measure of similarity between images, whereas
H(X) represents the total amount of information (including
noise), present in X . As mentioned, when estimated for a
single image,H(X) is directly related to the image uniqueness
through its PoO. Typically, recognition algorithms rely solely
on similarity, thus implicitly estimating H(X|Y ) and neglect-
ing H(X). As seen from (6), theoretically both measures
are required for approaching the system capacity, and their
difference should be maximized for maximizing that capacity.
As H(X|Y ) is non-negative, the capacity (6) is ultimately
bounded by H(X). The MI representation of capacity can be
understood with the following simple examples:f

1) Ideal acquisition system and fixed acquisition condi-
tions. In this case, the variability between samples of the
same finger is zero, the images X , Y and S are identical,
H(X|Y ) = 0 and the entire information content of S
can be used for biometric recognition, resulting in a high
capacity.

2) Completely noisy system. In this case, X and Y are
independent, H(X|Y ) = H(X) and R = C = 0.

3) Extremely robust system. In this case, zero (or small)
variability can be achieved at the expense of sacrificing
(e.g. by quantizing) most of the details of S. The result is
identical X and Y and thereby smallH(X|Y ). However,
in such cases the entropy H(X), and thus capacity, is
also small.

Minutiae based recognition systems can be classified to a
moderate example 3), since details in the image are sacri-
ficed (not utilized), in order to exploit the robustness and
repeatability of the minutia configuration. Another example
of a robust feature is the orientation map (OMAP). The MI
between OMAPs of two images can be used for relative
transformation estimation [18], but a system, relying solely
on OMAP for recognition would be penalized by the low
entropy. Feature-based biometric information was estimated
for face samples [11], where it is also used to estimate system
capacity. As mentioned, feature-based MIs do not fully exploit
the information content available at the pixel-level, but can be
utilized to improve the pixel-level modelling, as will be seen
below.

Similar to H(X), H(X|Y ) can be estimated and bounded
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as

H(X|Y ) = lim
K→∞

− 1

K

K∑
k=1

log2 p(xk|yk) (7)

≤ lim
K→∞

− 1

K

K∑
k=1

log2 q(xk|yk), (8)

where p(x|y) = p(x,y)
p(y) =

∑
s∈S p(s)p(x|s)p(y|s)∑

s∈S p(s)p(y|s) [13] and
QX|Y (X = xk|Y = yk) = q(xk|yk) is any valid distribution.
In this paper, auxiliary distributions of the form

q(x|y) =
∏

(i,j)∈{1:m,1:n}

q(x(i, j)|x(C),y)

=∆
∏

(i,j)∈{1:m,1:n}

q(x(i, j)|x(Ĉ(i, j)),y(Ċ(i, j))), (9)

are adopted, where the context Ċ(i, j) is not necessarily
identical to Ĉ(i, j) and can include any subset of y, including
future pixels.

The auxiliary distribution QX|Y will be referred to as a
channel model, highlighting the similarities between biometric
recognition and communications technology. In the latter case,
a source X is communicated through a channel pY |X , and the
maximum error-free transmission rate is given by I(X;Y ).
However, pX and pX|Y are typically available, and I(X;Y )
for standard channels and sources is thus straight forward
to calculate. In biometrics, both distributions are typically
unknown, and must be thus replaced by their auxiliary ver-
sions. In this paper, the term channel is abstract (as no actual
communication channel exists) and serves the purpose of
representing the relation between the images X and Y .

An example is given in Fig. 3 for a 4D generative model
(5) and a 13D channel model (9) contexts. For simplicity, the
radii of both models in both images are assumed identical,
which is also not a requirement.

In telecommunications, achieving the capacity entails using
an optimal and infinitely long error-correcting code. Similarly,
as mentioned above, the entropy only provides a bound on the
length of the source code, which can be used to compress the
signal. The design of such error-correcting and source codes is
by far a non-trivial task. In the case of biometrics in general,
and fingerprints in particular, error-correcting and source code
design can be related to the design of optimal feature vectors.
Such feature vectors allow to extract the useful information
from the image in an efficient manner (source code), and at
the same time are encoded for maximum separability of the
classes (error-correcting code). Such design falls outside the
scope of the present paper.

