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Abstract—Advancements in commercial space applications
have increased interest in deploying FPGA devices with soft
processors on satellite systems. Processors are a vital component
in all satellite payloads used for control functions and on-board
data processing. However, a high integration level within an
FPGA causes high sensitivity to ionising radiation-induced errors,
requiring mitigation for single event effects to ensure reliable
operation. In this paper, a triple-core lock-step processor for
radiation-induced soft-errors mitigation is presented that aims
to reduce the probability of a processor failure due to soft-
errors. Aerospace applications are also defined by strict real-time
requirements for processors, thus the design is implemented using
Patmos, a time-predictable processor of the T-CREST multicore
research platform.

Index Terms—Fault-tolerance, triple-modular redundancy,
lock-step, single event upsets, time-predictable architecture.

I. INTRODUCTION

Every modern aerospace system is depending on processors
to perform vital control and data handling operations. Cur-
rently, this task depends on purpose-built radiation hardened
processors that are priced extremely high and their designs
are often decades behind what is commercially available.
The current trend in commercial and industrial applications
is to integrate large systems into a single device known as
System-on-Chips (SoC). These systems are particularly suited
to be implemented using FPGAs (field programmable gate
array) and are much more cost-effective than a custom chip
in low production volumes required in aerospace systems.
A soft processor that is implemented in such a device, is
a very compelling choice that allows for processor specific
customisation and custom reliability features. Additionally,
FPGA devices provide a significant amount of high bandwidth
I/Os and are capable of having re-configurable logic, providing
adaptability and flexibility while in the field [15].

Aerospace systems are not only fault-tolerant systems, but
they also have strict real-time requirements. The worst-case
execution time of a software task must be bound and known,
guaranteeing that the response time of critical functions is de-
livered in time. With this in mind, this paper presents a triple-
core lock-step processor by extending the time-predictable
processor Patmos. Patmos is an open-source microprocessor
specifically designed to support worst-case execution time
analysis and offer compatibility to the predictability require-
ments of hard real-time systems [13]. Patmos is part of the
multicore platform T-CREST [12].
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Fig. 1. Cosmic ray energy deposition on silicon gate [10]

To provide complete single event effect (SEE) mitigation
on an FPGA SoC, the lockstep approach is not adequate on
its own. Mitigation techniques to protect the main memory
of the system and the FPGA configuration memory must be
applied as well. Typically these include memory scrubbing [9]
and partial or complete FPGA reconfiguration schemes [5],
[2]. This paper is focused on the design of the triple module
redundancy (TMR) lockstep architecture for the processor,
thus it does not examine single event effect protection outside
of the processor core.

The remainder of this paper is organised as follows: Section
II presents the background on SEEs and common system
redundancy techniques. Section III reviews works related to
this paper. Section IV presents the design and implementation
of the proposed system. Section V presents the results. Section
VI concludes the paper.

II. BACKGROUND

FPGA devices are even more sensitive to ionising radia-
tion effects as, to achieve the aforementioned customisation
levels, as their configuration depends on memory elements
like SRAM. These effects are called single event effects,
a subcategory of these effects is single event upsets (SEU)
being the most relevant in digital circuits. SEUs are caused
when charged particles are hitting the silicon substrate inside
integrated circuits leaving an ionisation trail, or energetic
particles like neutrons collide with the substrate and via
nuclear interaction releasing a shower of charged particles
leaving individual trails. The electron-hole pairs produced
by this interaction corrupts stored information in memory
elements or flip-flops. These are called soft-errors as they are
not damaging to the device and can be corrected by resetting
the affected value [19], [8]. This interaction is depicted in



Fig. 2. Mitigation techniques for memories depending on SEU rate and
mission criticality [16]
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Fig. 1. Specifically, SEUs can corrupt the functionality of an
FPGA by altering the internal state of individual flip-flops and
memory blocks, or affect the state of custom logic elements
inside the FPGA by corrupting look-up tables, phased locked
loops, digital signal processing slices, etc.

Over the years, several techniques have been proposed and
implemented to mitigate such effects, such as employing error
correcting codes or memory scrubbing. In 2 common memory
soft-error mitigation schemes are presented in relation to SEU
rate, operational time requirements and data criticallity. This
paper is focused in the use of redundant devices, specifically
TMR. The two most common redundant systems schemes
used are double module redundancy (DMR), TMR and in
extreme cases, quadruple module redundancy may be used.
Fig. 3 shows typical DMR and TMR architectures, in both
cases the inputs is identical to all systems and the output is
either compared for DMR or voted upon in TMR. Although
redundancy always comes with the price of extra resource
overhead, greater granularity of redundancy is considered more
reliable. The most popular technique in aerospace systems is
the use of TMR where three identical systems, are operating
concurrently and their results are compared by a majority voter
[11].

