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Abstract—In the Internet of Things (IoT), wireless sensor
networks are often paired with machine learning frameworks
to deliver applications of high societal impact and support
critical infrastructures. In this context, this paper investigates
the relationship between network reliability and the reliability
of the machine learning framework in terms of prediction
accuracy. Our experimental analysis leverages six data sets
of various degrees of information redundancy and considers
four machine learning algorithms that are commonly used for
classification. In turn, packet loss is inserted in the raw input
data, emulating various networking loss patterns in terms of
burstiness. The experimental results consistently demonstrate
a non-linear relationship between the reliability of the network
and the accuracy of the machine learning classifier, indicating
that not all data packets are equally valuable to the application
performance. We conclude with recommendations for IoT
practitioners and IoT system designers.

Index Terms—Reliability, Machine Learning, Missing Data,
Internet of Things

1. Introduction

The emerging Internet of Things (IoT) brings wireless
sensing technology into various industries and application
domains. Indeed, the IoT goes beyond smart consumer
electronics, bringing wireless embedded systems in critical
infrastructures, such as industrial sensor networks [1], health
and care services [2], and city infrastructures [3], among
others. The critical nature of these IoT application domains
drives the need for dependable sensor networks. A vital
component of dependable IoT networking is the reliability
of the data communication network, expressed as the ratio of
the packets delivered to the destination over the packets sent
by the source: the Packet Delivery Rate (PDR). The order
of magnitude of network reliability is often measured in
terms of a number of nines that correspond to the long-term
probability of successful delivery. Wired networks can offer
very high degrees of reliability. For instance, there are re-
ports that the IEEE 802.1 TSN (Time Sensitive Networking)
standard [4] offers seven nines (99.99999%) of reliability
[5]. Due to the nature of wireless communication, on the
other hand, reliability is significantly more challenging in

wireless networks. Indeed, the quality of a wireless link
is very volatile, as it depends on several environmental
parameters. For instance, wireless networks – particularly
the ones deployed in the unlicensed bands – are prone
to interference. In addition, link quality also depends on
reflections (multi-path fading) and obstacles (shadowing).

IEEE 802.15.4e [6] is a recent addition to the IEEE
802.15.4 standard for low-power wireless networks. The
amendment introduces TSCH (Time Slotted Channel Hop-
ping), a time-synchronous Medium Access Control (MAC)
protocol that traces its origins to industrial wireless stan-
dards, i.e., WirelessHart [7] and ISA-100.11a [8], and aims
to bring wire-like reliability to low-power networks. TSCH
achieves this by keeping the nodes of the network globally
synchronised and orchestrating the usage of the medium via
schedules. TSCH schedules can, indeed, be completely free
of collisions, if they allocate no more than one transmitter
to a particular timeslot. In turn, external interference is
avoided by channel hopping [9]. With channel hopping at
the link-layer, upon a channel error, the re-transmission is
scheduled at a different channel, mitigating the probability
of consecutive errors that eventually lead to packet loss.
Duquennoy et al. [10] have shown that TSCH can achieve
five nines of reliability (99.999%) in various test-bed envi-
ronments. Elsts et al. [11] adopted TSCH for a Health IoT
sensing platform and achieved, on average, more than 99.9%
reliability in a series of long-term residential deployments
(up to 12 months) in a city environment. Similar works
document real-world deployments that confirm that TSCH
is able to achieve very high levels of reliability at outdoor
environments [12] and smart buildings [13] as well.

In this paper, we attempt to identify the value of network
reliability in IoT sensing applications, such as the aforemen-
tioned examples. We are particularly interested, and thus
limit the scope of the paper, to IoT applications that consist
of a IoT network of (typically resource-constrained) sensing
devices that is paired with machine learning frameworks
for knowledge extraction. In such IoT contexts, the IoT
network is responsible for data acquisition and, in turn, the
machine learning framework is responsible for extracting
knowledge from the collected data. In this context, net-
work reliability plays an important yet indirect role to the
system performance; the ultimate performance indicator is
the reliability of the prediction. In other words, the paper
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Figure 1. System Architecture: IoT sensing platforms generate raw data
and communicate them to the IoT gateway over a low-power wireless
network, whereby packet loss may occur. The raw data is, in turn, processed
by a Machine Learning (ML) framework to train a model (training phase)
and perform classifications (deployment phase). The reliability of the IoT
network indirectly affects the accuracy of the classification task.

investigates how the reliability of the IoT network affects the
reliability of the prediction at the application layer. It is the
authors’ hope and belief that a better understanding of this
relationship can trigger cross-layer research on dependable
wireless networking, leading to IoT networking protocols
that are designed to exploit the mechanics of data-driven
knowledge extraction for resource-efficiency.