III. GENERATIVE MODELS

The first class of models we apply are the look-up table
(LUT) models, for which the PMF q(x(i, j)|X(Ĉ) = x(Ĉ))
is defined for each possible realization of the context. This
model is trained by traversing training images and building
histograms for each realization. The complexity of this model
grows exponentially with the size of the context (since the
number of realizations is |supp(X(Ĉ))| = |X ||Ĉ|). Such

Fig. 3. PPM with probe and reference for MI estimation with a 4D generative
model and the respective (3 · 4 + 1)D channel model.

models are therefore typically limited to binary alphabets and
small contexts (e.g. 10 pixels in the binary image compression
standard JBIG [19] or up to 16 pixels in JBIG2 [20]).

A. Closed-form expression models

In order to extend the context and the pixel alphabet, closed-
form expression models are required. In this work, two such
models are studied: a logistic regression (LR) linear model,
and a neural network (NN), which operate in classification
mode and are able to produce log-likelihoods of each class
[21]. The output classes in this case represent X . Both models
are trained by traversing training images similar to the LUT
model. The training data consist of input/output pairs of points,
where the input points are the |Ĉ|−dimensional context of each
PoI in each training image, and the output is each said PoI.
The LR model is trained using the LIBLINEAR optimization
libraries [22]. Single layer NN configuration is studied in this
work with a hidden layer size optimized to 50 units. The
stochastic gradient-based algorithm [21, Ch. 5] is used for NN
training.

B. Including orientation map

The generative models can be improved by including the
local ridge-flow OMAP in the context. This is equivalent
to estimating the MI I(X;Y |O) instead, where O describes
the OMAP. It is noted that as mentioned above, the OMAP
is a feature itself and carries discriminatory information,
which can be used to improve the matching performance.
Conditioning on the OMAP essentially provides estimates on
the performance of algorithms, which assume the OMAP is
known prior to matching, e.g. from estimation, and do not
exploit it explicitly for decision making. In this paper, the
OMAP is estimated with standard gradient-based methods [6,
Ch. 3], and is assumed available when estimating the entropy
(with alphabet spanning the integer range 1-180 degrees). It is
noted that generative models including the OMAP have double
dimensionality. We also note that the OMAP of all pixels in the
context is not as necessary as texture information, and can be
replaced by e.g. the average OMAP of the context. However,
for consistency, the local OMAP of all context pixels is used
in this work.
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IV. CHANNEL MODELS

The channel models as described in Section II exhibit
texture dimensionality of three times the dimensionality of the
generative model plus one pixel (see Fig. 3). Even for small
radii, LUT models are thus infeasible. For channel models,
only the NN is applied in this paper, which also includes the
orientation map of image X . It is assumed that the orientation
of image Y is identical, or at least sufficiently similar to that
of image X to not bring additional information for genuine
matches, and is thus not included in the model in order to
reduce complexity.

Training and testing images X and Y are generated by run-
ning a commercial recognition algorithm for genuine matches
as described below. The MI estimation process is summa-
rized in Algorithm 1. The recognition algorithm determines
the global transformation T between images and transforms
(translates and rotates) the image Y = T (Y ) to match the
image X . A mask image M is then constructed for the
overlapping area (m(i, j) = 1 if the images overlap at that
pixel), and the pixels in those areas are used for training of
the NN and for conditional entropy and MI estimation.

Examples of this process are given in Section V. An
example of such an NN used as channel model is given
in Fig. 4. The generative model is identical, but of lower
dimensionality as it does not include the inputs y(Ċ(i, j)).

V. RESULTS

A. Dataset description

An overview of the datasets used to study the identification
capacity is given in Table I. The FVC databases are com-
prised of 100 fingers, eight impressions each [6]. The MCYT
databases [23], [24] contain 1000 fingers, 12 impressions each,
but for consistency, only the first 100 fingers are used. As
argued below, they are sufficient to see convergence in the
entropy and MI estimates. Each image from the datasets is
cropped at a random location to a desired sensor size, ensuring
that the captured area does not contain empty spaces (condition
was 99% active area). Crop sizes of 80x80, 120x120 and
160x160 pixels are studied in this work. The training dataset
is comprised of the first 50 fingers, and entropy estimation is
performed on the rest. Smaller crops are not studied since this
leads to insufficient training and testing dataset size.