The lock-step architecture is a case of DMR or TMR specif-
ically for processors. “Lock-step” in military terms is used to
describe synchronised marching, similarly here it is used to
describe two or three processors running in parallel, using
identical inputs and clocks. All processors must start at the
same time and their states and data must be equal every clock
cycle. Errors are detected by the output comparison/majority
voter unit, if the two processors have different results or if the
majority voter fails to reach consensus respectively. A major

difference between TMR and DMR lock-step systems is that
in TMR if one of the processors is faulty there is knowledge
of the faulty processor, due to the triplicated process and the
execution can proceed uninterrupted. In contrast, DMR with
only two results, it is impossible to decide which one is fault-
free. In the event of error detection, the system halts execution
and typically performs a rollback operation, meaning that the
processors are reset to the last known fault-free state and
resume execution from there. This is achieved by keeping a
processor architectural state context periodically and store it
for the event of a rollback. It is evident however that this
technique introduces considerable overhead and performance
penalties by tripling/doubling the resources needed without
any increase in processing power. So in practice, lock-step
systems are designed with the balance between resource
overhead and reliability in mind. In this paper, a system is
presented that attempts to implement TMR lock-step for a
time-predictable processor by employing three Patmos cores
in triple-core lock-step. The cores execute in parallel and the
results are checked with the use of a majority voter.

III. RELATED WORK

There have been attempts to introduce lock-step processors
in recent years, using either two-core or three-core proces-
sor setups. In [7], a TMR based design is presented as an
improvement to an existing dual-core lock-step. The system
uses a shared instruction cache that is read by the triplicated
cores and their outputs are checked by a majority voter. It also
employs a separate error detection mechanism that classifies
detected errors to correctable or non-correctable and triggers
re-synchronisation of the architectural state (register file, pro-
gram counter, state registers) to a previously stored stable state,
when a non-correctable error is detected. Additionally, this
architecture is designed to also be used in silicon and not
only as a soft-core for FPGAs.

Another approach is presented in [3], where a DMR ar-
chitecture is presented. The processors use shared data and
program memories but in this design, error correction codes
are used after each step of the pipeline, while the outputs
are checked with a DMR comperator. Additionally, data are
checked for lock-step errors in each stage of the pipeline. If
an error is detected then a “context” reload is issued which
similarly to [7] restores the cores to a previously saved stable
state.

Similarly, in [17] a TMR based solution is presented for
a soft processor used in satellite systems. In this design, the
processor is triplicated and majority voters are placed between
the cores that do not share any architectural elements as seen
in the previous setups. Also, the global clock is triplicated into
independent clock buffers, leading to each soft processor using
a unique clock. Furthermore, this design does not incorporate
any rollback features and handles disagreements externally, by
scrubbing and completely rewriting the configuration memory
of the FPGA.

In [6], a TMR based scheme is presented using triplicated
soft processors that are compared using a majority voter at the
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Fig. 4. Overview of Patmos processor pipeline [14]

output and input from the main memory. Again there are no
shared components between the cores and the error checking
is implemented either at the input or output of the processors.
As in [17], there is no rollback technique used for recovery,
the authors propose partial reconfiguration of the FPGA in
case of disagreement.

Furthermore, in [4] another DMR approach is presented
using FPGA reconfiguration instead of rollback to handle
disagreement. In contrast to all the previous techniques, this
implementation uses the two cores in a master-slave config-
uration where the input is duplicated, but the output is only
propagated to the main memory from the master. The outputs
are validated outside of the data path by a comperator that
is only raising an error signal to trigger the reconfiguration
process.

Finally, the proposed design is also TMR based. In contrast
to the works presented in this section, the TMR is formed
by triplicating pipeline elements, extending the existing soft-
core processor. This is achieved by placing the majority voter
between the execute and memory stages of the processor
pipeline. The processors use a common clock as well as a
common instruction cache and memory stage. In case of full
disagreement, the processor will try to recover by resetting the
program counter to the address of the instruction that caused
the failure at execute stage and by flushing the decode and
execute stages.

IV. DESIGN AND IMPLEMENTATION

The design presented in this paper implements a triple-
core lock-step system using three synchronised cores checked
by a majority voter circuit. The processor cores used in this
design is a 32-bit, dual-issue, statically scheduled, RISC-style
microprocessor optimised for time-predictable execution of
real-time applications [14]. It consists of five pipeline stages:
instruction fetch, decode, execute, memory, and register write
back. The architectural schematic of this processors pipeline
is depicted in Fig. 4. Furthermore, the processor is capable of
multicore operation with the use of an external time-division
multiplexed (TDM) arbiter, that enforce static schedule access
to the main memory.