In related work, [14] investigates the efficiency of classi-
fiers using datasets with simulated data loss and proposes an
evaluation methodology for missing data techniques. More
specifically, their analysis focuses on random missing data
on the feature set due to arbitrary reasons. Different to
[14], our focus is particularly on data lost in the IoT data
collection network, whereby the missing data patterns derive
from the reliability of the network. Moreover, our analysis
considers data loss in the raw data generated by the IoT
sensing devices, and not on the extracted features.

In summary, the contributions of the paper can be sum-
marised as follows. We analyse a typical IoT application
in which raw data are generated by an IoT sensing device,
collected over an IoT network, and provided to a machine
learning framework for knowledge extraction (Section 2.1).
In this setting, we consider six datasets of various degrees
of information redundancy in terms of sampling frequency
and number of sensing modalities (Section 3.1). In turn, we
emulate various packet loss patterns at the data collection
sub-system (Section 2.2), and we investigate how the relia-
bility of the network affects the reliability of four commonly
used classifiers (Section 3). Lastly, we conclude with rec-
ommendations for IoT practitioners and a discussion on how
this relationship can be exploited to improve the resource-
efficiency of reliable IoT networking protocols (Section 4).

2. Methodology

2.1. System Architecture

We consider a typical IoT system architecture, as shown
in Fig. 1, whereby raw sensor data are generated by low-end
sensing devices. The raw data is, in turn, transferred over a

low-power wireless network to an IoT gateway device that
lies at the root of the low-power network. Thereafter, the raw
data are either processed at the IoT gateway, following the
principle of Fog Computing, or transferred and processed
at the cloud, following the principle of Cloud Computing.
Regardless of whether it occurs at the IoT gateway or the
cloud, the process of knowledge extraction follows a typical
time-series machine learning processing chain: firstly, the
stream of raw data is segmented into (potentially overlap-
ping) windows; secondly, for each window, features are
extracted from the raw data (feature extraction); lastly, the
extracted features are provided as input to a machine learn-
ing algorithm either for training a model (training phase) or
for making a prediction (deployment phase).

In this architecture, we consider that the process of data
acquisition via the low-power IoT network is characterised
by a certain degree of reliability. Without loss of generality,
for the remainder of the paper, we will assume that each
sensing device transmits the raw sensor data to the IoT
gateway in packets that contain a single data sample (or
a data sample from each sensing modality assuming the
sensing node hosts multiple sensing elements). Therefore,
the availability of the raw data depends on the reliability of
the network, denoted as Packet Delivery Rate (PDR). For
example, a PDR of 99.9% expresses that on average one out
of 1000 samples is not available to the machine learning
architecture.

It is stressed that, from the perspective of the user, the
reliability of the network is not directly relevant. Instead, the
user experiences the reliability of the application as a whole,
expressed as the prediction accuracy of the machine learn-
ing model. Nevertheless, any data loss at the IoT network
introduces error into the process of knowledge extraction,
thus contributes to a reduction of the prediction accuracy of
the machine learning model. On one extreme, with perfect
reliability (PDR= 1), the machine learning algorithm has
all the data available and, thus, can reach its maximum
potential. On the other extreme, with no data (PDR= 0),
the machine learning algorithm can only make a random
guess. In a classification task among N classes, this dictates
a lower bound in the prediction accuracy, 1/N .

It is noted that a broadband link from the IoT gateway
to the cloud is expected to be several orders of magni-
tude more reliable than the reliability of the low-power
wireless network, due the natural challenges of wireless
communication (e.g., interference, fading, shadowing, etc).
For that reason, we consider the probability of data loss
in the link from the IoT gateway to the cloud negligible
and we assume 100% reliability for that link. Therefore, the
analysis of this paper covers both the cases of fog computing
(knowledge extraction is located at the IoT gateway) and
cloud computing (knowledge extraction is located at the
cloud). We highlight, however, that the case of knowledge
extraction on the sensing device, either in full or partially
(e.g., embedded feature extraction [15]), is out of the scope
of this paper.