A synthetic database generated with the SFinGe model is
also used [6, Ch. 6], [25]. Two types of images are generated:
1) ridge-line pattern; 2) noisy and distorted realistic images. It
is noted that this database assumes that the only discriminatory
information in fingerprints is minutiae (pores are not gener-
ated), and disregards texture information which as mentioned
is in fact highly discriminatory. The noisy realistic images
are generated with an average image quality distribution as
defined by SFinGe. Similar to the public data base, small-
sensor images are produced by cropping full-size prints. The
training set in this case similarly comprises 400 images, with
400 testing images.

For MI estimation, one image per finger is used as template
(image X) and the rest (images Y ) are matched against it
with a commercial algorithm. Training and testing images are
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Fig. 4. An example of an NN channel model for the auxiliary distribution
q(x|y).

TABLE I
SUMMARY OF THE DATABASES USED IN THIS WORK.

Acquisition
technology

Array size,
pixels

Resolution,
dpi

FVC-2002-DB1-A Optical 388x374 500
FVC-2002-DB2-A Optical 296x560 569
FVC-2002-DB3-A Capacitive 300x300 500
FVC-2004-DB1-A Optical 640x480 500
FVC-2004-DB2-A Optical 328x364 500
FVC-2004-DB3-A Thermal 300x480 512

MCYT optical Optical 256x400 500
MCYT capacitive Capacitive 300x300 500

SFinGe Synthetic 416x560 500

then generated as described in Section IV. It is noted that the
random cropping sometimes results in insufficient overlap for
our algorithm to correctly match the probe to the reference. In
order to mitigate this, only images of size 160x160 are used for
conditional entropy and MI estimation. However, the training
and testing datasets in this case are still somewhat smaller than
for the entropy estimation, since the entire images are not used,
but only the areas, where the image X overlaps with image
Y .

In all cases, the training size is more than 2.5 · 106 pixels,
and testing size is more than 1.5 · 106 pixels.

B. Entropy estimates for small sensors

In Fig. 5, the entropy estimates for the FVC-2002-DB3-A
database are shown as a function of the context size for the
80x80 cropped samples. The studied sizes of 4, 12, 24, 40, 84
and 112 correspond to context radii of 1, 2, 3, 4, 5 and 6 pixels
(see Fig. 2). The LUT model is limited by its complexity to
12 pixels, whereas the closed-form expression models (from
Section III-A) were possible to simulate on a standard PC
for up to 112 pixels, including the double dimensionality
OMAP case. In order to reduce the number of possible context
configurations for the LUT case, the rather small images of
size 80x80 are first rotated s.t. the average OMAP of the
entire image is zero. We found that this significantly tightens
the entropy bounds for the LUT model. For the small-context
size, the LUT is slightly better than the closed form models,
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Algorithm 1 Algorithm for estimation of MI between two fingerprint images.
Require: Images X , Y

1: Find transform and mask [T,m] = match(X,Y ) . ’match’ is the recognition algorithm of choice
2: Transform Y = T (Y )
3: Extract OMAP o . Orientation of image X
4: H(X) = 0,H(X|Y ) = 0, I(X;Y ) = 0, Npixels = 0
5: for i = 1 : Nrows do . Traverse rows
6: for j = 1 : Ncols do . Traverse columns
7: if m(i, j) then
8: Extract contexts (NN inputs) x(Ĉ(i, j)), o(Ĉ(i, j)) and y(Ċ(i, j))
9: if Training mode then

10: Store NN inputs and NN output x(i, j) for NN training
11: else if Estimation mode then
12: Estimate PoO q(x(i, j)|x(Ĉ(i, j)),o(Ĉ(i, j))) . Generative model
13: Estimate PoO q(x(i, j)|x(Ĉ(i, j)),y(Ċ(i, j)),o(Ĉ(i, j))) . Channel model, Fig. 4
14: H(X) = H(X)− log2 q(x(i, j)|x(Ĉ(i, j)))
15: H(X|Y ) = H(X|Y )− log2 q(x(i, j)|x(Ĉ(i, j)),y(Ċ(i, j)))
16: Npixels = Npixels + 1
17: end if
18: end if
19: end for
20: end for
21: H(X) = H(X)/Npixels, H(X|Y ) = H(X|Y )/Npixels . Normalize
22: I(X;Y ) = H(X)−H(X|Y )