The TMR in this design is created by triplicating the
pipeline and inserting a majority voter circuit between the
execute and memory stages of the pipeline. In Fig.5 a block
diagram of the TMR scheme is depicted, the cores share the

Voter

Execute

Memory

Fetch

Decode

Writeback

I/
O

Core 1

Execute

Fetch

Decode

Writeback

Execute

Fetch

Decode

Writeback

ICache

Core 2

Core 3

Fig. 5. The triplicated pipeline design

PC

M$ RF

IR

S$

D$

SP

RF

Dec

Fetch Decode Execute Memory Writeback

Voter

Ex
PC

Ex
PC

Fig. 6. Connection of the voter component into the pipeline

instruction cache as well as the memory and input/output
component. The results of the execute stage are passed through
the majority voter and then propagated to the shared memory
stage, thus guaranteeing that no erroneous results can contam-
inate the shared registers. The results are kept in lockstep by
synchronising a data valid signal for each core that allows the
data to propagate only if all the cores are ready and agreeing.
In addition, a shared instruction cache is used to ensure that
inputs of the cores are truly in lockstep. Finally, the I/O
component is also shared to enable the design to function with
all the external components available for the Patmos processor,
as the interface remains the same as if it was still single core.
Most importantly, this allows the TDM arbiter to issue a single
schedule slot per lockstep core, enabling multicore operation
with lockstep cores.

Figure 6 presents the placement of the voter component. The
voter is connected inside the pipeline, right after the execution
stage and collects the outputs as the execution progresses. If
the results of the cores are error-free then the data flow freely
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into the memory stage of the pipeline. This design has the
drawback that it places the voter and error detection circuitry
inside the critical path of the processor. The reason behind
this design decision is to stop any erroneous data to propagate
from the execution stage to any memory elements as there is
no stable context backup to revert to. There can be two cases of
core result disagreement, if one core presents a non-agreeing
result and if all cores are in disagreement. In the first case,
the majority circuit inside the voter component propagates the
correct by majority result to the memory stage and execution
resumes normally. In the second case, a fault signal is raised
by the voter component that resets the program counter in the
fetch stage to the program counter value that was executing at
the time disagreement occurred. Furthermore, the fault signal
triggers a flush signal that flushes the decode and execute
stages, so that the instruction can be executed again in a clean
pipeline.

A. Voter

The voter component consists of three purely combinational
circuits that perform the per bit majority voting and error
detection for the 32-bit outputs of the execution stage, the syn-
chronisation of the individual execution stages to the memory
stage, and the three core disagreement detection circuit, as
shown in Fig. 7.

The majority voter has three cases of operation: error-free,
single-core error, and non-correctable error. In the error-free
case, meaning all three core outputs are equal, the voter
forwards the results into the memory stage and continues
normal execution. In the single-core error case the result
that won the majority vote and is consequently considered
error-free, is propagated to the memory stage to continue
normal execution. Finally in the non-correctable error case,
meaning all three core outputs disagree with each other, the
disagreement detection circuit takes over recovery actions,
see Fig. 7 (1). The disagreement detection circuit raises the
fault signal when all three cores fail a comperator check, see
Fig. 7 (3). The fault signal issues the reset of the program
counter to the instruction address that failed in the execute
stage failed and raises the flush signal.

The result is normally written to the memory stage and the
write action is conducted by three signals, the data bus, the
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Fig. 8. Pseudo-random test vector injection circuit

address bus and a data valid bit. The voter has to synchronise
three data valid signals into one that is returned as the memory
input, therefore synchronising memory writes across all cores.
As the cores execute the same operations and the valid signal
was simply reduced using and gates, see Fig. 7 (2).

B. Testing

In order to test that the majority voter is functional, two
ways to inject testing errors were used. Firstly, a 32-bit pseudo-
random number generator was designed by adding the output
of a linear feedback shift register to the core index number, see
Fig. 8. The circuit is controlled via a counter that is compared
to a fixed value, which represents the number of clock cycles
after which the error vector will take effect. After injection,
the counter is reset and operation resumes normally until
the counter reaches the set value. To inject the test vectors,
a multiplexer is added to the outputs of the cores and is
controlled by the comperator that is checking the counter and
the fixed value. This test however, is used to test the behaviour
of the voter in the three-core disagreement case.

An alternative method that we used for testing was to inject
each core with manually corrupted compiled code (binary)
files, this method offered a more realistic way of producing
errors, simulating bit-flips in the FPGA configuration SRAM.
Moreover, it offers more control than random number gen-
eration, as the binary file can be edited with wrong but
valid instructions, that can be issued at any time of program
execution and can test any core failure combination.