Lastly, this paper focuses on the worst case scenario
whereby both the training data and the testing data are



TABLE 1. VALUES OF PROBABILITIES p AND q USED IN EXPERIMENTS

PDR 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0
p 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
q 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0.3
p 0.693 0.63 0.56 0.49 0.42 0.35 0.28 0.21 0.14 0.07 0
q 0.007 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.7

b = 0.6
p 0.396 0.36 0.32 0.28 0.24 0.2 0.16 0.12 0.08 0.04 0
q 0.004 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

b = 0.9
p 0.099 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0
q 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Delivered Lost

p

q

1− p 1− q

Figure 2. Packet loss is generated by a two-state Markov model.

characterised by data loss during data collection. Here, one
may also consider the case whereby the training data are
collected via expensive or impractical, yet reliable, means
and only the deployment phase is characterised by packet
loss. We consider the latter an interesting direction for future
work.

2.2. Packet Loss Insertion Model

The goal of this paper is to study how network reliability
affects the reliability of a classification framework. To that
end, we employ a complete data set that has no data loss,
and we insert artificial packet loss based on the packet loss
insertion model that is described in this section.

We insert artificial packet loss that follows a two-state
Markov model, also known as Gilbert model [16]. This
model is frequently used in the literature to simulated packet
loss in streaming data due to its effectiveness and simplicity
[17], [18]. The two-state Markov model, shown in Fig. 2,
operates as follows. The system is in either in the Delivered
state or in the Lost state. In the former state, the data
packet is delivered successfully to the IoT gateway. In the
latter state, the data packet is lost in transit. With each
transmission the system is characterised by a probability p
to change from the Delivered state to the Lost state and a
probability q to change from the Lost state to the Delivered
state.

It can be observed that if p = 1 − q, the probability
of a packet loss does not depend on its previous state,
therefore models an environment whereby the packet losses
are statistically independent, such as due to collisions or
short-term interference. Yet, the effectiveness of the two-
state Markov model derives from the fact that it is able
to capture the burstiness of packet loss in communication
networks. Indeed, if p < 1 − q the probability of a packet
loss is greater after another packet loss rather than after a
successful delivery. This effectively models packet loss that

is bursty by nature, such as long-term interference or hard-
ware failures. For the remainder of the paper, we define a
burst factor, b = 1−p−q. A burst factor b = 0 inserts packet
losses that are statistically independent (i.e., p = 1 − q). A
burst factor b > 0 is characterised by a higher probability to
insert consecutive packet losses. At extreme levels (b→ 1),
the probability of a loss is very low (p→ 0), yet once a loss
occurs the probability that a consecutive packet loss is very
high (q → 0), resulting to prolonged bursts of packet loss.
The overall packet delivery rate of the two-state Markov
model is given by:

PDR = 1− p

p+ q
(1)

In the experiments that follow (Section 3), we compare
different burst factors b at the same PDR values. Table 1
summarises the values of the probabilities p and q used in
the experiments.

3. Experimental Analysis

3.1. Application Use Case and Dataset

For the experimental analysis, we consider a use case
from the Health IoT domain, namely classification of ac-
tivities of daily life using wearable sensors. This is a com-
monly studied problem with numerous applications, such
as assisted living for the elderly and long-term behavioural
analytics for individuals that suffer from chronic illness [19].

Specifically, we employ a dataset collected using an
early prototype of the third generation of the SPHERE
Wearable [20]. The wearable device employs two inertial
sensing elements: the MC3672 accelerometer [21] and the
ICM20948 operating as a gyroscope [22]. The two sensing
components are placed on the prototype board with their
respective x, y and z axes aligned. The accelerometer was
configured to operate in the ±8 g range of acceleration am-
plitude and at 12-bit resolution, which translates to 3.9 mg
sensitivity. The gyroscope was configured to operate at 16-
bit resolution, resulting to a sensitivity of 7.6 mds−1. The
sensors are sampled at 18Hz. In is noted that the literature
suggests that the accuracy of activity classification improves
with increased sampling frequency, yet with no significant
gains above 20Hz [19], [23], [24].