which can be expected as the histogram can be made very
accurate with the amount of training data available (making
QX a better approximation of PX ). When the dimensionality
is increased, both the NN and LR models improve the tightness
of their bounds, reaching a saturation at around 60 pixel
contexts. When the OMAP is included in the model, the LR-
based bound does not improve, while the NN is able to tap
into this fingerprint domain property and model the images
better. An optimal value of 40 pixels is found, leading to
model dimensionality of 80. The corresponding diameter of
the context is 9 pixels, which at 500 dpi is sufficient to
capture a ridge-valley period [6, Sec. 6.4.3]. The NN thus
can conceivably model the ridge-valley frequency as a macro-
feature. When the context size is increased, the NN-based
entropy bound becomes unstable. This can be attributed to
estimation errors and overfitting of the very complex model to
the limited amount of training data. The lowest upper bound
we could find for this dataset is ≈ 0.3552 bits/pixel. For a
sensor size of 80x80 this means an average entropy of 2273
bits/sample.

For the rest of the paper, the context size in the generative
model is set to 40 pixels (radius of four pixels), the orientation
map is included and the NN model is used.

In Fig. 6, the histogram of the finger entropy estimates
with bin size of 0.05 bits is studied (the set of K images
in (3) includes only the eight images of the same finger).
As mentioned, the inter-finger variation can be interpreted as
variable degree of uniqueness for each finger, i.e., some fingers
will experience higher false acceptance rate when matching
(the “lambs” in the Doddington zoo context [26]) due to their
smaller entropy (related to their higher PoO). In the same
figure, the effect of sensor size is also studied. As seen, the
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Fig. 5. Entropy estimates vs. context size for the studied generative models.

estimates (on average) are very similar regardless of the sensor
size. This suggests that individuality, and thus recognition
performance will be a function largely of the reference image
coverage area, and is independent of the sensor size at least
down to the smallest studied crop size of 80x80. Thus, if a
probe image has an overlap of sufficient size with a reference
image (governed by the entropy per pixel), the biometric
performance does not suffer from the small sensor.

Finally in this section, the border effect is discussed. In
the above, in order to initialize the traversal, the top and left
borders, with width defined by the radius of the context, are
assumed known. In practice, the entropy and MI per pixel
reported in this paper will have to be adjusted, e.g. by rescaling
the per-pixel results or by assuming a slightly larger sensor.
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Fig. 6. Histogram of the entropy estimates per finger for sensors of different
size.

For consistency, in this paper only the inner parts of the images
are used for entropy and MI estimation and the border effect
described is neglected.

C. Mutual Information Estimates

In Fig. 7, an example is given for the MI estimation between
two images. Once the global transformation is found, the
images are traversed as in Fig. 2, and the conditional entropy
is estimated for the overlapping areas following the context
illustration in Fig. 3. The probability map p(X|Y ) is generally
brighter than the map p(X), which is a result of the similarity
between the image areas. Observe that the mutual information
is contained in pixels, which carry a lot of self-information
(low PoO p(X)) and at the same time are similar in both
images (high PoO p(X|Y )). On the other hand, extremely
noisy areas (having low PoO p(X)), will be very different in
image Y (resulting in low PoO p(X|Y ) as well), and will thus
not contribute to the MI, since the terms cancel in Eq. (6).

In Table II, the average entropy and MI per pixel and
per area are given for all studied databases. The entropy
estimates reported for FVC-2002-DB3-A are slightly lower
than the ones reported in Fig. 5, since the entropy in the former
case is estimated only for the matched areas. The recognition
algorithm that was used favours less-noisy areas, and suffers
performance penalty in areas, which are more noisy, and thus
higher in entropy content. Such areas are thus used less often
for the estimate in this section, since they appear less often in
the dataset with matched images.

The ridge-line synthetic SFinGe images exhibit significantly
smaller entropy than that of captured and realistic images.
There are several reasons for this discrepancy:

1) There are noise and distortions in real images, which
do not carry discriminatory information, however, their
entropy is added to the estimates.

2) As mentioned, ridge-lines and minutiae do not carry the
complete biometric information of a fingerprint. Some
discriminatory information is thus not present in the
ridgeline dataset.

3) In a less noisy environment, the generative models can
be trained much more accurately, leading to tighter
entropy bound.

TABLE II
COMPARISON OF ENTROPY UPPER BOUNDS AND MI ESTIMATES FOR THE

STUDIED DATABASES (DESCRIBED IN THE TEXT).