V. EVALUATION

The presented design was implemented successfully in an
Altera Cyclone IV FPGA device. The experimental setup
uses the triple-core lock-step cores presented, connected to
LEDs and UART modules that were used to execute a simple
program written in C. The program simply flashes the LEDs
with a frequency of 1 Hz and outputs to the UART the state
of the LEDs and was executed successfully with a clock
frequency of 50 MHz. Test vector injection was initially set to
inject error vectors on all cores after five million clock cycles
and verify that the circuit functions as designed.

The modified binary file technique was used to produce
the following waveform diagrams. The binary files were
manipulated to issue a different operation instruction to the
period calculation of the LED flash.

In Fig. 9 shows a single-core error output case. At the first
marker on the waveform, a disagreeing output is observed
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TABLE I
IMPLEMENTATION METRICS COMPARISON BETWEEN A SINGLE PATMOS

PROCESSOR, A MULTICORE, AND THE LOCK-STEP IMPLEMENTATION

Single Multicore TMR Processor

Logic elements 9844 (9%) 28467 (25%) 16717 (15%)
Registers 4725 13273 6728
Slack 85◦C (ns) 0.109 -0.03 -7.277
Slack 0◦C (ns) 1.016 0.792 -5.805
Fmax 85◦C (MHz) 80.7 79.81 50.56
Fmax 0◦C (MHz) 87.08 86.31 54.63

in core 2, the data valid signals are raised so the cores are
synchronised and the results propagate freely. At the next
marker, the majority voter propagates through the pipeline the
majority result without stopping.

Fig. 10 presents a three core disagreement case, where all
cores provide conflicting results. The instruction causing the
malfunction as seen at the first marker is 1A. In the following
clock cycle, instruction 1A reaches the execution stage where
the cores output three different results. We see the fault signal
of the voter raising and issues a flush of the pipeline along with
the signal to reset the program counter to instruction 1A. The
program counter reset is seen in the next clock cycle market
where the instruction is again 1A, it will take two clock cycles
to reach the execution stage at the next marker.

Table I shows a comparison of logic elements and the clock
frequency between a single core Patmos processor, a three-core
multicore setup, and the three-core lock-step system. The area
and registers reported are 10 % higher than the multicore setup
and 9 % from the base processor. This is due to the triplication
of the pipeline, the shared memory and instruction cache and
the absence of the TDM arbiter that is needed for multicore
operation. However, it is clear that the voter unit is located in
the critical path of the pipeline as it is severely affecting the
timing estimates for the lock-step version, with a maximum of
−7.277ns slack in comparison to only −0.03ns and 0.109ns
at 85◦C for the other two.

Table II illustrates a comparison of logic elements and
max clock estimation between the proposed design and two

TABLE II
COMPARISON WITH TWO OF THE PRESENTED SOFT-CORE LOCKSTEP

DESIGNS

Patmos Wirthlin et al. [17] Ichinomiya et al. [6]

Logic elements 16717 3824 1376
Fmax (MHz) 50.56 73.7 64.918

of the processors presented in Section III. The other two
designs were implemented in Xilinx devices and provided area
metrics using Xilinx slices, but this design uses Altera logic
elements. However, from [18] and [1] we can see that a slice
is comprised of four LUTs while the logic element contains
only one. Therefore the values presented in Table II have been
adjusted to reflect the logic element equivalent.

Finally, the post routing power estimation made by the
synthesis tool estimated that the total power dissipation is at
401.07 mW. The voter component contributes 3.82 mW or
0.95 % of the total power consumption

A. Source Access

The source code of this implementation is freely avail-
able at the repository: https://github.com/cgkiokas/patmos/tree/
master/hardware/src/main/scala/patmos

VI. CONCLUSION

We proposed a triple-core lock-step processor for soft-
error mitigation. The proposed processor was implemented and
evaluated with success in the Cyclone IV FPGA. The system
was running a test program at a frequency of 50 MHz and
it recovered successfully from error test vector injection at a
rate of five million clock cycles. However, it was also evident
that the maximum clock frequency was affected, as shown
by the relatively large negative slack results. Consequently,
as future work, the introduction of a registered voting design
could be tested to reduce the impact of the majority voter
circuit on the processor critical path. Additionally, while
the design is capable of operating as a multicore processor
using lockstep cores, further investigation can be useful for

https://github.com/cgkiokas/patmos/tree/master/hardware/src/main/scala/patmos
https://github.com/cgkiokas/patmos/tree/master/hardware/src/main/scala/patmos
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additional mitigation on the TDM arbiter that is used on
multicore Patmos systems. Finally to be complete as a system,
an error-correcting scheme could be implemented to the main
memory by employing error-correcting codes or TMR voting
on read/write operation with memory scrubbing.
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