The dataset is composed of a set of nine loosely scripted
activities of daily life performed by seven volunteers, aged
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Figure 3. Network reliability vs. classification accuracy (RF) using only the accelerometer at various sampling frequencies: 18Hz (left), 9Hz (middle),
4.5Hz (right).
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Figure 4. Network reliability vs. classification accuracy (RF) using both the accelerometer and the gyroscope at various sampling frequencies: 18Hz (left),
9Hz (middle), 4.5Hz (right).

between 23 and 36 years, 3 females and 4 males. The
nine activities of daily life are the following: sitting, stand-
ing, walking, turning leftwards, turning rightwards, running,
jumping, and exercising. The participants were instructed
to repeat these activities for 2.5 minutes. In an attempt to
maximise the variability in the dataset, each participant was
let free to interpret how to perform each activity, without
any particular instructions. The dataset was collected by
Zalewski, who documents it in further detail in [25].

Aiming to investigate the effect of network reliability
on the classification accuracy using datasets of various
degrees of information redundancy, we generate several
input datasets out of the original, focusing on two dimen-
sions, namely the number of sensing modalities and the
sampling frequency. In particular, we consider the case
of severely resource-constrained wearable sensors that, for
energy-efficiency, employ only an accelerometer and the
case whereby both an accelerometer and a gyroscope are
employed. Moreover, we downsample the respective datasets
by a factor of two and by a factor of four, generating
additional datasets that emulate lower sampling frequencies:
namely 18Hz, 9Hz and 4.5Hz (including the original).

Before passing the data to the machine learning frame-
works, we insert data loss using the two-state Markov model
(see Section 2.2) configured with the probabilities p and q
as shown in Table 1.

3.2. Machine Learning Framework

The machine learning framework takes as input the six
datasets with missing data due to packet loss, as described

in Section 3.1.
Initially, the data is segmented into windows of 1.6

seconds. This window size is in line with the conclusion of
studies that investigate the effect of different window sizes
on classifying activities of daily life [19], [26]. In addition,
aiming to capture the temporal nature of the activities, a
50% overlapping window is used, as in [15]. This config-
uration results to a total of approximately 9000 windows
(approximately 1000 windows for each of the 9 activities).

In the next step, statistical features are extracted from
each window. In particular, we extract features from the
temporal domain, as there is literature that suggests that
these features provide a good balance between classifica-
tion accuracy and resource requirements [15], [27]. These
include the following: (i) maximum; (ii) median; (iii) mini-
mum; (iv) mean; (v) variance; (vi) standard deviation. These
temporal features are extracted for each of the three axes
of the accelerometer and gyroscope respectively, resulting
to a total number of 18 features for the accelerometer-only
datasets and 36 features for the accelerometer and gyroscope
datasets. If the window misses accelerometer/gyroscope
samples due to packet loss, the features are calculated nor-
mally, ignoring the missing values. In total, approximately
1000 feature vectors are extracted from the input data for
each of the 9 activities.

In turn, each of the 9 arrays of feature vectors is
randomly split into training and testing sets (80%-20%).
This ensures balanced representation of the 9 activities in
the training and testing sets. The training set is used to
train a classifier and the testing set is used to evaluate its
performance in terms of classification accuracy. It is noted
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Figure 5. Network reliability vs. classification accuracy (KNN) using only the accelerometer at various sampling frequencies: 18Hz (left), 9Hz (middle),
4.5Hz (right).
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Figure 6. Network reliability vs. classification accuracy (KNN) using both the accelerometer and the gyroscope at various sampling frequencies: 18Hz
(left), 9Hz (middle), 4.5Hz (right).

that the probability to randomly identify the correct class is
approximately 11.11%. This constitutes a lower performance
bound for the classification framework.

In this work we study how network reliability affects
the performance of the classifier, and we are interested to
investigate if different classification frameworks are affected
differently by packet loss in the data collection network.
To that end, we employ four machine learning algorithms
for the classification task, namely Random Forest (RF),
k-Nearest Neighbours (KNN), Support Vector Machines
(SVM), and Deep Neural Networks (DNN). In the remainder
of this section, we briefly introduce the machine learning
algorithms and provide further details on their configuration.

Random Forest (RF) [28] is a statistical learning frame-
work which generates a set of decision trees from randomly
selected subsets of the training data, and provides a classi-
fication which combines the decisions of each single tree.
We train a random forest of 20 trees with a minimum leaf
size of 1.

k-Nearest Neighbours (kNN) [29] is a non-parametric
classification framework (no assumptions are made on the
distribution of the data) based on a majority vote scheme,
where a sample is assigned to the class most common
among its k nearest neighbours. Several measures of dis-
tance/nearness are possible, depending on the context. Our
classifier is using the euclidean distance and k = 5 to make
a prediction. The input features are centred to their mean
and scaled to their standard deviation.