Entropy
per pixel

Entropy
per mm2

MI
per pixel

MI
per mm2

FVC-2002-DB1-A 0.299 119.6 0.0188 7.52
FVC-2002-DB2-A 0.258 124.9 0.0158 7.64
FVC-2002-DB3-A 0.318 127.2 0.0196 7.84
FVC-2004-DB1-A 0.250 100.0 0.0233 9.32
FVC-2004-DB2-A 0.269 107.6 0.0156 6.24
FVC-2004-DB3-A 0.252 102.3 0.0135 5.48

MCYT optical 0.341 136.6 0.0374 4.96
MCYT capacitive 0.345 138.2 0.035 14.01

SFinGe, ridge-lines 0.193 77.2 0.057 22.80
SFinGe, realistic 0.315 126.0 0.057 22.80

This being said, there exist variations across databases,
which are attributed mostly to different quality, acquisition
technology and dataset collection environment and purpose.
Optical sensors generally exhibit lower entropy bounds, as
expected from the higher-quality, less-noisy acquisition. In
the case of FVC-2002-DB2-A, the lower entropy per pixel
is also attributed to the higher resolution. The difference in
the entropy per area estimates for FVC-2002-DB1-A and
FVC-2002-DB2-A is ≈ 4%. The MCYT databases exhibit
significantly higher MI, which is attributed to the higher image
quality. Even-though the sensor used to collect the MCYT
optical database is the same model as that of FVC-2004-
DB2-A, the latter database was designed to be as realistic as
possible, while the former contains both random and highly-
controlled captures [23], resulting in high MI. Furthermore,
the sensor was not cleaned during the FVC collections, which
is also clearly visible upon visual inspection of the images,
resulting in poorer overall quality. Similar arguments can be
made for the difference in MI between the MCYT capacitive
database and FVC-2002-DB3-A, which employ the same
sensor model for acquisition. 1

The MIs of the SFinGe ridgeline and noisy samples are
remarkably close, regardless of their significantly different
entropies. This highlights the validity of the NN as a channel
model, as it is able to successfully extract the interesting
portion of information from the noisy samples and disregards
the information content of the noise part. The higher MI for
synthetic images has two possible explanations:

1) The particular noise configuration generated by SFinGe
for this paper is in fact more optimistic than what true
sensors provide.

2) The underlying fingerprint distribution defined by
SFinGe is significantly different than that of true
datasets, and results in unrealistically high capacity
expressed by MI.

Finally in this subsection, the convergence of the estimates
is studied. In Fig. 8, the estimates are given as a function of
the number of pixels, used in the estimation for the FVC-2002-
DB1 database. The vertical lines indicate bulks of ten images
(unevenly distributed due to different size of the overlap area

1Typical images from FVC can be found
on http://bias.csr.unibo.it/fvc2004/databases.asp and
http://bias.csr.unibo.it/fvc2002/databases.asp, and typical MCYT images
in [23], and are omitted here for space.
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Fig. 7. Example images used for estimation of the entropies of the overlapping area H(X) = 0.360, H(X|Y ) = 0.291 and the MI of the overlapping
areas I(X;Y ) = H(X)−H(X|Y ) = 0.069 bits/pixel. An example of the estimated pixel PoO is given for a small patch area, based on the generative and
channel models. Right-most figure: A histogram of the PoO for the generative model and the channel model, including the case when local deformations
are taken into account, as in Section V-D. In the latter case, more pixels are explained by image Y, resulting in even lower H(X|Y ) and higher I(X;Y )
(0.259 and 0.101 bits/pixel, respectively, for the example images X and Y). Images taken from FVC-2002 DB3.

for each match). We see convergence after ≈ 1.2 · 106 pixels,
which is achieved with ≈ 90 images. As mentioned, more than
1.5 · 106 pixels are used for estimation in each case, deeming
the estimates converged.

D. Local deformations compensation

Real-life captures are usually subjected to local defor-
mations, making the globally found transformation between
images sub-optimal locally. In order to compensate for this
effect, a non-stationary context is applied by searching the
local area of pixel (i, j) in image Y for a better match to
the context x(Ĉ(i, j)). This is achieved by “jiggling” image
Y around pixel (i, j) in order to find a better match to image
X at that neighbourhood. The search is done with a radius R,
and the context of image Y is centred around the pixel (k, l)

(k, l) = arg min
k∈i−R:i+R,l∈j−R:j+R

dH(x(Ĉ(i, j)),y(Ĉ(k, l))),

(10)

where dH(·, ·) is the Hamming distance between two vectors.
The context y(Ċ(k, l)) then replaces y(Ċ(i, j)) in Eq. (9)
and changes from pixel to pixel. It should be noted that
stationarity is one of the requirements for the convergence in
(7), and the resulting estimate of H(X|Y ) is thus no longer
a bound. However, it does provide an improved estimate of
the achievable rate in practice if the local deformations are
taken into account. Notice also that past contexts Ĉ are used
for estimating (k, l) in (10), whereas past+future contexts Ċ
are used for conditional entropy estimation in (9).

The size of the area used for estimating the minimum
distance in (10) has a major effect on the validity of the
MI estimation. When the area is small w.r.t. e.g. the ridge
frequency or the generative model context size, increasing
the search radius beyond what can be considered ’local’ still
brings benefits in terms of finding an area with reduced
Hamming distance to the context in image X . This effect is
exemplified in Fig. 9, where the entropy, conditional entropy
and MI are shown for FVC-2002-DB3-A as a function of the
search radius for different size of the match area Ĉ from (10).
The match area should not be confused with the context size
of the generative model, which is kept at 40 pixels, and with
the context size of the channel model, kept at 3 · 40 + 1 pixels
(see Fig. 3). Small match area results in increasing MI with
the search radius, which however cannot be considered local
deformation compensation, as the match area falls outside the
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Fig. 8. Convergence properties of the entropy and MI estimation for FVC-
2002-DB1. Convergence is achieved after ≈ 1.2 · 106 pixels (≈ 90 images).
The vertical lines identify a new batch of 10 images for illustrative purposes.
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Fig. 9. MI estimates with non-stationary context, taking into account local
deformations as a function of the search radius and match area size |Ĉ|.

local region of the PoI. When the match area size is increased
to more than 60 pixels, a convergence can be observed in MI
at around search radius of R = 3 pixels.

In Fig. 10, the MI per area is given for selected datasets
(one per acquisition technology) when local deformations are
taken into account. The match area from (10) is set to Ĉ = 112
pixels. We see that synthetic images exhibit a slight relative
improvement (17.5% and 37% in the noisy and noiseless
case, respectively). This improvement can be attributed to
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Fig. 10. MI convergence with search radius for the local deformation
compensation for selected datasets. Synthetic images converge faster and
exhibit smaller relative improvement, which can be attributed to the finite
precision of the affine transformation. High-quality optical images take full
advantage of the information content of ridge contours and exhibit higher MI.

TABLE III
MI ESTIMATES WITH LOCAL DEFORMATION COMPENSATION.

MI
per pixel

MI
per mm2

FVC-2002-DB1-A 0.044 17.6
FVC-2002-DB2-A 0.034 16.5
FVC-2002-DB3-A 0.047 18.8
FVC-2004-DB1-A 0.038 15.3
FVC-2004-DB2-A 0.051 20.5
FVC-2004-DB3-A 0.045 18.3

MCYT optical 0.091 37.1
MCYT capacitive 0.069 27.9

SFinGe, ridge-lines 0.065 26.0
SFinGe, realistic 0.077 30.8

the imperfections in the affine transformation that is applied
in order to estimate the transformed image Y at Step 2 in
Algorithm 1. On the other hand, the improvement is more
than double for the real datasets. Additionally to the affine
transformation imperfections, this improvement is attributed to
true local deformations in the images. The MI saturates to the
values given in Table III, showing that the MI on true datasets
can even exceed that of synthetic images when the local
deformations are compensated for due to the high information
content of level-3 features (pores and ridge contours), not
present in the synthetic images.

An example of the improvement of the conditional entropy
is given in the histogram in Fig. 7, where it is shown that
more pixels have high (≈ 1) conditional probabilities and their
information content thus contributes to the MI.

VI. DISCUSSION AND IMPLICATION OF RESULTS

In this paper, binarized images only were treated due to
the complexity, related to higher-order representation. The
closed form expression models from Section III-A can also be
applied to multi-level images. In such cases, the entropy and
MI estimates will clearly be higher, however, the sensitivity
to noise is also increased.