Support Vector Machine (SVM) [30] is a supervised
classification framework which aims to find the hyperplane
that maximises the distance between samples belonging to

different classes. It is intrinsically a binary classifier, but
techniques are available to operate in multi-class environ-
ments. We implement a multi-class SVM classifier as a
series of 9 one-against-all binary classifiers. We employ the
Radial Basis Function (RBF) kernel. The input features are
centred to their mean and scaled to their standard deviation.

Deep Neural Network (DNN) [31] is a neural network
with more than two layers, composed of nodes (i.e., neurons)
characterised by a specific activation function. We use a
DNN with two hidden layers of 18 nodes, equipped with
hyperbolic tangent sigmoid transfer functions. The output
layer relies on a softmax function. The training is carried
out by minimising the cross-entropy cost function.

3.3. Experimental Results

The experimental results are presented in Figs. 3 to 10.
Each figure incorporates three plots that correspond to the
three sampling frequencies, namely 18Hz, 9Hz, and 4.5Hz,
resulting to a total of 24 plots that correspond to all the
combinations of the six datasets (Section 3.1) and the four
machine learning algorithms (Section 3.2). In turn, each plot
shows the relationship between the reliability of the data
acquisition network (PDR) and the reliability (i.e., classi-
fication accuracy) of the machine learning framework that
operates at the application layer. Each line in the plot cor-
responds to a different packet loss pattern. On one extreme
a burst factor b = 0 represents the case whereby packet
losses are statistically independent (e.g., fading, short-term
interference, short-term shadowing). On the other extreme, a
burst factor b = 0.9 represents the case whereby packet loss
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Figure 7. Network reliability vs. classification accuracy (SVM) using only the accelerometer at various sampling frequencies: 18Hz (left), 9Hz (middle),
4.5Hz (right).
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Figure 8. Network reliability vs. classification accuracy (SVM) using both the accelerometer and the gyroscope at various sampling frequencies: 18Hz
(left), 9Hz (middle), 4.5Hz (right).

events are rare, yet once they happen several consecutive
packets are lost (e.g., reboots, hardware failures). The inter-
mediate burst factors represent cases whereby there is some
level of correlation between packet losses (e.g., extended
periods of interference). Each experiment was repeated up
to 100 times and the figures report the mean classification
accuracy. The standard deviation (not shown in the figures)
was σ < 0.02 for all cases with two exceptions: σ = 0.0224
for DNN with accelerometer-only at 18Hz dataset and
b = 0.9, and σ = 0.0366 for DNN with accelerometer-only
at 9Hz dataset and b = 0.

Looking at all 24 plots, we can observe that the rela-
tionship between network reliability and classification accu-
racy has a hyperbolic nature. One one end, increasing the
network reliability has a positive effect on the reliability of
knowledge extraction, yet this improvement has diminishing
returns: the accuracy of the classifier eventually plateaus
at some maximum level. On the other end, as fewer data
samples reach the machine learning framework, the accuracy
of the classifier eventually collapses and asymptotically
reaches the level of a random guess (i.e., approximately 0.11
in our case). This trend, which is consistent in all datasets
and regardless the employed machine learning algorithm
or the packet loss pattern (i.e., burst factor b), comes in
contradiction with the fairly common assumption of the
IoT networking community that network reliability has a
linear relationship with application performance, i.e., all data
packets are of equal value. Our experiments suggest that this
is not true for applications that are based on data-driven
machine learning frameworks.

With regard to the influence of different packet loss

patterns, we can observe that the machine learning frame-
works are tolerant to packet loss as long as the lost data
samples are distributed in time. Indeed, the lower the burst
factor b, the higher the tolerance. However, when a critical
amount of data within a window is lost, the effectiveness of
the whole window is compromised. Indeed, when the burst
factor b is very high, there is a very high probability for
consecutive errors that invalidates multiple windows. As a
result, the accuracy of the classifier collapses more rapidly.
As an intuitive example, consider the case of a relay node
in the IoT network that reboots due to a software error and
reconnects after one minute. In this scenario, the classifier is
unable to operate reliably during that minute. If, on the other
hand, the packet loss is uncorrelated and thus distributed in
time over multiple windows, the classifier is able to operate
more reliably. In future work, we plan to investigate if
frequency-domain features lead to a similar behaviour.