The methods for estimating entropy and MI from sequences
of data are general to any signal. The presented methodology

of training generative and channel models, then using them for
estimation of entropy, MI and thereby identification capacity
is thus applicable to other biometric modalities, where closed-
form generative and channel models are unavailable.

Single-layer NN was treated in this work in order to show-
case the methodology. More sophisticated, deeper network
pixel-level models (e.g. as in [27]) can potentially improve
the entropy bounds and MI estimates and are interesting area
for future research.

As mentioned in Section II, feature extraction is usually
performed in order to reduce the dimensionality of the recog-
nition problem. In this paper, raw (binarized) images are
treated in order to estimate a capacity with unconstrained
recognition algorithms. The identification capacity of systems
running practical algorithms with feature extraction can also
be estimated with the presented methods. For that purpose,
feature generative and channel models can be trained. Further-
more, layered models can be devised that first model explicit
fingerprint features, such as minutiae, and then tap into the
ridge contour information content in a pixel-level fashion.
It can be expected that pixel-level MI vastly dominates the
information content of such macro features, but this is left for
future research to confirm.

It is noted that while all presented results on H(X) are
valid upper bounds, the results on MI can only be considered
estimates, since the results on H(X|Y ) are upper bounds
themselves. The results on MI are valid as far as either or both
upper bounds on H(X) and H(X|Y ) are tight. We speculate
that since the generative and channel models are from the
same family and estimated based on the same images X , the
tightness and uncertainty of both bounds is similar and the MI
estimates are thus reasonable. This is yet to be confirmed by
future research.

Biometric entropy and MI are fundamental requirements for
estimating bounds on template storage, as well as template
security, privacy and invertibility and performance/security
trade-offs [28]. The methodology presented in this paper can
be applied also to such problems.

Finally, the most conservative MI estimate presented (5.48
bits/mm2 corresponding to 0.0135 bits/pixel at 512 dpi, FVC-
2004-DB3 in Table II) is applied in order to estimate the
number of individuals which can be represented with a fin-
gerprint sample. For a sensor of size 80x80 pixels, the result
is 280·80·0.0135 ≈ 1028, which is well-above the entire world
population that ever lived of ≈ 1.07 · 1011 [29]. Following
the presented analysis, recognition of a population of this
size would be possible with a sensor of size ≈ 2.7 · 103

pixels, or ≈ 52x52 (at 512 dpi), as long as the pixel-level
generative and channel models hold below the minimum
presented size of 80x80 and said population adhere to the
generative model. The problem of operating a system at a
rate, close to this identification capacity in an efficient manner
is still open, and entails as mentioned design of good error-
correcting and source codes (or feature vectors). However,
from the estimates given in this paper, it can be suggested
that when a complexity unconstrained matching algorithm is
allowed, small fingerprint sensors will be well-sufficient for
identification of large populations. The only requirement is
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that the reference image covers sufficient area, such that the
overlap between the active probe area and the reference images
is sufficiently large.

VII. CONCLUSION

In this paper, the entropy and mutual information (MI)
of fingerprint images were estimated. It was demonstrated
that texture-based generative models allow for entropy-per-
pixel estimation which is independent of the sensor size. The
entropy was therefore shown to only depend on the amount
of active area, present in the fingerprint sample. By exten-
sion, the biometric performance of complexity-unconstrained
fingerprint recognition algorithms will only be a function of
the overlapping area between the probe and reference samples.
The achievable rates of fingerprint identification systems were
then estimated via the MI between a probe and reference for
several public databases. The most conservative texture-based
MI estimates given in this paper suggest capacity, which is
sufficient for identification of extremely large populations with
sensors as small as a few thousand pixels.

APPENDIX: LIST OF ABBREVIATIONS AND MAIN
DEFINITIONS

FVC fingerprint verification competition.
LR logistic regression.
LUT look-up table.
MCYT Ministerio de Ciencia y Tecnologı́a.
MI mutual information.
NN neural network.
OMAP orientation map.
PMF probability mass function.
PoI pixel of interest.
PoO probability of occurrence.
PPM pixel predictive model.
PRC probability of random correspondence.
S biometric source.
X biometric source template image after

acquisition and processing.
Y biometric source verification image after

acquisition and processing.
H(X) information entropy of X .
H(X|Y ) conditional entropy of X after observing Y .
I(X;Y ) mutual information of X and Y .
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