As anticipated, the experimental results also demon-
strate that higher information redundancy in the input data
makes the system more resilient to packet loss. Indeed, the
accelerometer-only dataset is less resilient to packet loss
than the case that leverages both sensing modalities, and the
same holds for the sampling frequency. In the hypothetical
scenario whereby the input data have no information redun-
dancy whatsoever, it is easy to imagine that the importance
of network reliability would be vital for the application
performance. However, in practice, this would never be the
case. Indeed, while techniques are available to for feature
selection and dimensionality reduction, such as Principal
Component Analysis (PCA) [32], or to rank features ac-
cording to the their impact on classification performance
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Figure 9. Network reliability vs. classification accuracy (DNN) using only the accelerometer at various sampling frequencies: 18Hz (left), 9Hz (middle),
4.5Hz (right).
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Figure 10. Network reliability vs. classification accuracy (DNN) using both the accelerometer and the gyroscope at various sampling frequencies: 18Hz
(left), 9Hz (middle), 4.5Hz (right).

e.g., [33], these kinds of techniques can be applied only once
a subset of data has been collected and used to elaborate
potential models and statistics. Redundancy reduction can be
obtained at the training phase, but cannot be used to drive
training data collection, on per sample basis; in practice,
sensor data are typically collected with a high degree of
redundancy. For example, Khan et al. [34] examined several
datasets, collected for accelerometer-based human activity
recognition, and concluded that the sampling frequencies
can be reduced by at least 43% and the reduced data would
still be more than 99% similar to the original data.

A final observation on the experimental results is that the
accuracy of the knowledge extraction is never perfect; the
maximum it reaches is 97.5% even when the IoT network is
100% reliable. This is indeed a general observation; perhaps
with the exception of toy problems, it is very unlikely
that machine learning applications yield more than 99%
prediction accuracy. This suggests that, beyond a certain de-
gree of network reliability, the machine learning framework
constitutes the performance bottleneck.

4. Conclusion

In this paper, we focus on IoT applications that employ
machine learning algorithms to extract knowledge from
data that originates from a low-power wireless network of
IoT sensing devices. In this context, we investigate how
the reliability of the IoT network affects the accuracy of
machine learning framework at the application layer. Our
experimental results suggest that the relationship between
network reliability and classification accuracy is of hyper-

bolic nature. In particular, as network reliability increases,
classification accuracy also increases yet with diminishing
returns. Similarly, as network reliability decreases, there is a
collapsing point, beyond which the accuracy rapidly drops.
These trends are confirmed by all examined scenarios, which
investigate four machine learning algorithms on datasets of
various sensing modalities and sampling frequencies.

The experimental results, presented in this paper, suggest
that not all data packets have equal value, as often assumed
in the IoT networking literature. (It is noted that techniques
for traffic differentiation, whereby important packets are
prioritised over best-effort packets (e.g., [35], [36]) are
impractical in our case, as they require a priori knowledge
on the priority level of each data sample.) This non-linear
relationship can be exploited for resource-efficiency. Indeed,
network reliability has a cost either in terms of energy
consumption or in terms of bandwidth when the IoT net-
work operates close to saturation levels (e.g., [37]). In such
contexts, protocols can adapt parameters that control such
performance trade-offs in ways that target to maximise the
classification accuracy rather than the PDR. In future work,
we plan to tailor TSCH schedules for data-driven machine
learning applications.

We conclude with some design recommendations for
IoT practitioners: (i) Unless the process of sensing at the
end devices is optimised for efficiency, the machine learning
framework is fairly resilient to packet loss. In such cases,
90% network reliability is likely to be sufficient. If the
sensors are optimised and redundancy is low, there is less
resilience to packet loss and, thus, 99% network reliability
is recommended. (ii) Long packet loss bursts have much



higher impact on the application performance than spo-
radic packet loss. Mitigating sources of packet loss bursts
(e.g., reboots, routing path failures, etc) with appropriate
redundancy should be prioritised. (iii) Since the accuracy of
machine learning predictions rarely exceeds 99%, the end
users of such IoT applications would hardly expect flawless
operation. Therefore, employing ultra-reliable networking
solutions (>99.9%) is unnecessary, especially if it compro-
mises efficiency and maintenance costs.
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